Hypoosmotic solutions for lymph node detection

Information

  • Patent Grant
  • 9808539
  • Patent Number
    9,808,539
  • Date Filed
    Monday, March 10, 2014
    11 years ago
  • Date Issued
    Tuesday, November 7, 2017
    7 years ago
Abstract
Provided are compositions for rapid detection of lymph nodes. The compositions include magnetic particles, such as iron oxide, and a solute present in an amount that results in a hypoosomotic solution. Methods for detecting lymph nodes also are provided.
Description
FIELD OF THE INVENTION

The invention relates to the field of medical diagnostics in general and diagnostic methods and devices for locating tissue for surgical excision.


BACKGROUND

Approximately 1.25 million new cases of breast cancer are diagnosed each year. In a majority of these cases, there is an urgent need for surgery to remove the tumor and to excise the sentinel lymph nodes and inspect them histologically to determine whether the cancer has spread to other sites in the body. The sentinel lymph nodes are the first nodes to receive lymphatic drainage from the tumor. They are called this because they reliably alert the clinician to any cancer spread. A sentinel lymph node biopsy is a standard of care in breast cancer operations today.


Locating sentinel nodes during surgery is difficult. One method for locating the sentinel node is to inject a dark blue dye into the lymphatic system in the breast. The dye then disperses throughout the breast lymphatic system and the surgeon removes any colored nodes. This method is recognized as being error-prone.


An improved method involves injecting a radioactive dye into the lymph nodes. In a similar manner, the dye drains through the lymphatic system and the surgeon then uses a radiation detector to help locate the sentinel nodes. However, the use of radioisotopes presents a significant, and an expensive, logistical burden, because of the need to allocate the time and resources of a nuclear medicine radiologist in addition to the surgeon for what is otherwise a routine operation. Further, many patients are reluctant to receive a radioactive injection. These factors can become a significant barrier to the use of radioisotopes to locate the sentinel nodes.


A further improved method involved injecting suspensions of magnetic particles into the lymph nodes and waiting for the magnetic particles to drain though the lymphatic system. The particles are then detected using a magnetometer, which reveals the location of the lymph nodes. See US2011/0133730. Prior art solutions, such as Sienna+®, have a very low osmolality of about 30 mOsm/kg. Sienna+® is an aqueous solution of maghemite nanoparticles coated in carboxydextran, having an iron concentration of about 25.5 to 29.5 mg/mL. It takes about 30 minutes for the magnetic particles in a Sienna+® injection to drain sufficiently through the lymphatic system to ensure accurate lymph node detection, which can potentially cause significant and costly downtime during surgical procedures. Consequently, impatient physicians may attempt to detect the lymph nodes too soon—i.e., before the magnetic particles have sufficiently drained through the lymphatic system—which could result in incomplete lymph node detection.


A need therefore exists for compositions that enable more efficient procedures.


The present invention addresses this need.


SUMMARY OF THE INVENTION

The invention relates to a hypoosmotic suspension for medical injection. In one embodiment, the composition includes about 13 mg/mL to about 200 mg/mL of magnetic particles, and an osmolyte from either about 0.01% w/v to about 0.6% w/v of an inorganic salt (e.g., sodium chloride) or about 0.5% w/v to about 1.5% w/v of a glycol.


Embodiments of the hypoosmotic suspensions can include one or more of the following features:


The magnetic particles can be iron oxide particles, such as superparamagetic iron oxide particles (e.g., maghemite).


The magnetic particles can be coated, such as with dextran (e.g. carboxydextran).


The suspensions can have about 13 mg/mL of magnetic particles, about 28 mg/mL of magnetic particles, 56 mg/ml of magnetic particles, 100 mg/ml of magnetic particles, 140 mg/ml of magnetic particles or about 200 mg/mL of magnetic particles.


The suspension can have an osmolality of about 80 mOsm/kg to about 160 mOsm/kg.


The suspension can include an excipient.


The inorganic salt can be present in the amount of about 0.01% w/v-0.6% w/v, about 0.05% w/v-0.3% w/v, about 0.1% w/v-0.3% w/v, less than about 0.6% w/v or about less than about 0.3% w/v.


The invention also provides a method of locating a lymph node in a patient (e.g., a human). The method includes the steps of: providing a hypoosmotic suspension; injecting the hypoosmotic suspension into the patient; waiting until the magnetic particles become entrapped in a lymph node; and detecting the location of the lymph node by detecting the location of the magnetic particles.


The method can include one or more of the following features:


The method can include injecting 0.2 mL of hypoosmotic suspension, 0.4 mL of hypoosmotic suspension, or 0.8 mL of hypoosmotic suspension into the patient.


The detecting can be performed using a magnetometer.


The invention also provides a method of rapidly locating a lymph node in a patient (e.g., a human). The method can include the steps of: providing a hypoosmotic suspension comprising magnetic particles; injecting the hypoosmotic suspension into the patient; and detecting a lymph node within 10 minutes, or within as little as 5 minutes, of injection by detecting the location of the magnetic particles, the detecting sufficient to immediately begin a medical procedure on the lymph node based on the detecting.


