Hysterectomy model

Information

  • Patent Grant
  • 10733908
  • Patent Number
    10,733,908
  • Date Filed
    Wednesday, January 16, 2019
    5 years ago
  • Date Issued
    Tuesday, August 4, 2020
    4 years ago
Abstract
A surgical simulator for surgical training is provided. The simulator includes a frame defining an enclosure and a simulated tissue model located inside an enclosure. The simulated tissue model is adapted for practicing hysterectomies and includes at least a simulated uterus and a simulated vagina. The simulated tissue model is suspending inside the enclosure with two planar sheets of silicone such that the tissue model is located between the two sheets each of which form a fold and are in turn connected to the frame. The frame may be shaped like a cylinder and located inside a cavity of a larger laparoscopic trainer having a penetrable simulated abdominal wall. The tissue model is interchangeable and accessible laterally through an aperture provided in a support leg of the trainer.
Description
FIELD OF THE INVENTION

This application is generally related to surgical training tools, and in particular, to simulated tissue structures and models for teaching and practicing various surgical techniques and procedures related but not limited to laparoscopic, endoscopic and minimally invasive surgery.


BACKGROUND OF THE INVENTION

Medical students as well as experienced doctors learning new surgical techniques must undergo extensive training before they are qualified to perform surgery on human patients. The training must teach proper techniques employing various medical devices for cutting, penetrating, clamping, grasping, stapling, cauterizing and suturing a variety of tissue types. The range of possibilities that a trainee may encounter is great. For example, different organs and patient anatomies and diseases are presented. The thickness and consistency of the various tissue layers will also vary from one part of the body to the next and from one patient to another. Different procedures demand different skills. Furthermore, the trainee must practice techniques in various anatomical environs that are influenced by factors such as the size and condition of the patient, the adjacent anatomical landscape and the types of targeted tissues and whether they are readily accessible or relatively inaccessible.


Numerous teaching aids, trainers, simulators and model organs are available for one or more aspects of surgical training. However, there is a need for models or simulated tissue elements that are likely to be encountered in and that can be used for practicing endoscopic and laparoscopic, minimally invasive, transluminal surgical procedures. In laparoscopic surgery, a trocar or cannula is inserted to access a body cavity and to create a channel for the insertion of a camera such as a laparoscope. The camera provides a live video feed capturing images that are then displayed to the surgeon on one or more monitors. At least one additional small incision is made through which another trocar/cannula is inserted to create a pathway through which surgical instruments can be passed for performing procedures observed on the monitor. The targeted tissue location such as the abdomen is typically enlarged by delivering carbon dioxide gas to insufflate the body cavity and create a working space large enough to accommodate the scope and instruments used by the surgeon. The insufflation pressure in the tissue cavity is maintained by using specialized trocars. Laparoscopic surgery offers a number of advantages when compared with an open procedure. These advantages include reduced pain, reduced blood and shorter recovery times due to smaller incisions.


Laparoscopic or endoscopic minimally invasive surgery requires an increased level of skill compared to open surgery because the target tissue is not directly observed by the clinician. The target tissue is observed on monitors displaying a portion of the surgical site that is accessed through a small opening. Therefore, clinicians need to practice visually determining tissue planes, three-dimensional depth perception on a two-dimensional viewing screen, hand-to-hand transfer of instruments, suturing, precision cutting and tissue and instrument manipulation. Typically, models simulating a particular anatomy or procedure are placed in a simulated pelvic trainer where the anatomical model is obscured from direct visualization by the practitioner. Ports in the trainer are employed for passing instruments to practice techniques on the anatomical model hidden from direct visualization. Simulated pelvic trainers provide a functional, inexpensive and practical means to train surgeons and residents the basic skills and typical techniques used in laparoscopic surgery such as grasping, manipulating, cutting, tying knots, suturing, stapling, cauterizing as well as how to perform specific surgical procedures that utilized these basic skills. Simulated pelvic trainers are also effective sales tools for demonstrating medical devices required to perform these laparoscopic procedures.


One procedure is a hysterectomy in which the uterus is removed. The hysterectomy may be performed vaginally extracting the uterus through the vaginal canal or abdominally through a small incision in the abdomen. The vaginal hysterectomy is historically hard to train on as the field of view is limited. Unlike laparoscopic procedures, there is no camera that is projecting the surgery onto a screen and unlike open procedures there is not a wide incision that can be viewed by multiple people. As such, the best way to teach a vaginal hysterectomy is through a simulated model. Therefore, there is a need for a model for training hysterectomy procedures.


SUMMARY OF THE INVENTION

According to one aspect of the invention, a surgical simulator for surgical training is provided. The surgical simulator includes a simulated pelvic frame having a proximal end and a distal end. The simulated pelvis defines an enclosure having and inner surface, an outer surface and at least one opening at the proximal end. The surgical simulator includes a simulated tissue model including a simulated uterus having a bulbous portion at a distal end connected to a simulated vagina having a tubular portion at a proximal end. The simulated tissue model is connected to the simulated pelvis such that the simulated tissue model is suspended within the enclosure of the simulated pelvis with the bulbous portion of the simulated uterus located near the distal end and the tubular portion of the simulated vagina located near the proximal end of the simulated pelvis. The tubular portion has a lumen accessible through the at least one opening in the simulated pelvis.


According to another aspect of the invention, a surgical simulator for surgical training is provided. The simulator includes a simulated pelvic frame having an inner surface and an outer surface defining a substantially uniform thickness therebetween. The simulated pelvic frame has a substantially cylindrical shape. The cylindrical shape includes an open proximal end and an open distal end defining a lumen therebetween. The simulated pelvic frame has a longitudinal axis and a top end and a bottom end. The simulated tissue model includes one or more of a simulated uterus, vagina, cervix, fallopian tube, ovary, ligament, vasculature, bladder, and colon. The simulated tissue model is removably connected to the simulated pelvic frame such that the simulated tissue model is suspended within the lumen and allowed to pendulate in response to manipulation by a user.


According to another aspect of the invention, a surgical simulator for surgical training is provided. The simulator includes a base, a top cover connected to and spaced apart from the base to define an internal cavity between the top cover and the base. The simulator includes at least two legs spaced apart from each other and interconnecting and spacing apart the top cover and base. One leg of the at least two legs has an aperture facing the internal cavity. The simulator further includes a simulated uterus at a distal end connected to a simulated vagina at a proximal end. The simulated vagina defines a lumen having a proximal opening. The proximal opening is interconnected with the aperture such that the aperture provides an access port to the lumen of the simulated vagina. The simulated vagina and simulated uterus extending into the internal cavity. The one or more of the simulated uterus and simulated vagina is suspended inside the internal cavity.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top perspective view of a surgical training device according to the present invention.



FIG. 2 is an antero-cephalad, top perspective view of a model according to the present invention.



FIG. 3A is a top perspective view of a pelvic frame according to the present invention.



FIG. 3B is a top perspective view of a pelvic frame according to the present invention



FIG. 3C is a top perspective view of a pelvic frame according to the present invention.



FIG. 3D is a top view of a pelvic frame in a flat orientation according to the present invention.



FIG. 4A is a caudal end view of a model inside a surgical training device according to the present invention.



FIG. 4B is a lateral side view of a model inside a surgical training device according to the present invention.



FIG. 4C is a lateral side view of a model inside a surgical training device according to the present invention.



FIG. 4D is an antero-caudal, top perspective view of a model inside a surgical training device according to the present invention.



FIG. 4E is a cephalad end view of a model inside a surgical training device according to the present invention.



FIG. 5A is a side view of a transvaginal adapter according to the present invention.



FIG. 5B is a top perspective view of a transvaginal adapter according to the present invention.



FIG. 6A is a side view of a transvaginal adapter according to the present invention.



FIG. 6B is a top perspective view of a transvaginal adapter according to the present invention.





