This invention was not made with any Federal Government support.
This invention relates generally to heat engines, and particularly to a Hypocycloidal engine to instantiate a thermodynamic cycle modifications resulting in higher (potentially significantly higher) thermal efficiencies than realized in Otto and Diesel class engine designs.
Applicant's U.S. Pat. No. 8,578,695 teaches a fairly broad set of methods and top level designs for realizing engines with significantly higher efficiencies. A central result of that work is that to maximize efficiency, the power needed from the engine for the Compression cycle of an engine must be minimized. This is because the use of compression power effectively double charges the efficiency account: first by the obvious reduction of engine output by redirecting the needed compression power to the compression work of the compression cycle, but then too by that work, needing to have been produced by the engine, must thereby be produced with the penalty of the efficiency of the engine. So by example, if an engine produces a watt of power with 50% efficiency (which by the way is a very high efficiency like we are striving to attain from this invention) then that 1 watt of power was produced at the cost of 2 watts of heat input (fuel) meaning that both the compressive power is lost to the output plus an additional watt of heat input (fuel) was used above and beyond the 1 watt needed just to replace the 1 watt of compression power. This means the engine gets charged essentially twice for the compression cycle power need to run the engine, thereby significantly decreasing net efficiency.
In this specification, we will seek to disclose more detailed means for improving the efficiency of internal and external combustion engines through the use of hypocycloid mechanisms that can reduce the above referenced compression work when high power levels are not needed. For most engine applications this is the case most of the time, as vehicles tend to operate most of their time at moderate and steady loads, and the same hold true of ships and generators. However, since engines might need bursts of power periodically, the disclosed methods also can be augmented to increase the power while potentially also increase efficiency most of the time. The primary objective of this invention then is to reveal means for the practical employment of hypocycloidal mechanisms for increasing efficiency of engines.
A more refined mechanical instantiation of essentially the same basic design is shown in FIG. 2 from U.S. Pat. No. 6,510,831 B2 issued in 2003. This invention uses exactly the same hypocycloidal gear design and 2:1 ratio as shown in
More recently, a two cylinder diametrically opposed engine with a hypocycloidal drive mechanism is described in U.S. Applicant 2010/0031916A1. This design is not unlike others (including U.S. Pat. No. 1,569,083) but differs in offering a more pragmatic mechanism that like U.S. Pat. No. 6,510,831 B2 offloads the main load from the gears onto flat bearings proven to withstand the repetitive pounding of reciprocating engines. However, once again, only a 2:1 ratio hypocycloidal gearing design is used, and all attention is given to the inline motion of the crank shaft to reduce friction between the piston and the cylinder.
U.S. Pat. No. 3,791,227 is interesting in the context of the present invention as the mechanical elements therein are similar as to what might be contemplated for instantiating the present invention in order to provide for a robust strong design. However, the entire purpose of U.S. Pat. No. 3,791,227 is for the balancing of the engine, with no thought or consideration given to the possibility of a compression versus expansion differential or other means for efficiency enhancement.
FIG. 2 is taken from U.S. Pat. No. 6,510,831 and shows another example of essentially a very similar 2:1 ratio Hypocycloidal mechanism but much better integrated mechanically into the engine to provide off-loading of forces from the gears to smooth/flat bearings which are much better able to handle such loads.
In
Note that this vertical displacement from 510 to 520 is notably less by about half that the distance to the BDC of the Power stroke at 540, thereby indicating that the piston throw for the Intake Stroke will be about half the piston throw for the Power Stroke. This means that, for a normally aspirated engine, less fuel-oxidizer mixture (Otto-type cycle) or air/oxidizer (Diesel-type cycle) will be admitted into the cylinder on a volume basis. This is what is required in order to achieve maximum efficiency, because any excess intake must be worked on by the engine during the compression phase of the cycle, and this compression work exacts a double penalty on efficiency since it requires the engine to produce that compression power (at its limited efficiency) to then apply the compression work which again degrades power and hence efficiency.
Whereas it is an objective of the current invention to limit the admitted intake volume in order to increase efficiency, this obviously cannot be taken too far, for if the engine admitted zero intake volume, then it might be maximally efficient, but it would not produce any useful power. Therefore, for a given set of application requirements, there will be some design optimum which optimizes efficiency while still producing useful amounts of power. Note however that this power deficiency can be adaptively addressed with the use of a turbo charger or supercharger to boost the intake pressure when power is needed over efficiency. In some embodiments, since the volume of the intake is smaller, then too will be the compression ratio, and thereby, a significant amount of Turbo Boost may be used without fear of pre-detonation. Effectively then we may make a high efficiency engine with small intake volume and associated low compression ratio, but then dynamically increase the effective intake volume by an on demand Boost. In this way this engine can provide high efficiency and also provide adequate power when needed at the temporary expense of efficiency. In other embodiments, a cylinder head may be configured with a smaller volume in order to increase a compression ratio of the engine to 10:1 or even greater for a gasoline engine. In any case, such an engine would have a power or expansion stroke that is about twice as long as an intake stroke in order to allow for greater expansion of hot and burning gasses.
Note also that the specific locations of all the 500 series trace points is dictated by the explicit geometric dimensions of the Hypocycloid dimensions and the angles between the comprising parts. A great deal of flexibility is afforded to the designer by these degrees of freedom to fully optimize the design for achieving maximum efficiency or meeting other performance or requirements metrics of interest.
Continuing through the phases of
At 530 in
After the BDC of the Power Stroke at 540, the Piston is forced up again to help Exhaust the Cylinder until reaching TDC for Intake at 510 to repeat the cycle. The move up to 510 results in the Piston slowing down more than in a traditional sinusoidal cycle, which means there is more time to exhaust the cylinder, lowering residual pressure for a further increase in efficiency.