The invention also provides a method of treating a patient using magnetic hyperthermia, the method comprising the steps of: providing the hypoosmotic suspension; injecting the hypoosmotic suspension into the patient; and exposing the patient to an alternating magnetic field.





BRIEF DESCRIPTION OF DRAWINGS

The figures are not necessarily to scale, emphasis instead generally being placed upon illustrative principles. The figures are to be considered illustrative in all aspects and are not intended to limit the invention, the scope of which is defined only by the claims.



FIG. 1. SentiMag® magnetometer measurements (Abs Unit) at the lymph gland for various salt-based hypoosmotic solutions. Results presented as mean±SEM from 0 to 2 h, n=3.



FIG. 2. SentiMag® magnetometer measurements (Abs Unit) at the lymph node for various salt- and non-salt-based hypoosmotic solutions. Results presented as mean±SEM from 0 to 120 min, n=3.





DETAILED DESCRIPTION

The invention relates in part to the discovery of compositions useful for rapid detection of lymph nodes in patients. These compositions include suspensions of magnetic particles in a hypoosmotic solution. The osmolality of the hypoosmotic solutions facilitates rapid drainage or transport of the magnetic particles through the lymphatic system after injection, thereby reducing downtime between initial injection and lymph node detection. Lymph nodes adjacent the injection site can be detected robustly in as little as 5 to 15 minutes after initial injection, which is at least 50% faster than current methods, thereby permitting more efficient pre-operative examination. In addition, the hypoosmotic solutions of the invention are versatile solvents and can be used with a wider range of excipients than isotonic or hypertonic solutions. Furthermore, rapid movement to the lymph nodes may reduce residual marking, or tattooing, at the site of injection.


Hypoosmotic solutions within the meaning of the invention are aqueous solutions having an osmolality of about 80 mOsm to about 160 mOsm. Isotonic solutions have an osmolaltiy of around 300 mOsm, and Hyperosmotic solutions have an osmolaltiy of greater than 350 mOsm.


In preferred embodiments, an inorganic salt (e.g., sodium chloride) or a glycol (e.g., propylene glycol) is used to create the hypoosmotic solution. Inorganic salt solutions (e.g., sodium chloride) having about 0.01% w/v to about 0.6% w/v of a salt yield suitable hypoosomotic solutions for use with the invention. Glycol solutions (e.g., propylene glycol) having about 0.5% w/v to about 1.5% w/v of a glycol yield suitable hypoosomotic solutions for use with the invention.


Hypoosmotic solutions can be made using suitable inorganic salts including, for example, monovalent and divalent salts such as sodium chloride, potassium chloride, magnesium chloride, ammonium chloride, sodium bicarbonate, sodium bisulfate, sodium sulfate, ammonium sulfate, sodium phosphate, potassium phosphate, calcium chloride, magnesium sulfate, potassium acetate, and sodium acetate.


Hypoosmotic solutions can be made using suitable glycols including, for example, short chain, linear or branched alkyl glycols, such as propylene glycol.


The magnetic particles can be composed of a suitable magnetic material and one or more coatings. In some embodiments, the magnetic particles contain an iron oxide such as magnetite and/or maghemite. The magnetic core can be surrounded by a biocompatible coating to reduce toxicity, prevent agglomeration of the particles, or to modify residence time in the body. Suitable coatings include, for example, dextran, carboxydextran, other sugars, albumin, polyethylene glycol (PEG), biocompatible polymers, pegylated starch, polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyethyleneimine (PEI), polyglucose sorbitol carboxymethylether and chitosan. Other coating materials include metals such as gold, pegylated colloidal gold nanoparticles, silver, carbon, silica, silicones, aminosilanes and ceramics. To exhibit superparamagnetic behavior, the magnetic cores of the particles should be below a certain diameter, typically in the range 3-25 nm, depending on the material and structure.


Magnetic particles can also be functionalized to allow them to localize in particular tissue or cell types, for example cancerous cells, or to target particular biological systems in order to deliver therapies to those areas. Functionalization is achieved by attaching or coating with biovectors comprising, for example, antibodies, enzymes or proteins.


In one embodiment, iron oxide is used as the magnetic core because of its low toxicity, but other materials that can form a superparamagnetic core also are acceptable. The core material should be capable of being magnetically ordered. It may be a metal, such as cobalt, iron, or nickel, a metal alloy, rare earth and transition metal alloy, M-type or spinel ferrite containing aluminium, barium, bismuth, cerium, chromium, cobalt, copper, dysprosium, erbium, europium, gadolinium, holmium, iron, lanthanum, lutetium, manganese, molybdenum, neodymium, nickel, niobium, palladium, platinum, praseodymium, promethium, samarium, strontium, terbium, thulium, titanium, vanadium, ytterbium, and yttrium or a mixture thereof. The core can also be formed by oxidising a combination of an iron(II) salt and another metal salt. The metal salts which are beneficial include salts of aluminium, barium, bismuth, cerium, chromium, cobalt, copper, dysprosium, erbium, europium, gadolinium, holmium, iron, lanthanum, lutetium, manganese, molybdenum, neodymium, nickel, niobium, palladium, platinum, praseodymium, promethium, samarium, strontium, terbium, thulium, titanium, vanadium, ytterbium, and yttrium.