DETAILED DESCRIPTION OF THE INVENTION

A surgical training device 10 that is configured to mimic the torso of a patient such as the abdominal region is shown in FIG. 1. The surgical training device 10 provides a body cavity 12 substantially obscured from the user for receiving simulated or live tissue or model organs or training models of the like described in this invention. The body cavity 12 is accessed via a tissue simulation region 14 that is penetrated by the user employing devices to practice surgical techniques on the tissue or practice model found located in the body cavity 12. Although the body cavity 12 is shown to be accessible through a tissue simulation region, a hand-assisted access device or single-site port device may be alternatively employed to access the body cavity 12. An exemplary surgical training device is described in U.S. Patent Application Ser. No. 13/248,449 entitled “Portable Laparoscopic Trainer” filed on Sep. 29, 2011 and incorporated herein by reference in its entirety. The surgical training device 10 is particularly well suited for practicing laparoscopic or other minimally invasive surgical procedures.


Still referencing FIG. 1, the surgical training device 10 includes a top cover 16 connected to and spaced apart from a base 18 by at least one leg 20. FIG. 1 shows a plurality of legs 20. The surgical training device 10 is configured to mimic the torso of a patient such as the abdominal region. The top cover 16 is representative of the anterior surface of the patient and the space 12 between the top cover 16 and the base 18 is representative of an interior of the patient or body cavity where organs reside. The surgical trainer 10 is a useful tool for teaching, practicing and demonstrating various surgical procedures and their related instruments in simulation of a patient undergoing a surgical procedure. Surgical instruments are inserted into the cavity 12 through the tissue simulation region 14 as well as through pre-established apertures 22 in the top cover 16. Various tools and techniques may be used to penetrate the top cover 16 to perform mock procedures on simulated organs or practice models placed between the top cover 16 and the base 18. The base 18 includes a model-receiving area 24 or tray for staging or holding a simulated tissue model or live tissue. The model-receiving area 24 of the base 18 includes frame-like elements for holding the model (not shown) in place. To help retain a simulated tissue model or live organs on the base 18, a clip attached to a retractable wire is provided at locations 26. The retractable wire is extended and then clipped to hold the tissue model in position substantially beneath the tissue simulation region 14. Other means for retaining the tissue model include a patch of hook-and-loop type fastening material (VELCRO®) affixed to the base 18 in the model receiving area 24 such that it is removably connectable to a complementary piece of hook-and-loop type fastening material (VELCRO®) affixed to the model.


A video display monitor 28 that is hinged to the top cover 16 is shown in a closed orientation in FIG. 1. The video monitor 28 is connectable to a variety of visual systems for delivering an image to the monitor. For example, a laparoscope inserted through one of the pre-established apertures 22 or a webcam located in the cavity and used to observe the simulated procedure can be connected to the video monitor 28 and/or a mobile computing device to provide an image to the user. Also, audio recording or delivery means may also be provided and integrated with the trainer 10 to provide audio and visual capabilities. Means for connecting a portable memory storage device such as a flash drive, smart phone, digital audio or video player, or other digital mobile device is also provided, to record training procedures and/or play back pre-recorded videos on the monitor for demonstration purposes. Of course, connection means for providing an audio visual output to a screen larger than the monitor is provided. In another variation, the top cover 10 does not include a video display but includes means for connecting with a laptop computer, a mobile digital device or tablet and connecting it by wire or wirelessly to the trainer.


When assembled, the top cover 16 is positioned directly above the base 18 with the legs 20 located substantially around the periphery and interconnected between the top cover 16 and base 18. The top cover 16 and base 18 are substantially the same shape and size and have substantially the same peripheral outline. The internal cavity is partially or entirely obscured from view. In the variation shown in FIG. 1, the legs include openings to allow ambient light to illuminate the internal cavity as much as possible and also to advantageously provide as much weight reduction as possible for convenient portability. The top cover 16 is removable from the legs 20 which in turn are removable or collapsible via hinges or the like with respect to the base 18. Therefore, the unassembled trainer 10 has a reduced height that makes for easier portability. In essence, the surgical trainer 10 provides a simulated body cavity 12 that is obscured from the user. The body cavity 12 is configured to receive at least one surgical model accessible via at least one tissue simulation region 14 and/or apertures 22 in the top cover 16 through which the user may access the models to practice laparoscopic or endoscopic minimally invasive surgical techniques.


A model 30 for practicing hysterectomies and, in particular, for practicing vaginal hysterectomies according to the present invention is shown in FIG. 2. The model 30 is configured to be placed inside the surgical training device 10 described above or other similar surgical trainer. The model 30 includes a simulated uterus 32 connected to a frame 34 with a first sheet 36 and a second sheet 38. The simulated uterus 32 includes a bulbous portion 40 defining a hollow simulated uterine cavity 42. The bulbous portion 40 is connected to a tubular portion 44 defining a vaginal canal 46 having an opening 48. The simulated uterus 32 further includes a simulated cervix 50 (shown in FIG. 4A) located inside the simulated uterus 32 in a location substantially between the uterine cavity 42 and the vaginal canal 46. The simulated cervix 50 includes a slit 52. The simulated cervix 50 is made of a solid, high durometer silicone.


The simulated uterus 32 further includes simulated fallopian tubes 54 connected to ovaries 56. The simulated uterus 32, fallopian tubes 54 and ovaries 56 are made of silicone or other elastomeric material and may include other material such as foam material combined with the silicone. The simulated uterus 32 is made of silicone or lighter foam such as urethane or silicone foam or a combination of the two. The silicone construction imparts the simulated uterus 32 with a more realistic weight when the attached simulated cervix 50 is being pulled and manipulated. The simulated uterus 32 made of foam makes the simulated uterus 32 easier to suspend inside the simulated pelvic cavity. Also, when removing the simulated uterus 32 the lightweight foam flexes more easily than a simulated uterus 32 made of higher durometer silicone allowing a larger simulated uterus 32 to be placed into the model 30 and still be removed. The foam uterus 32 would compress and flex as it is being removed through the vaginal opening 48 similar to an actual surgery. The simulated uterus 32 is approximately 300-500 grams and the simulated uterus 32 is composed of a selected durometer foam to accurately represent the size and weight of a real uterus that could normally be removed vaginally without significant morcellation. In another variation, the simulated uterus 32 is a combination of silicone and foam to give a more realistic look to the simulated uterus 32 while still having the flexibility of the foam. The foam can be cast and then the silicone can be applied over the foam such as, for example, on a rotational mold. The simulated uterus 32 is generally pink in color and the fallopian tubes 54 and ovaries are clear or white in color. Furthermore, the simulated uterus 32 may include embedded tumors, cysts and/or ectopic pregnancies in the fallopian tubes 54. The model 30 may further include simulated vasculature 58 such as blood vessels. The simulated vasculature 58 is made of solid or hollow tubular silicone or other suitable elastomer. Liquid may be included inside the hollow tubing of the simulated vasculature 58. The simulated vasculature 58 that simulates blood vessels may be red in color. The model 30 may also include simulated ligaments 59 such as the uteralsacral ligament 59 and made of silicone material as seen in FIGS. 2 and 4E. The model 30 may further include the round and tubo ovarian ligaments 61 attached to the frame 34 shown in FIG. 2.