So to summarize the performance attributes of the new invention, it first manifests a smaller intake volume than a traditional piston crank engine of the same Crank Arm length which reduces friction of the required Intake power which must be provided by the engine. It next also, and for the same reasons, reduces the Compression power which must be provided by the engine. Both these powers, since they are produced by the engine at some efficiency (usually about 25-50%) incur a double penalty to the engine efficiency not only because they are directly removed from the available engine power, but also because they required expenditure of (1−e) more fuel to produce these powers, where “e” is the efficiency of the engine. Continuing, there is a further increase in efficiency (and a power advantage) from the longer Power Stroke than is available from a traditional piston crank engine of the same Crank Arm length. This is sometimes called an “Over Expanded” engine stroke, but here it is simply inherent in the design and the selection of design parameters. Since the Power Stroke is longer than both the Intake stroke and Compression Stroke that would be achieved with a traditional piston crank engine of the same Crank Arm length, there is a notable increase in efficiency from this attribute of the invention. Finally, there is the factor that there is more time available for the exhaust stroke to empty the cylinder more effectively during the Exhaust Stroke. Exhaust scavenging could also assist in evacuating the cylinder in an optimum RPM range. Based on these factors and the particular aspects of the design, efficiencies approaching twice that of the Otto cycle might be achievable. As such, it is believed that efficiencies of 50% or better are achievable. Similar findings may be found for the Diesel cycle albeit likely less improvement since the Diesel is naturally more efficient to begin with.
Obviously then there are parametric sensitivities that impact the exact behavior of the resultant cycle from the hypo cyclic mechanism. And there are certain constraints needed to enforce the geometry. First and foremost, we desire a cycling such that the Pinion Gear is rotated 180 degrees from its starting point after one spin about the Ring Gear and returning to the same starting Crank angle. Since the Pinion needs to rotate an additional half turn in one rotation within the Ring Gear, the Ring Gear needs half again as many teeth as the Pinion Gear, or alternatively the Radius of the Ring Gear (R) needs to be equal to one and half times the radius of the Pinion Gear (r) or, R=(3/2)*r. Since the center of the Pinion Gear must always be its radius from the inner perimeter of the Ring Gear, it follows that the Crank Arm radius Rc is given by: Rc=R−r. A numeric example (with some tolerance errors) is shown in
As seen above, R, r and Rc are all related to each other by the necessary geometry to enforce the cycles shown in
The length of the Piston Rod and its associated desired piston stroke distances are primarily driven by the requirements for the new engine (how big and how much horse power). These in turn drive the size of the Crank Arm, at least as a starting point. Because of the multi-objective nature of these aspects, these and other parameters are best computed with use of an optimizer that can input the appropriate constraints and then search through different combinations of configurations to obtain an optimum for the design requirements. So although we cannot give unitary solution for the selection of the mechanism parameters, we can explore a few relationships between those that can be so defined.
Other factors that can be used to adjust and fine tune the mechanism and the strokes is the length of the Piston Rod and the orientation of the Cylinder axis with respect to the mechanism, nominally with respect to the center of the Ring Gear. The length of the Piston Rod is fairly straight forward, being that the longer the Piston rod the smaller the worst case angle of it with respect to the Cylinder axis and thence the lower the side pressure of the piston in the cylinder. Also the Piston Rod must have a minimum length in order to ensure the bottom of the piston clears the Ring Gear.
The angle of the cylinder with respect to the radial to the primary up radial of the Ring Gear can also be used to tweak the strokes and their results. If the Cylinder is tilted with respect to a radial from the center of the Ring Gear, the side forces of the piston inside the cylinder may be managed as needed for optimum capability and performance. Additionally or alternatively, if the Cylinder is displaced angularly about the axis of the Ring Gear, then the two TDC lobes of the trace, 510 and 530 of
The hypocyclic gear arrangement shown in the figures to this point are not the only arrangements that can provide substantially similar benefits to those described above. But trades will exist in size and complexity as well as the specific types of gears needed to instantiate the design.
Note however, that the gears themselves need not be very big since their prime function is to retain synchronization between the parts. As long as there are suitable sized flat or other bearings of the proper size to instantiate the desired strokes, the behavior described herein particularly for enhanced efficiency can be realized.
Having thus disclosed my invention and the manner of its use, it should be apparent to those skilled in the relevant arts that incidental changes may be made thereto that fairly fall within the scope of the following appended claims, wherein I claim:
This application is a Continuation In Part of Applicant's U.S. patent application Ser. No. 14/078,072, filed Nov. 12, 2013, which is a continuation of Applicant's patent application Ser. No. 12/398,182, filed Mar. 5, 2009, which issued as U.S. Pat. No. 8,578,695 on Nov. 12, 2013, which in turn claims the benefit of Applicant's provisional applications No. 61/190,982, filed Sep. 4, 2008 and 61/134,324, filed Jul. 9, 2008. Application Ser. No. 14/078,072, U.S. Pat. No. 8,578,695 and provisional application Nos. 61/190,982 and 61/134,324 are all incorporated herein in their entireties by reference.
Number | Name | Date | Kind |
---|---|---|---|
3290950 | Carlson | Dec 1966 | A |
4803890 | Giuliani | Feb 1989 | A |
5937962 | Yokoyama | Aug 1999 | A |
6209495 | Warren | Apr 2001 | B1 |
6240885 | Hanson | Jun 2001 | B1 |
8281763 | Namikoshi | Oct 2012 | B2 |
Number | Date | Country | |
---|---|---|---|
20170159560 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
61190982 | Sep 2008 | US | |
61134324 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12398182 | Mar 2009 | US |
Child | 14078072 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14078072 | Nov 2013 | US |
Child | 15438696 | US |