The osmolality of the hypoosmotic solutions have the further advantage of permitting combination with a wide range of excipients, resulting in diverse formulation options. Suitable excipients that can be used with the hypoosmotic solutions of the invention include, for example:

    • co-solvents such as ethanol, propylene glycol, polypropylene glycol, PEG 400, glycerol, benzyl alcohol, and combinations thereof;
    • oils such as lipids, liquid paraffin, sesame oil, PEG vegetable oil, and combinations thereof surfactants such as polyoxylene fatty acid esters, polyoxyl 40 castor oil, polysorbate 20, polysorbate 80, and combinations thereof;
    • liposomes such as lecithin, egg lecithin, phosphatidyl glycerol, phospholipid, egg phospholipid, and combinations thereof;
    • carbohydrates such as dextrose;
    • amino acids or amino acid mixtures, such as Aminosyn® II, Travasol®, and HepatAmine®;
    • thickening/stabilizing agents such as carboxymethylcellulose; and
    • buffers suitable for injection.


      If an excipient increases the osmolality of a solution, the amount of inorganic salt and/or glycol can be adjusted such that the total osmolality of the hypoosmotic solution is between about 80 mOsm and about 160 mOsm.


The compositions of the invention can be used to detect lymph nodes in humans or any other mammal, such as pigs. For example, a hypoosmotic solution comprising magnetic particles can be injected into a breast cancer patient. Magnetic particles in the solution are then detected using a magnetometer such as SentiMag® (Endomagnetics; Cambridge, U.K.) to reveal the location of the sentinel lymph nodes in the patient.


A further application of the hypoosmotic solution is in magnetic hyperthermia where the solution is administered to the body for the purpose of heating tissue. In this application the concentration of nanoparticles is between 20 and 200 mg/ml and more preferably between 100 and 140 mg/ml.


The hypoosmotic compositions of the invention can be supplied ready-to-use as part of a kit comprising a container, such as vial or syringe, and instructions for administering the compositions.


EXAMPLES
Example 1

Clinical trials with human patients using 2 ml Sienna+® (Endomagnetics; Cambridge, U.K.) was shown to give slow uptake in the axillary lymph nodes, with a poor external signal after 30 minutes. Sienna+® is highly hypotonic, with an osmolality of ˜30 mOsm/kg. It was speculated that when Sienna+® was injected into interstitial tissue, the surrounding cells rapidly absorbed water from the injection to maintain osmotic pressure. This would leave a more concentrated mass of Sienna+® while simultaneously reducing interstitial pressure, effectively reducing transport to the lymph system. It is believed that an increase in volume increases interstitial pressure and thereby increases the speed of uptake by the lymphatic system. However, large increases in volume might prove uncomfortable to the patient. In addition, some potential applications for sentinel lymph node biopsy (e.g., bowel, melanoma, some head and neck cancers) will not allow an increase in injection volume. It was hypothesized that an increased osmolality solution would provide a quicker response as the fluid volume and pressure in the interstitial fluid would be maintained (isotonic) or even increased (for hypertonic injection, where surrounding cells would expel water), thus increasing flow to the lymph nodes.


Methods


Pig mammaries were used as an in vivo lymph node model. An investigation was performed to assess the effects of concentration and volume of carboxydextran coated maghemite nanoparticle solution on the bio-distribution of superparamagnetic iron oxide particles in pigs, following an injection of the solution directly into the 3rd inguinal papillar. The maghemite core had a diameter of about 5 nm, and the carboxydextran coating increased particle diameter to about 60-70 nm. The aim of this study was to assess the bio-distribution of the superparamagnetic iron oxide particles in pig lymph nodes following injections of the maghemite nanoparticle solution prepared with 0.3, 0.6 and 0.9% w/v sodium chloride. The influence of tonicity upon lymph node bio-distribution of the particles was evaluated through use of a SentiMag® magnetic probe.


Prior to injection, pigs were sedated with an intramuscular combination of azaperone and ketamine, followed by general anesthesia with intravenous sodium thiopental. Before administration, the administration areas were washed and demarked.


All injections were made directly into the base of the 3rd inguinal papilla. Each pig received a different injection in the left papilla and the right papilla. Each of the test solutions was injected into three papilla of different pigs (n=3). Table 1 shows the tested formulations. In Table 1, the “System” column corresponds to the curves in FIG. 1.









TABLE 1







Formulations tested.