With additional reference to FIGS. 3A-3D, the frame 34 comprises a cylindrical-like shape defining an interior/lumen 60. The frame 34 includes a first surface 62 interconnected to a second surface 64 defining a thickness therebetween. The first surface 62 defines the inner surface of the cylindrical-like shape of the frame 34 and the second surface 64 defines an outer surface of the cylindrical-like shape of the frame 34. The frame 34 is made of flexible foam material that is also slightly compressible. The frame 34 includes one or more cutouts 66 extending between the first surface 62 and the second surface 64 to define an outer perimeter and apertures. In one variation, the frame 34 is made of a sheet of foam material that is cut according to a pattern shown in FIG. 3D. FIG. 3D illustrates the outer perimeter having a top 68 and a bottom 70 interconnected by a first side and a second side 72, 74. The top 68 includes two curved portions 76a, 76b interconnected at a first protrusion 78 along a vertical axis. The two curved portions 76a, 76b represent the left and right illium/iliac crest. The bottom 70 includes a second protrusion 80 along the vertical axis. The first protrusion 78 represents the sacrum of a human pelvis and the second protrusion 80 represents the coccyx. The first side 72 includes a first lower lobe 82 having a first aperture 86 and the second side 74 includes a second lower lobe 84 having a second aperture 88. The first and second lower lobes 82, 84 represent the left and right ischium and the first aperture 86 and the second aperture 88 represent the obturator foramen of the human pelvis. A piece of foam having a thickness is cut to have the flat pattern shape shown in FIG. 3D. Then the piece of foam is curved such that the first lower lobe 82 and second lower lobe 84 join together in a cylinder-like configuration. Where the two lobes 82, 84 are joined, represent the pubic bone/pubis/pubis symphysis. The two lobes 82, 84 can be joined by adhesive or connected in another suitable manner. In another variation, the two lobes 82, 84 are not joined together but remain spaced apart in a semi-cylindrical-like or split cylinder configuration. The frame 34 is bendable and may be made of a material that retains its shape after bending such as aluminum. Also, the clips 26 and wire that are connected to the trainer 10 may be used to hold the two lobes 82, 84 in an upward orientation and in a cylindrical-like configuration while inside the trainer 10. The anatomy of the pelvis is shown in FIG. 7.


The frame 34 is made of soft, compressible, semi-rigid foam that can be die cut and then formed into the correct shape with adhesive. If the frame 34 is made of harder plastic, it could be a thin thermoform that is initially formed into the correct shape or a thicker plastic that is cut into the pelvis shape and then formed into a cylindrical shape with heat. The frame 34 may also be made of deformable metal that holds its shape. The frame 34 is not a perfect replica of the anatomy and need only include certain features selected to practice certain procedures that require those specific features as anatomical reference points or visual landmarks for the practitioner. For example, for practicing a vaginal hysterectomy, the important features of the pelvis are the restriction of the pelvic inlet and the attachments to the pelvic sidewall. For practicing a transanal total mesorectal excision (taTME), the L-shape of the sacrum is an important landmark. For hernia procedures, the pubic tubercle is an important landmark. The frame 34 can be made to have all anatomically correct features or only the ones needed for the specific procedure. As such, the frame 34 and model 30 can be used for the simulation of a vaginal hysterectomy, abdominal hysterectomy, colectomy, hernia, taTME, and other pelvic procedures. In another variation, the frame 34 forms a conical shape or frusto-conical shape having an open proximal and open distal ends.


With reference back to FIG. 2, the model 30 may further include a simulated bladder 90. The simulated bladder 90 is a hollow, air-filled component typically made of silicone or other elastomeric material. In another variation, the simulated bladder contains liquid. The simulated bladder 90 is connected to the frame 34 with adhesive or other means. It is connected to the first surface 62 or inner surface of the frame 34. The simulated bladder 90 is attached in alignment with the vertical axis in the location of where the two lobes 82, 84 are in juxtaposition in a location representative of the pubis. When connected the simulated bladder 90 extends into the lumen 60 of the frame 34. The simulated bladder 90 may further include a simulated ureter 94. In one variation, the simulated ureter 94 is connected to the simulated bladder 90. The simulated ureter is made of solid or hollow tubular silicone.


Still referencing FIG. 2, the model 30 may further include a simulated colon 92 or bowel portion. The simulated colon 92 is a tubular structure that includes a lumen. The simulated colon 92 is laid on the first surface 62 inside the interior 60 of the frame 34 and substantially along the vertical axis and against the second protrusion 80 of the frame 34. Adhesive may be used to attach the simulated colon 92 to the frame 34. The simulated colon 92 is made of silicone or other suitable elastomeric material and colored pink or other suitable color and may or may not include simulated tumors.


The first sheet 36 is a thin layer of clear silicone material having a top surface 96 and a bottom surface 98 and a first end 100 and a second end 102. The first sheet 36 is transparent and at least one of the top surface 96 and the bottom surface 98 is textured in one variation. The first sheet 36 is attached to the simulated uterus 32. In particular, the bottom surface 98 of the first sheet 36 near the first end 100 is attached along at least a portion of the length of simulated uterus 32 to one or more of the bulbous portion 40 and tubular portion 44 as shown in FIG. 2. The first sheet 36 is then folded back toward the top of the model 30 and toward the first end 100 of the first sheet 36 creating a fold near the tubular portion 44 of the simulated uterus 32. At least a portion of the first sheet 36 near the second end 102 of the first sheet 36 is attached to the frame 34 such that the bottom surface 98 of the first sheet 36 is adhered to the frame 34 in the general location of where the two lobes 82, 84 are in juxtaposition to create a cylinder-like configuration for the frame 34. The attachment of the first sheet 36 may also serve to hold the frame 34 in the cylindrical-like configuration. Adhesive is used to attach the bottom surface 98 of the first sheet 36 to the frame 34. The bottom surface 98 of the first sheet 36 is attached to the first surface 62 or inner surface of the frame 34 and then folded around a portion of the first side 72 and second side 74 of the frame 34. If a simulated bladder 90 is employed in the model 30, then the second end 102 of the first sheet 36 is also attached with adhesive to the outer surface of the simulated bladder 90 capturing the simulated bladder 90 between the frame 34 and the first sheet 36. A portion of the second end 102 of the first sheet 36 is folded around the edge of the frame 34 and attached to the second surface 64 of the frame 34 such that at least part of the second end 102 of the first sheet 36 is resident above the second or outer surface 64 of the frame 34 as visible in FIG. 4D. The first sheet 36 is sized and configured to suspend the simulated uterus 32 inside the interior 60 of the frame 34. Simulated vasculature 58 may be attached to the top surface 96 or bottom surface 98 of the first sheet 36. The configuration of the first sheet 36 forms a pocket-like structure wherein the top surface 96 of the first sheet 36 is folded and at least in part facing itself. The first sheet 36 creates a webbing of suspension that simulates the peritoneum layer.


The second sheet 38 is a thin layer of clear silicone material having a top surface 104 and a bottom surface 106 and a first end 108 and a second end 110. The second sheet 38 is transparent and at least one of the top surface 104 and the bottom surface 106 is textured in one variation. The second sheet 38 is attached to the simulated uterus 32. In particular, the bottom surface 106 of the second sheet 38 near the first end 108 is attached along at least a portion of the length of simulated uterus 32 to one or more of the bulbous portion 40 and tubular portion 44 on a side opposite from where the first sheet 36 is attached. The first sheet 36 is attached to the anterior side of the model 30 which is also the anterior side of the simulated uterus 32. The second sheet 38 is attached to the posterior side of the model 30 which is also the posterior side of the simulated uterus 32. After being attached to the posterior side of the simulated uterus 32, the second sheet 38 is then folded back toward the top of the model 30 and toward the first end 108 of the second sheet 38 creating a fold near the tubular portion 44 of the simulated uterus 32. At least a portion of the second sheet 38 near the second end 110 of the second sheet 38 is attached to the frame 34 such that the bottom surface 106 of the second sheet 38 is adhered to the frame 34 in the general location of the second protrusion 80. Adhesive is used to attach the bottom surface 106 of the second sheet 38 to the frame 34. The bottom surface 106 of the second sheet 38 is attached to the first surface 62 or inner surface of the frame 34 and may be folded around the edge of the frame 34 such that at least part of the second end 110 of the second sheet 38 is connected to second or outer surface 64 of the frame 34. If a simulated colon 92 is employed in the model 30, then the second end 110 of the second sheet 38 is also attached with adhesive to the outer surface of the simulated colon 92 or at least overlaying and not attached with adhesive such that at least a portion of the simulated colon 92 is captured or located between the frame 34 and the second sheet 38. The second sheet 38 is sized and configured to suspend the simulated uterus 32 inside the interior 60 of the frame 34 if the model 30 is turned over. Simulated vasculature 58 may be attached to the top surface 104 or bottom surface 106 of the second sheet 38. The configuration of the second sheet 38 forms a pocket-like structure wherein the top surface 104 of the second sheet 38 is folded and at least in part facing itself. The second sheet 38 creates a suspended webbing that simulates the peritoneum layer.


With reference now to FIGS. 4A-4E, the model 30 is shown placed inside a surgical training device 10 of the like described with respect to FIG. 1. The model 30 is shown inside the body cavity 12 and oriented such that the top 68 of the frame 34 is in the cephalad direction of the simulated training device 10 and the vaginal opening 48 of the simulated uterus 32 faces the caudal direction of the simulated training device 10. The model 30 can be connected to the surgical training device 10 with the clips 26 attached to the trainer 10. The retractable clips 26 can be pulled out and the clips 26 attached to any portion of the model 30 such as to the frame 34 of the model 30. Also, the second or outer surface 64 of the model 30 may include a hook-and-loop type fastener configured to attach to a complementary portion of hook-and-loop type fastener connected to the base 18 of the trainer 10. Together with one or more fasteners such as the clips 26 and/or hook-and-loop type fasteners, the model 30 is securely attached to the trainer 10 such that it can be manipulated in simulated surgery without dislodging the model 30 from the body cavity 12 of the trainer 10. The model 30 is further connected to the trainer 10 via a transvaginal adapter 112 that is sized and configured to connect between the top cover 16 and the base 18 as an additional leg 20 positioned at the caudal direction of the surgical training device 10.


Turning now to FIGS. 5A-5B and 6A-6B, there is shown a transvaginal adapter 112. With reference also back to FIG. 1, there is shown a top cover supported above the base by five legs 20. In one variation, a sixth leg 20 is provided as shown in FIGS. 4A-4D in the form of the transvaginal adapter 112. The trainer 10 may be assembled with an optional sixth support structure or leg which is configured for simulating transvaginal surgery including transvaginal hysterectomies.


The transvaginal adapter 112 includes a flat plate 114 having an inner surface 116 for facing toward the interior of the trainer and an outer surface 118 for facing outwardly towards the user. The plate 114 has a rectangular shape and includes an aperture 120 passing through the plate 108 from the inner surface 116 to the outer surface 118. In one variation, the aperture 120 is circular in shape. In another variation, the aperture 120 is elongate elliptical oval-like in shape and oriented vertically along the longitudinal axis of the adapter 112. In another variation, the aperture 120 is elongate elliptical oval-like in shape and oriented perpendicularly to the longitudinal axis of the adapter. As shown in FIGS. 5A-6B, the plate 114 also includes means such as tabs 122 or a U-shaped channel for inserting to connect the transvaginal adapter 112 to the top cover 16 and to the base 18 to help support and space apart the top cover 16. The transvaginal adapter 112 is located between the top cover 16 and the base 18 and provides a side access aperture 16 lateral to the trainer 10 or substantially perpendicular to the top cover 16 and the base 18. The plate 114 further includes a plurality of molding apertures 124 surrounding or encompassing the main aperture 120 configured for overmolding a soft simulated vaginal tissue interface made of silicone or the like. In another variation the interface is insertable into the aperture 120 of the transvaginal adapter 112. The tissue interface (not shown) includes an aperture that is substantially coaxial with the plate aperture 120. At the inner surface of the transvaginal adapter 112, a tubular extension 126 is integrally provided and extends into the simulated body cavity 12 of the trainer 10. The tubular extension 126 is longer in FIGS. 6A-6B in comparison to the tubular extension 126 of FIGS. 5A-5B. The tubular extension 126 is sized and configured such that the tubular portion 44 of the simulated uterus 32 can be stretched around the extension 126 and secured to the transvaginal adapter 112 such that the vaginal canal 46 is supported in an open configuration, coincident with and accessible through the aperture 120 of the adapter 112 as shown in FIGS. 4A-4D. The tubular extension 126 serves as a connector connecting the model 30 with the trainer 10 in a manner that permits the interior of the uterus to be accessed as in real surgery. In one variation, the tubular extension 126 is a cylindrically-shaped extension having a radially-extending distal flange 128 that extends around at least a portion of the extension 128 to help secure and retain the model 30 attached to the trainer 10. The tubular portion 44 of the model 20 is attached to the tubular extension 126 by pulling the tubular portion 44 over the distal flange 128, if one is provided, and over and around the tubular extension 126 the outer diameter of which is the same or slightly larger than the relaxed inner diameter of the tubular portion 126 to keep the tubular portion 44 secured to the transvaginal adapter 112. The transvaginal adapter 112 can be made of flexible or rigid material. If the adapter 112 is made of rigid material it will tend to simulate an already retracted vaginal canal 46. If the adapter 112 is made of flexible material or soft material, the adapter 112 is suited for practicing retraction. In another variation, the transvaginal adapter 112 has a tubular extension 126 that is made of soft flexible material and plate 114 made of rigid material or surrounded by rigid material to keep the top cover 16 of the trainer 10 supported which would still allow the practitioner to practice retraction at the opening of the vaginal canal 46 at the adapter 112.


In use, the model 30 is placed inside the surgical training device 10 and held in place with a hook-and-loop type fastener and/or retracting clips 26. The tubular portion 44 is attached to the transvaginal adapter 112 by stretching the vaginal opening 48 over the tubular extension 126 of the adapter 112. A curtain may be employed that is placed around the sides of the trainer 30 to further conceal the model 30 such that the only visualization is through the simulated vaginal canal 46. The vaginal canal 46 is then retracted using a surgical retractor. The vaginal canal 46 is made of a flexible thermoplastic elastomer (TPE). The TPE provides resistance as it is retracted and wants to spring back to its original shape which permits the user to practice realistic retraction. The transvaginal adapter 112 of FIGS. 6A-6B having a longer tubular extension 126 is used to simulate an already retracted vaginal canal. Hence, the transvaginal adapter 112 permits the practitioner to practice the hysterectomy procedure without needing extra-hands and assistance to perform the retraction. If the transvaginal adapter 112 of FIGS. 5A-5B having the shorter tubular extension 126 is used, the practitioner will practice retracting the vaginal canal 46 with retractors and the help of extra hands during the procedure. The transvaginal adapter 112 can be made of rigid or flexible material or rigid and flexible material as described above and selected for the purpose of practicing retraction of the vaginal canal 46 or not. Next, the simulated cervix 50 is grasped and pulled towards the opening 48 of the vaginal canal 46. The simulated cervix 50 is made of high durometer silicone relative to the surrounding tubular portion 44. The simulated cervix 50 is also made as a solid component which allows it to be grasped with real surgical tools and pulled on without fear of the silicone ripping or tearing. The simulated cervix 50 is incised circumferentially and the practitioner is able to practice carefully dissecting the vaginal mucosa off of the simulated cervix 50. A sheet of cotton or other webbing-like substance can be included in the model 30 between the vaginal canal 46 and the simulated bladder 90. As described above, the simulated bladder 90 is a hollow, air-filled component. If the practitioner cuts to high while dissecting the simulated vaginal mucosa and the simulated bladder 90 is accidentally incised, the simulated bladder 90 could pop and give immediate feedback to the practitioner especially if the simulated bladder 90 contains fluid.