Iron


Sys-


Total
Concen-


tem
Tonicity
Injection Volume
iron
tration





a
0.3% w/v saline
0.4 mL
10.4 mg
26 mg/mL


b
0.6% w/v saline
0.4 mL
10.4 mg
26 mg/mL


c
0.9% w/v saline
0.4 mL
10.4 mg
26 mg/mL


d
0.9% w/v saline
0.8 mL
20.8 mg
26 mg/mL


e
0
0.2 mL
10.4 mg
52 mg/mL


f
0
0.4 mL
20.8 mg
52 mg/mL


g
0
0.4 mL
10.4 mg
26 mg/mL




(Sienna+ ®, control)


h
0
0.8 mL
10.4 mg
13 mg/mL









Carboxydextran coated maghemite nanoparticle solutions were prepared in water. NaCl was added to the maghemite solution to the appropriate concentration. For example, a 0.3% salt magnetic particle suspension was created by adding 0.3 mg of NaCl to a prediluted maghemite nanoparticle solution. Sienna+® (˜26 mg/mL maghemite, 0.4 mL dose; system g) served as the control.


Multiple readings were taken for each pig using an SentiMag® device, as detailed in Table 2. Following the 72 h readings, the site of papilla and lymph nodes were removed from all animals for histological analysis. The results in FIG. 1 are averages (n=3) of the measurements taken at the lymph nodes.









TABLE 2







SentiMag ® measurement sites and time points.










Measurement
Prior to

After injection


















location
injection
30 s
2 min
5 min
15 min
30 min
1 h
2 h
6 h
24 h
72 h





Directly on
x
x
x
x
x
x
x
x
x
x
x


papillar


2nd inguinal
x
x
x
x
x
x
x
x
x
x
x


papillar


Lymph node
x
x
x
x
x
x
x
x
x
x
x










Results


Sienna+® in 0.3% w/v saline solution (FIG. 1, system a) was found to be as efficacious as both the 0.6% and 0.9% saline solutions (FIG. 1, systems b and c, respectively). This was surprising because a 0.3% w/v solution is hypotonic (156 mOsm) compared to 0.6% w/v (270 mOsm—approximately isotonic) and 0.9% w/v (384 mOsm—hypertonic). Such strong results for a 0.3% w/v solution are unexpected. It is believed that the low tonicity will extend the range of formulation additives (excipients) that can be used, as compared to 0.6% and 0.9% solutions.


Specifically, increasing tonicity results in significantly more rapid transport of iron particles through the lymphatic system. At 5 minutes post injection, the addition of 0.3%, 0.6%, and 0.9% salt to Sienna+® (FIG. 1, systems a, b, and c, respectively) result in a five-fold increase in signal measured at the lymph gland as compared to the control, Sienna+® (FIG. 1, system g). As a result, a treating physician need only wait 5-15 minutes before beginning a procedure, which reduces the wait time by at least 50% as compared to Sienna+® alone.


Furthermore, at the 30 minute time point, the impact of adding 0.3%, 0.6%, or 0.9% w/v sodium chloride to Sienna+® (FIG. 1, systems a, b and c, respectively) is equivalent to doubling the concentration of iron (FIG. 1, system f). Consequently, increasing tonicity requires less total iron be used per injection, thereby reducing costs and side effects.


Thus, a hypoosmotic <0.6% NaCl solution and more preferably <0.3% NaCl solution provides the same rapid transport to the lymph nodes as an isotonic (e.g. 0.6% NaCl) or even a hypotonic (e.g. 0.9% NaCl) solution but without requiring such a large amount of salt to be included in the solution.


A more hypotonic solution containing 0.05% w/v NaCl showed no significant improvement over Sienna+®. The “trigger-point” for tonicity benefit is therefore somewhere between about 80 mOsm and about 156 mOsm. Thus, a 0.05% to 0.3% NaCl solution or preferably a 0.1% to 0.3% NaCl solution, or more preferably a 0.2% to 0.3% NaCl solution exhibits both rapid uptake and versatility as an excipient.


Example 2

Similar in vivo pig studies were undertaken to investigate hypoosmotic solutions comprising alternative solutes. All injections were made directly into the base of the 3rd inguinal papilla. Each pig received a different injection in the left papilla and the right papilla. Each test solution was injected into the three papilla of different pigs (n=3). Table 3 shows the tested formulations. In Table 3, the “System” column corresponds to the curves in FIG. 2.









TABLE 3







Solution formulations.









Sys-

Tonicity


tem
Solution
(mOsm/kg)












1
Sienna+ with 0.3% NaCl and 0.1% HA
132


3
Sienna+ with 0.3% NaCl and 1% polysorbate 20
135


5
Sienna+ with 0.5% propylene glycol
128


6
Sienna+ with 0.3% NaCl (control)
126


7
Sienna+ 0.75% glycerol
136


13
Sienna+ 0.5% propylene glycol and 1.8% glycerol
297









System 6, Sienna+® with 0.3% NaCL served as the control. Multiple readings were taken for each pig using a SentiMag® device, as detailed in Table 4. The results in FIG. 2 are averages (n=3) of the measurements taken at the lymph nodes.