The model 30 advantageously includes a second sheet 38 forming a fold between the simulated uterus 32 and the frame 34. Also, the suspension of the simulated uterus 32 within the frame 34 advantageously creates a realistic response when the simulated uterus 32 is being incised and manipulated. Also, in the variation in which the simulated uterus is made of lighter foam material, the simulated uterus will remain suspended, hang and swing in response to being manipulated with surgical instruments. At least portions of the simulated uterus and simulated vagina are held in suspension inside the enclosure defined by the pelvic frame and connected thereto or directly connected to the enclosure defined by the trainer. The suspension advantageously permits the fold of the second sheet to be accessed to practice posterior colpotomy into the posterior cul-de-sac incision by incising the peritoneum forming the recto-uterine fold. The suspended simulated uterus 32 allows for the existence of the recto-uterine peritoneum fold. As previously described, the simulated uterus 32 is pendent inside the frame 34 made of foam material that mimics a human pelvis. The simulated uterus 32 is suspended by a folded first sheet of silicone material on the anterior side of the simulated uterus 32 and a folded second sheet of silicone material on the posterior side of the simulated uterus 32. The frame 34 can be made of any material such as plastic or harder foam material. The frame 34 serves as an attachment area for the various simulated portions of the anatomy including the broad ligament, ovaries 56 and fallopian tubes 54. The elasticity of the silicone of these anatomical components allows the simulated uterus 32 to be pulled and manipulated and still remain attached to the frame 34. A frame 34 made of semi-rigid foam may also move as the simulated uterus is being manipulated. A more rigid frame 34 would move less. The practitioner then divides the uteralsacral ligaments 59. The practitioner then performs an anterior colpotomy into the anterior cul-de-sac by incising the first sheet 38 simulating the peritoneum forming the vesico-uterine fold. The practitioner divides the tubo ovarian and round ligaments 61 on each side of the simulated uterus 32. Due to the foam frame 34, the round and tubo ovarian ligaments 59 remain realistically attached to the frame 34 after they have been divided from the simulated uterus 32. The simulated uterus 32 is then freed and removed. The practitioner then practices to suture the vaginal cuff closed by passing a needle and suture through the tubular portion 44 of the model 32 to close the vaginal canal 46 opening. Suturing the vaginal cuff in real surgery is another difficult part of the vaginal hysterectomy due to the space limitations. The tubular portion 44 that is made of TPE holds the suture without tearing and limits the space allowed for instruments during the suturing process. The model 30 allows the practitioner to practice numerous difficult procedures on one model.


Any portion of the model 30 can be made of one or more organic base polymer including but not limited to hydrogel, single-polymer hydrogel, multi-polymer hydrogel, rubber, latex, nitrile, protein, gelatin, collagen, soy, non-organic base polymer such as thermo plastic elastomer, Kraton, silicone, foam, silicone-based foam, urethane-based foam and ethylene vinyl acetate foam and the like. Into any base polymer one or more filler may be employed such as a fabric, woven or non-woven fiber, polyester, nylon, cotton and silk, conductive filler material such as graphite, platinum, silver, gold, copper, miscellaneous additives, gels, oil, cornstarch, glass, dolomite, carbonate mineral, alcohol, deadener, silicone oil, pigment, foam, poloxamer, collagen, gelatin and the like. The adhesives employed may include but are not limited to cyanoacrylate, silicone, epoxy, spray adhesive, rubber adhesive and the like.


It is understood that various modifications may be made to the embodiments and variations disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.

Claims
  • 1. A surgical simulator for surgical training comprising: a simulated pelvis defining an enclosure having and inner surface, an outer surface, and at least one opening;a simulated tissue model including a simulated uterus;a first sheet of silicone; anda second sheet of silicone,the simulated tissue model being suspended by at least one of the first sheet and the second sheet within the enclosure of the simulated pelvis.
  • 2. The surgical simulator of claim 1 wherein the simulated tissue model is connected to and located between the first and second sheets of silicone.
  • 3. The surgical simulator of claim 1 wherein the first sheet and the second sheet are connected to the simulated pelvis.
  • 4. The surgical simulator of claim 1 wherein the simulated uterus further comprises a simulated cervix located inside the simulated uterus.
  • 5. The surgical simulator of claim 4 wherein the simulated cervix is made of a solid high durometer silicone and includes a slit.
  • 6. The surgical simulator of claim 5 wherein the simulated uterus further comprises simulated fallopian tubes connected to simulated ovaries.
  • 7. The surgical simulator of claim 6 wherein the simulated uterus is made of a foam material combined with silicone.
  • 8. The surgical simulator of claim 4 wherein the simulated uterus weighs 300 to 500 grams.
  • 9. The surgical simulator of claim 1 wherein the simulated uterus has a bulbous portion at a distal end connected to a simulated vagina having a tubular portion at a proximal end, the tubular potion having a lumen accessible through the at least one opening of the simulated pelvis.
  • 10. The surgical simulator of claim 1 further comprising a simulated colon that is located within the enclosure of the simulated pelvis.
  • 11. The surgical simulator of claim 10 wherein the simulated pelvis is cylindrical, and wherein the inner surface is interconnected to the outer surface.
  • 12. The surgical simulator of claim 11 wherein the simulated colon being is laid on the inner surface along a vertical axis of the simulated pelvis.
  • 13. The surgical simulator of claim 12 wherein the simulated tissue model further comprises a simulated bladder located within the enclosure of the simulated pelvis.
  • 14. The surgical simulator of claim 13 further comprising at least one of the first sheet of silicone or the second sheet of silicone connected to the simulated bladder and the simulated pelvis pelvic frame, the simulated bladder is disposed between the at least one of the first sheet of silicone or the second sheet of silicone and the simulated pelvis.
  • 15. The surgical simulator of claim 13 wherein the simulated bladder is connected to the inner surface along the vertical axis of the simulated pelvis.
  • 16. The surgical simulator of claim 1 wherein the simulated pelvis is compressible.
  • 17. The surgical simulator of claim 16 wherein the simulated pelvis is made of a flexible foam material.
  • 18. The surgical simulator of claim 1 wherein the simulated 1 includes one or more cutouts extending between the inner surface and the outer surface.
  • 19. The surgical simulator of claim 10 further comprising a webbing connected to the simulated pelvis and the simulated tissue model, wherein the webbing further suspends the simulated tissue model within the enclosure of the simulated pelvis.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation of U.S. patent application Ser. No. 15/202,327 entitled “Hysterectomy model” filed on Jul. 5, 2016 which is a continuation of International Patent Application PCT/US2016/036664 entitled “Hysterectomy model” filed on Jun. 9, 2016 which claims priority to and benefit of U.S. Provisional Patent Application Ser. No. 62/173,180 entitled “Hysterectomy model” filed on Jun. 9, 2015, the entire disclosures of all these applications are hereby incorporated by reference as if set forth in full herein.

US Referenced Citations (481)
Number Name Date Kind
184573 Becker Nov 1876 A
2127774 Jacobs Aug 1938 A
2284888 Arneil, Jr. Jun 1942 A
2324702 Hoffman et al. Jul 1943 A
2345489 Lord Mar 1944 A
2495568 Coel Jan 1950 A
3766666 Stroop Oct 1973 A
3775865 Rowan Dec 1973 A
3789518 Chase Feb 1974 A
3921311 Beasley et al. Nov 1975 A
3991490 Markman Nov 1976 A
4001951 Fasse Jan 1977 A
4001952 Kleppinger Jan 1977 A
4321047 Landis Mar 1982 A
4323350 Bowden, Jr. Apr 1982 A
4332569 Burbank Jun 1982 A
4371345 Palmer et al. Feb 1983 A
4386917 Forrest Jun 1983 A
4459113 Boscaro Gatti et al. Jul 1984 A
4481001 Graham et al. Nov 1984 A
4596528 Lewis et al. Jun 1986 A
4726772 Amplatz Feb 1988 A
4737109 Abramson Apr 1988 A
4789340 Zikria Dec 1988 A
4832978 Lesser May 1989 A
4867686 Goldstein Sep 1989 A
4907973 Hon Mar 1990 A
4938696 Foster et al. Jul 1990 A
4940412 Blumenthal Jul 1990 A
5061187 Jerath Oct 1991 A
5083962 Pracas Jan 1992 A
5104328 Lounsbury Apr 1992 A
5149270 McKeown Sep 1992 A
5180308 Garito et al. Jan 1993 A
5230630 Burgett Jul 1993 A
5273435 Jacobson Dec 1993 A
5295694 Levin Mar 1994 A
5310348 Miller May 1994 A
5318448 Garito et al. Jun 1994 A
5320537 Watson Jun 1994 A
5358408 Medina Oct 1994 A
5368487 Medina Nov 1994 A
5380207 Siepser Jan 1995 A
5403191 Tuason Apr 1995 A
5425644 Szinicz Jun 1995 A
5425731 Daniel et al. Jun 1995 A
5472345 Eggert Dec 1995 A
5518406 Waters May 1996 A
5518407 Greenfield et al. May 1996 A
5520633 Costin May 1996 A
5541304 Thompson Jul 1996 A
5620326 Younker Apr 1997 A
5720742 Zacharias Feb 1998 A
5722836 Younker Mar 1998 A
5727948 Jordan Mar 1998 A
5743730 Clester et al. Apr 1998 A
5762458 Wang et al. Jun 1998 A
5769640 Jacobus et al. Jun 1998 A
5775916 Cooper et al. Jul 1998 A
5785531 Leung Jul 1998 A
5800178 Gillio Sep 1998 A
5803746 Barrie et al. Sep 1998 A
5807378 Jensen et al. Sep 1998 A
5810880 Jensen et al. Sep 1998 A
5814038 Jensen et al. Sep 1998 A
5850033 Mirzeabasov et al. Dec 1998 A
5855583 Wang et al. Jan 1999 A
5873732 Hasson Feb 1999 A
5873863 Komlosi Feb 1999 A
5908302 Goldfarb Jun 1999 A
5947743 Hasson Sep 1999 A
5951301 Younker Sep 1999 A
6080181 Jensen et al. Jun 2000 A
6083008 Yamada et al. Jul 2000 A
6113395 Hon Sep 2000 A
6234804 Yong May 2001 B1
6271278 Park et al. Aug 2001 B1
6336812 Cooper et al. Jan 2002 B1
6398557 Hoballah Jun 2002 B1
6413264 Jensen et al. Jul 2002 B1
6474993 Grund et al. Nov 2002 B1
6485308 Goldstein Nov 2002 B1
6488507 Stoloff et al. Dec 2002 B1
6497902 Ma Dec 2002 B1
6511325 Lalka et al. Jan 2003 B1
6517354 Levy Feb 2003 B1
6568941 Goldstein May 2003 B1
6589057 Keenan et al. Jul 2003 B1
6620174 Jensen et al. Sep 2003 B2
6654000 Rosenberg Nov 2003 B2
6659776 Aumann et al. Dec 2003 B1
6773263 Nicholls et al. Aug 2004 B2
6780016 Toly Aug 2004 B1
6817973 Merril et al. Nov 2004 B2
6820025 Bachmann et al. Nov 2004 B2
6854976 Suhr Feb 2005 B1
6857878 Chosack et al. Feb 2005 B1
6863536 Fisher et al. Mar 2005 B1
6866514 Von Roeschlaub et al. Mar 2005 B2
6887082 Shun May 2005 B2
6929481 Alexander et al. Aug 2005 B1
6939138 Chosack et al. Sep 2005 B2
6950025 Nguyen Sep 2005 B1
6960617 Omidian et al. Nov 2005 B2
6997719 Wellman et al. Feb 2006 B2
7008232 Brassel Mar 2006 B2
7018327 Conti Mar 2006 B1
7025064 Wang et al. Apr 2006 B2
7056123 Gregorio et al. Jun 2006 B2
7080984 Cohen Jul 2006 B1
7118582 Wang et al. Oct 2006 B1
7255565 Keegan Aug 2007 B2
7269532 David et al. Sep 2007 B2
7272766 Sakezles Sep 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7364582 Lee Apr 2008 B2
7404716 Gregorio et al. Jul 2008 B2
7419376 Sarvazyan et al. Sep 2008 B2
7427199 Sakezles Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7465168 Allen et al. Dec 2008 B2
7467075 Humphries et al. Dec 2008 B2
7544062 Hauschild et al. Jun 2009 B1
7549866 Cohen et al. Jun 2009 B2
7553159 Arnal et al. Jun 2009 B1
7575434 Palakodeti Aug 2009 B2
7594815 Toly Sep 2009 B2
7621749 Munday Nov 2009 B2
7646901 Murphy et al. Jan 2010 B2
7648367 Makower et al. Jan 2010 B1
7648513 Green et al. Jan 2010 B2
7651332 Dupuis et al. Jan 2010 B2
7677897 Sakezles Mar 2010 B2
7775916 Mahoney Aug 2010 B1
7780451 Willobee et al. Aug 2010 B2
7802990 Korndorffer et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7806696 Alexander et al. Oct 2010 B2
7819799 Merril et al. Oct 2010 B2
7833018 Alexander et al. Nov 2010 B2
7837473 Koh Nov 2010 B2
7850454 Toly Dec 2010 B2
7850456 Chosack et al. Dec 2010 B2
7854612 Frassica et al. Dec 2010 B2
7857626 Toly Dec 2010 B2
7866983 Hemphill et al. Jan 2011 B2
7931470 Alexander et al. Apr 2011 B2
7931471 Senagore et al. Apr 2011 B2
7988992 Omidian et al. Aug 2011 B2
7993140 Sakezles Aug 2011 B2
7997903 Hasson et al. Aug 2011 B2
8007281 Toly Aug 2011 B2
8007282 Gregorio et al. Aug 2011 B2
8016818 Ellis et al. Sep 2011 B2
8017107 Thomas et al. Sep 2011 B2
8021162 Sui Sep 2011 B2
8048088 Green et al. Nov 2011 B2
8083691 Goldenberg et al. Dec 2011 B2
8116847 Gattani et al. Feb 2012 B2
8137110 Sakezles Mar 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8197464 Krever et al. Jun 2012 B2
8205779 Ma et al. Jun 2012 B2
8221129 Parry et al. Jul 2012 B2
8297982 Park et al. Oct 2012 B2
8308817 Egilsson et al. Nov 2012 B2
8323028 Matanhelia Dec 2012 B2
8323029 Toly Dec 2012 B2
8328560 Niblock et al. Dec 2012 B2
8342851 Speeg et al. Jan 2013 B1
8403674 Feygin et al. Mar 2013 B2
8403675 Stoianovici et al. Mar 2013 B2
8403676 Frassica et al. Mar 2013 B2
8408920 Speller Apr 2013 B2
8425234 Sakezles Apr 2013 B2
8439687 Morriss et al. May 2013 B1
8442621 Gorek et al. May 2013 B2
8454368 Ault et al. Jun 2013 B2
8459094 Yanni Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8460002 Wang et al. Jun 2013 B2
8465771 Wan et al. Jun 2013 B2
8469715 Ambrozio Jun 2013 B2
8469716 Fedotov et al. Jun 2013 B2
8480407 Campbell et al. Jul 2013 B2