TABLE 4







SentiMag ® measurement sites and time points.









Measurement
Prior to
After injection
















location
injection
30 s
2 min
5 min
15 min
30 min
1 h
2 h
72 h





Injection site
x
x
x
x
x
x
x
x
x


2nd inguinal
x
x
x
x
x
x
x
x
x


papillar


Inguinal lymph
x
x
x
x
x
x
x
x
x


node









As shown in FIG. 2, system 6 (Sienna+0.3% NaCl—CONTROL) resulted in the fastest delivery to the lymph gland. Salt therefore appears to be the best potentiator for delivery. 0.5% polyethylene glycol (system 5) also appears to be efficacious, resulting in rapid delivery to the lymph gland within 5-15 minutes of injection. Accordingly, in some embodiments, glycols can be used as a solute to create a hypoosomotic solution comprising magnetic particles.


The polysorbate (system 3) and glycerol (system 7) formulations were the poorest performing formulations over the first two hours, despite the tonicity being equal to that of the NaCl control (system 6), indicating that polysorbate and glycerol potentially inhibit delivery to the lymph glands. Similarly, addition of hyaluronic acid (MW 108,000 Daltons) appears to retard delivery when combined with 0.3% NaCl.


It should be noted that the method of administration of the solution will depend on the particular site in the body at which it is being administered. For sentinel lymph node biopsy, the injection may be interstitial, sub-cutaneous, intradermal or intramuscular. For magnetic hyperthermia, the solution may be administered by any of these injection methods or via a catheter or infusion into a region of tissue, a body cavity, or vessel.


It should be understood that the order of steps or order for performing certain actions is immaterial, provided that the invention remains operable. Moreover, two or more steps or actions may be conducted simultaneously.


Where a range or list of values is provided, each intervening value between the upper and lower limits of that range or list of values is individually contemplated and is encompassed within the invention as if each value were specifically enumerated herein. In addition, smaller ranges between and including the upper and lower limits of a given range are contemplated and encompassed within the invention. The listing of exemplary values or ranges is not a disclaimer of other values or ranges between and including the upper and lower limits of a given range.

Claims
  • 1. A hypoosmotic suspension for medical injection comprising: about 13 mg/mL to about 200 mg/mL of superparamagnetic particles; andan osmolyte selected from either about 0.01% w/v to about 0.6% w/v of an inorganic salt or about 0.5% w/v to about 1.5% w/v of a glycolwherein the hypoosmotic suspension has an osmolality of about 80 mOsm/kg to about 160 mOsm/kg.
  • 2. The hypoosmotic suspension of claim 1, wherein the superparamagnetic particles are iron oxide.
  • 3. The hypoosmotic suspension of claim 1, comprising between about 13 mg/ml and 53 mg/ml of superparamagnetic particles.
  • 4. The hypoosmotic suspension of claim 1, further comprising an excipient.
  • 5. The hypoosmotic suspension of claim 1 wherein the superparamagnetic particles are coated.
  • 6. The hypoosmotic suspension of claim 5, wherein the coating comprises dextran.
  • 7. The hypoosmotic suspension of claim 1, wherein the inorganic salt is sodium chloride.
  • 8. The hypoosmotic suspension of claim 1, wherein the suspension is used for the detection of sentinel nodes and comprises about 0.05%-0.3% w/v of the inorganic salt.
  • 9. The hypoosmotic suspension of claim 1, wherein the glycol is propylene glycol.
  • 10. The hypoosmotic suspension of claim 1, wherein the suspension is used for magnetic hyperthermia treatment and comprises about 20 mg/ml-200 mg/ml of the superparamagnetic particles.
  • 11. A method of locating a lymph node in a patient, the method comprising the steps of: providing the hypoosmotic suspension of claim 1;injecting the hypoosmotic suspension into the patient;waiting until the superparamagnetic particles become entrapped in a lymph node; anddetecting the location of the lymph node by detecting the location of the superparamagnetic particles.
  • 12. A method of location a lymph node in a patient, the method comprising the step of: providing the hypoosmotic suspension of claim 1;providing a hypoosmotic suspension comprising superparamagnetic particles, injecting the hypoosmotic suspension into the patient; and detecting a lymph node within 5 minutes of injection by detection the location of the superparamagnetic particles, the detecting sufficient to immediately begin a medical procedure on the lymph node based on the detecting.
  • 13. A method of treating a patient using magnetic hyperthermia, the method comprising the steps of: providing the hypoosmotic suspension of claim 1;injecting the hypoosmotic suspension into the patient; andexposing the patient to an alternating magnetic field.
  • 14. The hypoosmotic suspension of claim 1, wherein the inorganic salt is selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, ammonium chloride, sodium sulfate, sodium phosphate, potassium phosphate, calcium chloride, magnesium sulfate, potassium acetate, and sodium acetate.
RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application 61/775,780 filed Mar. 11, 2013, the entire contents of which is herein incorporated by reference.

US Referenced Citations (146)
Number Name Date Kind
2614164 Huston Oct 1952 A
3445928 Beynon May 1969 A
3449662 Wood Jun 1969 A
4324255 Barach et al. Apr 1982 A
4825162 Roemer et al. Apr 1989 A
4983912 Roehriein et al. Jan 1991 A
5005001 Cordery Apr 1991 A
5184070 Besendorfer et al. Feb 1993 A
5261403 Saito et al. Nov 1993 A
5293119 Podney Mar 1994 A
5363845 Chowdhury et al. Nov 1994 A
5368840 Unger Nov 1994 A
5402094 Enge Mar 1995 A
5414356 Yoshimura et al. May 1995 A
5416413 Leussler May 1995 A
5437280 Hussman Aug 1995 A
5492814 Weissleder Feb 1996 A
5512821 Ando et al. Apr 1996 A
5534241 Torchilin Jul 1996 A
5534778 Loos et al. Jul 1996 A
5537037 Otaka et al. Jul 1996 A
5657756 Vrba et al. Aug 1997 A
5666052 Sata Sep 1997 A
5844140 Seale Dec 1998 A
5942209 Leavitt et al. Aug 1999 A
5997473 Taniguchi et al. Dec 1999 A
6076008 Bucholz Jun 2000 A
6082366 Andrä et al. Jul 2000 A
6123920 Gunther Sep 2000 A
6173715 Sinanan et al. Jan 2001 B1
6205352 Carroll Mar 2001 B1
6230038 von Gutfeld et al. May 2001 B1
6270464 Fulton, III et al. Aug 2001 B1
6304075 Schaewen et al. Oct 2001 B1
6347241 Burbank et al. Feb 2002 B2
6356782 Sirimanne et al. Mar 2002 B1
6371904 Sirimanne et al. Apr 2002 B1
6394965 Klein May 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6418335 Avrin et al. Jul 2002 B2
6427081 Burbank et al. Jul 2002 B1
6445185 Damadian et al. Sep 2002 B1
6549800 Atalar et al. Apr 2003 B1
6592608 Fisher et al. Jul 2003 B2
6603308 Itozaki et al. Aug 2003 B2
6638913 Speck et al. Oct 2003 B1
6662040 Henrichs et al. Dec 2003 B1
6662041 Burbank et al. Dec 2003 B2
6699205 Fulton, III et al. Mar 2004 B2
6725083 Burbank et al. Apr 2004 B1
6766186 Hoyns et al. Jul 2004 B1
6815949 Kandori et al. Nov 2004 B2
6835572 Mountford et al. Dec 2004 B1
6850065 Fujita et al. Feb 2005 B1
6862470 Burbank et al. Mar 2005 B2
6889073 Lampman et al. May 2005 B2
6920346 Kazandjian et al. Jul 2005 B2
6949926 Murakami et al. Sep 2005 B2
6963769 Balaban et al. Nov 2005 B1
6996433 Burbank et al. Feb 2006 B2
7009398 Hahn et al. Mar 2006 B2
7044957 Foerster et al. May 2006 B2
7084631 Qu et al. Aug 2006 B2
7116094 Levin et al. Oct 2006 B2
7229417 Foerster et al. Jun 2007 B2
7283868 Ko et al. Oct 2007 B2
7329414 Fisher et al. Feb 2008 B2
7335511 Mountford et al. Feb 2008 B2
7386338 Hoppel et al. Jun 2008 B2
7412275 Marinelli Aug 2008 B2
7416533 Gellman et al. Aug 2008 B2
7479784 Lee Jan 2009 B2
7525308 Tsukada et al. Apr 2009 B2
7535363 Gisselberg et al. May 2009 B2
7570056 Nakabayashi et al. Aug 2009 B2
7625397 Foerster et al. Dec 2009 B2
7668582 Sirimanne et al. Feb 2010 B2
7676256 Satragno et al. Mar 2010 B2
7680524 Ogawa et al. Mar 2010 B2
7689267 Prince Mar 2010 B2
7701209 Green Apr 2010 B1
7702378 Bolan et al. Apr 2010 B2
7711407 Hughes et al. May 2010 B2
7744852 Chernomorsky et al. Jun 2010 B2
7783336 Macfarlane et al. Aug 2010 B2
7792569 Burbank et al. Sep 2010 B2
7877133 Burbank et al. Jan 2011 B2
7972619 Fisher Jul 2011 B2
8050742 Weizman Nov 2011 B2
8060183 Leopold et al. Nov 2011 B2
8062215 Voegele et al. Nov 2011 B2
8064987 Carr, Jr. Nov 2011 B2
8118754 Flynn et al. Feb 2012 B1
8137320 Mark et al. Mar 2012 B2
8174259 Hattersley et al. May 2012 B2
8219182 Burbank et al. Jul 2012 B2
8277391 Foerster et al. Oct 2012 B2
8280486 Miller et al. Oct 2012 B2
20010011155 Rapoport Aug 2001 A1
20010012915 Avrin et al. Aug 2001 A1
20010049481 Fulton, III et al. Dec 2001 A1
20020019595 Osborne et al. Feb 2002 A1
20020035324 Sirimanne et al. Mar 2002 A1
20020161298 Burbank et al. Oct 2002 A1
20030016010 Kandori et al. Jan 2003 A1
20030078493 Ogawa et al. Apr 2003 A1
20030141868 Bakharev Jul 2003 A1
20030214313 Omura et al. Nov 2003 A1