8480408 Ishii et al. Jul 2013 B2
8491309 Parry et al. Jul 2013 B2
8500753 Green et al. Aug 2013 B2
8512044 Sakezles Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8521252 Diez Aug 2013 B2
8535062 Nguyen Sep 2013 B2
8544711 Ma et al. Oct 2013 B2
8556635 Toly Oct 2013 B2
8608483 Trotta et al. Dec 2013 B2
8613621 Henderickson et al. Dec 2013 B2
8636520 Iwasaki et al. Jan 2014 B2
D699297 Bahsooun et al. Feb 2014 S
8641423 Gumkowski Feb 2014 B2
8647125 Johns et al. Feb 2014 B2
8678831 Trotta et al. Mar 2014 B2
8679279 Thompson et al. Mar 2014 B2
8696363 Gray et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8708707 Hendrickson et al. Apr 2014 B2
8764449 Rios et al. Jul 2014 B2
8764452 Pravong et al. Jul 2014 B2
8800839 Beetel Aug 2014 B2
8801437 Mousques Aug 2014 B2
8801438 Sakezles Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8808004 Misawa et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8814573 Nguyen Aug 2014 B2
8827988 Belson et al. Sep 2014 B2
8840628 Green et al. Sep 2014 B2
8870576 Millon et al. Oct 2014 B2
8888498 Bisaillon et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8911238 Forsythe Dec 2014 B2
8915742 Hendrickson et al. Dec 2014 B2
8945095 Blumenkranz et al. Feb 2015 B2
8961190 Hart et al. Feb 2015 B2
8966954 Ni et al. Mar 2015 B2
8968003 Hendrickson et al. Mar 2015 B2
9008989 Wilson et al. Apr 2015 B2
9017080 Placik Apr 2015 B1
9026247 White May 2015 B2
9050201 Egilsson et al. Jun 2015 B2
9056126 Hersel et al. Jun 2015 B2
9070306 Rappel et al. Jun 2015 B2
9087458 Shim et al. Jul 2015 B2
9096744 Wan et al. Aug 2015 B2
9117377 Shim et al. Aug 2015 B2
9119572 Gorek et al. Sep 2015 B2
9123261 Lowe Sep 2015 B2
9129054 Nawana et al. Sep 2015 B2
9196176 Hager et al. Nov 2015 B2
9226799 Lightcap et al. Jan 2016 B2
9257055 Endo et al. Feb 2016 B2
9265587 Vancamberg et al. Feb 2016 B2
9295468 Heinrich et al. Mar 2016 B2
9351714 Ross et al. May 2016 B2
9336694 Shim et al. Jun 2016 B2
9358682 Ruiz Morales Jun 2016 B2
9364224 Nicholas et al. Jun 2016 B2
9364279 Houser et al. Jun 2016 B2
9370361 Viola et al. Jun 2016 B2
9373270 Miyazaki Jun 2016 B2
9387276 Sun et al. Jul 2016 B2
9427496 Sun et al. Aug 2016 B2
9439649 Shelton, IV et al. Sep 2016 B2
9439733 Ha et al. Sep 2016 B2
9449532 Black et al. Sep 2016 B2
9468438 Baber et al. Oct 2016 B2
20010019818 Yong Sep 2001 A1
20020168619 Provenza Nov 2002 A1
20030031993 Pugh Feb 2003 A1
20030091967 Chosack et al. May 2003 A1
20030176770 Merril et al. Sep 2003 A1
20040005423 Dalton et al. Jan 2004 A1
20040126746 Toly Jul 2004 A1
20040248072 Gray et al. Dec 2004 A1
20050008997 Herman Jan 2005 A1
20050026125 Toly Feb 2005 A1
20050084833 Lacey et al. Apr 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050142525 Cotin et al. Jun 2005 A1
20050192595 Green et al. Sep 2005 A1
20050196739 Moriyama Sep 2005 A1
20050196740 Moriyama Sep 2005 A1
20050214727 Stoianovici et al. Sep 2005 A1
20060046235 Alexander et al. Mar 2006 A1
20060252019 Burkitt et al. Nov 2006 A1
20060275741 Chewning et al. Dec 2006 A1
20070074584 Talarico et al. Apr 2007 A1
20070077544 Lemperle et al. Apr 2007 A1
20070078484 Talarico et al. Apr 2007 A1
20070148626 Ikeda Jun 2007 A1
20070166682 Yarin et al. Jul 2007 A1
20070197895 Nycz et al. Aug 2007 A1
20070225734 Bell et al. Sep 2007 A1
20070275359 Rotnes et al. Nov 2007 A1
20080032272 Palakodeti Feb 2008 A1
20080032273 Macnamara et al. Feb 2008 A1
20080052034 David et al. Feb 2008 A1
20080064017 Grundmeyer, III Mar 2008 A1
20080076101 Hyde et al. Mar 2008 A1
20080097501 Blier Apr 2008 A1
20080108869 Sanders et al. May 2008 A1
20080187895 Sakezles Aug 2008 A1
20080188948 Flatt Aug 2008 A1
20080299529 Schaller Dec 2008 A1
20080317818 Griffith et al. Dec 2008 A1
20090068627 Toly Mar 2009 A1
20090142739 Wang et al. Jun 2009 A1
20090142741 Ault et al. Jun 2009 A1
20090143642 Takahashi et al. Jun 2009 A1
20090176196 Niblock et al. Jul 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090246747 Buckman, Jr. Oct 2009 A1
20090298034 Parry et al. Dec 2009 A1
20090314550 Layton Dec 2009 A1
20100047752 Chan et al. Feb 2010 A1
20100094312 Ruiz Morales et al. Apr 2010 A1
20100099067 Agro Apr 2010 A1
20100167248 Ryan Jul 2010 A1
20100167249 Ryan Jul 2010 A1
20100167250 Ryan et al. Jul 2010 A1
20100167253 Ryan et al. Jul 2010 A1
20100167254 Nguyen Jul 2010 A1
20100094730 Di Betta et al. Aug 2010 A1
20100196867 Geerligs et al. Aug 2010 A1
20100204713 Ruiz Morales Aug 2010 A1
20100209899 Park Aug 2010 A1
20100248200 Ladak Sep 2010 A1
20100258611 Smith et al. Oct 2010 A1
20100273136 Kandasami et al. Oct 2010 A1
20100279263 Duryea Nov 2010 A1
20100285094 Gupta Nov 2010 A1
20100324541 Whitman Dec 2010 A1
20110020779 Hannaford et al. Jan 2011 A1
20110046637 Patel et al. Feb 2011 A1
20110046659 Ramstein et al. Feb 2011 A1
20110087238 Wang et al. Apr 2011 A1
20110091855 Miyazaki Apr 2011 A1
20110137337 van den Dool et al. Jun 2011 A1
20110200976 Hou et al. Aug 2011 A1
20110207104 Trotta Aug 2011 A1
20110218550 Ma Sep 2011 A1
20110244436 Campo Oct 2011 A1
20110269109 Miyazaki Nov 2011 A2
20110281251 Mousques Nov 2011 A1
20110301620 Di Bette et al. Dec 2011 A1
20120015337 Hendrickson et al. Jan 2012 A1
20120015339 Hendrickson et al. Jan 2012 A1
20120016362 Heinrich et al. Jan 2012 A1
20120028231 Misawa et al. Feb 2012 A1
20120045743 Misawa et al. Feb 2012 A1
20120065632 Shadduck Mar 2012 A1
20120082970 Pravong Apr 2012 A1
20120100217 Green et al. Apr 2012 A1
20120115117 Marshall May 2012 A1
20120115118 Marshall May 2012 A1
20120116391 Houser et al. May 2012 A1
20120148994 Hori et al. Jun 2012 A1
20120164616 Endo et al. Jun 2012 A1
20120165866 Kaiser et al. Jun 2012 A1
20120172873 Artale et al. Jul 2012 A1
20120179072 Kegreiss Jul 2012 A1
20120202180 Stock et al. Aug 2012 A1