20030216632 McClure et al. Nov 2003 A1
20040109823 Kaplan Jun 2004 A1
20040162477 Okamura et al. Aug 2004 A1
20040236213 Jones et al. Nov 2004 A1
20040249261 Torchia et al. Dec 2004 A1
20050033157 Klein et al. Feb 2005 A1
20050059881 Balaban et al. Mar 2005 A1
20050136002 Fossheim Jun 2005 A1
20050148863 Okamura et al. Jul 2005 A1
20060074295 Kucharczyk et al. Apr 2006 A1
20060173283 Axelsson et al. Aug 2006 A1
20060258933 Ellis et al. Nov 2006 A1
20060270930 Brasile Nov 2006 A1
20060293581 Plewes et al. Dec 2006 A1
20070093726 Leopold et al. Apr 2007 A1
20080074109 Tsukada et al. Mar 2008 A1
20080097199 Mullen Apr 2008 A1
20080146914 Polzin et al. Jun 2008 A1
20080161848 Fisher Jul 2008 A1
20080214930 Brasile Sep 2008 A1
20080228164 Nicoson et al. Sep 2008 A1
20080275333 Fain et al. Nov 2008 A1
20080294036 Hoi et al. Nov 2008 A1
20090024022 Azar et al. Jan 2009 A1
20090082662 Israel Mar 2009 A1
20090118611 He May 2009 A1
20090164161 Hong et al. Jun 2009 A1
20090201016 Hattersley et al. Aug 2009 A1
20100030149 Carr, Jr. Feb 2010 A1
20100061937 Magnani Mar 2010 A1
20100099978 Geppert et al. Apr 2010 A1
20100125191 Sahin May 2010 A1
20100305430 Troesken Dec 2010 A1
20110021888 Sing et al. Jan 2011 A1
20110133730 Hattersley Jun 2011 A1
20110137154 Hattersley et al. Jun 2011 A1
20120229130 Hattersley et al. Sep 2012 A1
20130236530 Rosen Sep 2013 A1
Foreign Referenced Citations (42)
Number Date Country
29724862 Dec 2004 DE
102007009016 Aug 2008 DE
0126580 Nov 1984 EP
0595227 May 1994 EP
0663599 May 1997 EP
1249207 Oct 2002 EP
0966924 Aug 2003 EP
1284123 Jul 2005 EP
1062911 Jun 2007 EP
1491147 Mar 2010 EP
2267471 Dec 2010 EP
2339343 Jun 2011 EP
2689638 Oct 1993 FR
2770779 May 1999 FR
2109112 May 1983 GB
2425610 Nov 2006 GB
02-078983 Mar 1990 JP
02-281170 Nov 1990 JP
05-251774 Sep 1993 JP
06-324021 Nov 1994 JP
08-015229 Jan 1996 JP
08-248004 Sep 1996 JP
08-338864 Dec 1996 JP
09-027057 Jan 1997 JP
10-038854 Feb 1998 JP
2003-149212 May 2003 JP
2005-168678 Jun 2005 JP
2006-030004 Feb 2006 JP
9504287 Feb 1995 WO
9807052 Feb 1998 WO
0038579 Jul 2000 WO
0239917 May 2002 WO
2005011512 Feb 2005 WO
2006009048 Jan 2006 WO
2006022786 Mar 2006 WO
2006056739 Jun 2006 WO
2006117530 Nov 2006 WO
2007034196 Mar 2007 WO
2007053533 May 2007 WO
2011033306 Mar 2011 WO
2011067576 Jun 2011 WO
2014013235 Jan 2014 WO
Non-Patent Literature Citations (29)
Entry
Cash, et al., “Breast Cancers: Noninvasive Method of Preoperative Localization with Three-dimensional US and Surface Contour Mapping,” Published online before print Sep. 21, 2007, doi: 10.1148/radiol.2452060906, Nov. 2007, Radiology, 245, 556-566 (downloaded on Sep. 28, 2011 from http://radiology.rsna.org/content/245/2/556.full).
Conners, “Diagnostic uses of metal detectors: a review,” Int. J. Clin. Pract., Aug. 2005:59(8), pp. 946-949, Blackwell Publishing.
Fagaly, “Squid Detection of Electronic Circuits,” IEEE Transactions on Magnetics, vol. 25, No. 2, Mar. 1989, pp. 1216-1218.
Freitas, Jr., “Nanomedicine, Vol. I: Basic Capabilities,” www.nanomedicine.com/NMI/8.2.1.2.htm, Landes Bioscience, Georgetown, TX, 1999, 4 pages.
Gopee, et al., “Migration of Intradermally Injected Quantum Dots to Sentinel Organs in Mice,” Toxicological Sciences, vol. 98(1), Apr. 2007, pp. 249-257.
Gunasekera, et al., “Imaging applications of nanotechnology in cancer,” Targeted Oncology, 2009, vol. 4, pp. 169-181.
Harnan, S.E. et al., “Magnetic resonance for assessment of axillary lymph node status in early breast cancer: A systematic review and meta-analysis,” EJSO the Journal of Cancer Surgery, 2011, vol. 37, pp. 928-936.
Jakub et al., “Current Status of Radioactive Seed for Localization of Non Palpable Breast Lesions,” The American Journal of Surgery, vol. 199, No. 4, Apr. 2010, pp. 522-528.
Kim, et al., “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat Biotechnol., vol. 22(1), Jan. 2004, pp. 93-97.
Meenach, “Synthesis and Characterization of Magnetic Hydrogel Nanocomposites for Cancer Therapy Applications,” Doctoral Dissertations, paper 108, 2010, http://uknowledge.uky.edu/gradschool—diss/108.
Noguchi, et al., “Sentinel lymphadenectomy in breast cancer: identification of sentinel lymph node and detection of metastases,” Breast Cancer Research and Treatment, vol. 53, 1999, pp. 97-104.
Peleg, et al., “Implementing metal detector technology and a navigation system in the removal of shrapnel,” Computer Aided Surgery, Dec. 2009, vol. 14, No. 1-3; pp. 63-68.
Peleg, et al., “Integration of computer-aided navigation and metal detector technology in the removal of shrapnel in terror attacks casualties,” 7th Int. Conf. Computer-Aided Orthopaedic Surgery, Heidelberg, Germany, 2007, pp. 57-60.
Postma et al., “Localization of Nonpalpable Breast Lesions,” Expert Rev. Anticancer Ther., vol. 11, No. 8, 2011, pp. 1295-1302.
Reddy et al., “Preparation & Application of Magnetic Hydrogel Nanocomposites for Protein Purification and Metal Absorption,” International conference on Advances in Polymer Technology, Feb. 26-27, 2010, India, pp. 83-97.
Soltesz, et al., “Intraoperative Sentinel Lymph Node Mapping of the Lung Using Near-Infrared Fluorescent Quantum Dots,” Ann Thorac. Surg., vol. 79(1), Jan. 2005, pp. 269-277 (reproduced from NIH Public Access).
Tsay, Tzong T. et al.,“Deep Cervical Lymph Flow Following the Infusion of Mannitol in Rabbits,” Life Sciences; 1997, vol. 61; No. 19, pp. 1929-1934.
Williamson, S.J. et al., “Biomagnetism,” Journal of Magnetism and Magnetic Materials, XP000574230, 1981, vol. 22; pp. 129-201.
English translation of Office Action for Japanese Patent Application No. 2008-508306, dated Nov. 8, 2011, 6 pages.
European Search Report for EP 10180206, dated Nov. 23, 2010, 4 pages.
Material Safety Data Sheet; Revision Date Mar. 5, 2007; Retrieved from the Internet: URL:https://tools.lifetechnologies.com/content/sfs/msds/2007/11361D VIAL1—MTR-NAIV—EN.pdf [retrieved on Jun. 10, 2014], abstract, (6 pages).
PCT International Search Report and Written Opinion of International Searching Authority for International Patent Application No. PCT/GB2010/002233, dated Mar. 16, 2011, 15 pages.
PCT International Search Report and PCT Written Opinion of International Searching Authority for International Patent Application No. PCT/GB2013/051885, dated Nov. 14, 2013, 18 pages.
PCT International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/GB2014/050698, dated Jun. 25, 2014, 14 pages.
PCT International Preliminary Report on Patentability for International Application No. PCT/GB2014/050698, dated Sep. 15, 2015, 9 pages.
PCT International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/GB2014/050731, dated Jun. 24, 2014, 15 pages.
PCT International Preliminary Report on Patentability for International Application No. PCT/GB2014/050731, dated Sep. 15, 2015, 10 pages.
PCT Invitation to Pay Additional Fees and Partial International Search Report of the International Searching Authority for International Application No. PCT/GB2014/050732, dated Jun. 26, 2014, 6 pages.
PCT International Preliminary Report on Patentability for International Application No. PCT/GB2014/050732, dated Sep. 15, 2015, 13 pages.
Related Publications (1)
Number Date Country
20140314679 A1 Oct 2014 US
Provisional Applications (1)
Number Date Country
61775780 Mar 2013 US