20120264096 Taylor et al. Oct 2012 A1
20120264097 Newcott et al. Oct 2012 A1
20120282583 Thaler et al. Nov 2012 A1
20120282584 Millon et al. Nov 2012 A1
20120283707 Giordano et al. Nov 2012 A1
20120288839 Crabtree Nov 2012 A1
20120308977 Tortola Dec 2012 A1
20130087597 Shelton, IV et al. Apr 2013 A1
20130101973 Hoke et al. Apr 2013 A1
20130105552 Weir et al. May 2013 A1
20130116668 Shelton, IV et al. May 2013 A1
20130157240 Hart et al. Jun 2013 A1
20130171288 Harders Jul 2013 A1
20130177890 Sakezles Jul 2013 A1
20130192741 Trotta et al. Aug 2013 A1
20130218166 Elmore Aug 2013 A1
20130224709 Riojas et al. Aug 2013 A1
20130245681 Straehnz et al. Sep 2013 A1
20130253480 Kimball et al. Sep 2013 A1
20130267876 Leckenby et al. Oct 2013 A1
20130282038 Dannaher et al. Oct 2013 A1
20130288216 Parry, Jr. et al. Oct 2013 A1
20130302771 Alderete Nov 2013 A1
20130324991 Clem et al. Dec 2013 A1
20130324999 Price et al. Dec 2013 A1
20140011172 Lowe Jan 2014 A1
20140017651 Sugimoto et al. Jan 2014 A1
20140030682 Thilenius Jan 2014 A1
20140038151 Hart Feb 2014 A1
20140051049 Jarc et al. Feb 2014 A1
20140072941 Hendrickson et al. Mar 2014 A1
20140087345 Breslin et al. Mar 2014 A1
20140087346 Breslin et al. Mar 2014 A1
20140087347 Tracy et al. Mar 2014 A1
20140087348 Tracy et al. Mar 2014 A1
20140088413 Von Bucsh et al. Mar 2014 A1
20140093852 Poulsen et al. Apr 2014 A1
20140093854 Poulsen et al. Apr 2014 A1
20140099858 Hernandez Apr 2014 A1
20140106328 Loor Apr 2014 A1
20140107471 Haider et al. Apr 2014 A1
20140156002 Thompson et al. Jun 2014 A1
20140162016 Matsui et al. Jun 2014 A1
20140170623 Jarstad et al. Jun 2014 A1
20140186809 Hendrickson et al. Jul 2014 A1
20140187855 Nagale et al. Jul 2014 A1
20140200561 Ingmanson et al. Jul 2014 A1
20140212861 Romano Jul 2014 A1
20140220527 Li et al. Aug 2014 A1
20140220530 Merkle et al. Aug 2014 A1
20140220532 Ghez et al. Aug 2014 A1
20140242564 Pravong et al. Aug 2014 A1
20140246479 Baber et al. Sep 2014 A1
20140248596 Hart Sep 2014 A1
20140263538 Leimbach et al. Sep 2014 A1
20140272878 Shim et al. Sep 2014 A1
20140272879 Shim et al. Sep 2014 A1
20140275795 Little et al. Sep 2014 A1
20140275981 Selover et al. Sep 2014 A1
20140277017 Leimbach et al. Sep 2014 A1
20140303643 Ha et al. Oct 2014 A1
20140303646 Morgan et al. Oct 2014 A1
20140303660 Boyden et al. Oct 2014 A1
20140308643 Trotta et al. Oct 2014 A1
20140342334 Black Nov 2014 A1
20140349266 Choi Nov 2014 A1
20140350530 Ross et al. Nov 2014 A1
20140357977 Zhou Dec 2014 A1
20140370477 Black et al. Dec 2014 A1
20140371761 Juanpera Dec 2014 A1
20140378995 Kumar et al. Dec 2014 A1
20150031008 Black et al. Jan 2015 A1
20150037773 Quirarte Catano Feb 2015 A1
20150038613 Sun et al. Feb 2015 A1
20150076207 Boudreaux et al. Mar 2015 A1
20150086955 Poniatowski et al. Mar 2015 A1
20150132732 Hart et al. May 2015 A1
20150132733 Garvik et al. May 2015 A1
20150135832 Blumenkranz et al. May 2015 A1
20150148660 Weiss et al. May 2015 A1
20150164598 Blumenkranz et al. Jun 2015 A1
20150187229 Wachli et al. Jul 2015 A1
20150194075 Rappel et al. Jul 2015 A1
20150202299 Burdick et al. Jul 2015 A1
20150209035 Zemlock Jul 2015 A1
20150209059 Trees et al. Jul 2015 A1
20150209573 Hibner et al. Jul 2015 A1
20150228206 Shim et al. Aug 2015 A1
20150262511 Lin et al. Sep 2015 A1
20150265431 Egilsson et al. Sep 2015 A1
20150272571 Leimbach et al. Oct 2015 A1
20150272574 Leimbach et al. Oct 2015 A1
20150272580 Leimbach et al. Oct 2015 A1
20150272581 Leimbach et al. Oct 2015 A1
20150272583 Leimbach et al. Oct 2015 A1
20150272604 Chowaniec et al. Oct 2015 A1
20150332609 Alexander Nov 2015 A1
20150358426 Kimball et al. Dec 2015 A1
20150371560 Lowe Dec 2015 A1
20150374378 Giordano et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20160000437 Giordano et al. Jan 2016 A1
20160022374 Haider et al. Jan 2016 A1
20160030240 Gonenc et al. Feb 2016 A1
20160031091 Popovic et al. Feb 2016 A1
20160058534 Derwin et al. Mar 2016 A1
20160066909 Baber et al. Mar 2016 A1
20160070436 Thomas et al. Mar 2016 A1
20160073928 Soper et al. Mar 2016 A1
20160074103 Sartor Mar 2016 A1
20160098933 Reiley et al. Apr 2016 A1
20160104394 Miyazaki Apr 2016 A1
20160117956 Larsson et al. Apr 2016 A1
20160125762 Becker et al. May 2016 A1
20160133158 Sui et al. May 2016 A1
20160140876 Jabbour et al. May 2016 A1
20160194378 Cass et al. Jul 2016 A1
20160199059 Shelton, IV et al. Jul 2016 A1
20160220150 Sharonov Aug 2016 A1
20160220314 Huelman et al. Aug 2016 A1
20160225288 East et al. Aug 2016 A1
20160232819 Hofstetter et al. Aug 2016 A1
20160235494 Shelton, IV et al. Sep 2016 A1
20160256187 Shelton, IV et al. Sep 2016 A1
20160256229 Morgan et al. Sep 2016 A1
20160262736 Ross et al. Sep 2016 A1
20160262745 Morgan et al. Sep 2016 A1
20160293055 Hofstetter Oct 2016 A1
20160296144 Gaddam et al. Oct 2016 A1
Foreign Referenced Citations (77)
Number Date Country
2421706 Feb 2001 CN
2751372 Jan 2006 CN
2909427 Jun 2007 CN
101313842 Dec 2008 CN
101528780 Sep 2009 CN
201364679 Dec 2009 CN
201955979 Aug 2011 CN
102458496 May 2012 CN
202443680 Sep 2012 CN
202563792 Nov 2012 CN
202601055 Dec 2012 CN
202694651 Jan 2013 CN
103050040 Apr 2013 CN
203013103 Jun 2013 CN
203038549 Jul 2013 CN
203338651 Dec 2013 CN
203397593 Jan 2014 CN
203562128 Apr 2014 CN
102596275 Jun 2014 CN
103845757 Jun 2014 CN
103886797 Jun 2014 CN
103396562 Jul 2015 CN
105194740 Dec 2015 CN
105504166 Apr 2016 CN
9102218 May 1991 DE
41 05 892 Aug 1992 DE
44 14 832 Nov 1995 DE
19716341 Sep 2000 DE
1 024 173 Aug 2000 EP
2 218 570 Aug 2010 EP
2 691 826 Dec 1993 FR
2 917 876 Dec 2008 FR
2488994 Sep 2012 GB
10 211160 Aug 1998 JP
2001005378 Jan 2001 JP
2009236963 Oct 2009 JP
3162161 Aug 2010 JP
2013127496 Jun 2013 JP
101231565 Feb 2013 KR
PA 02004422 Nov 2003 MX
106230 Sep 2013 PT
WO 199406109 Mar 1994 WO
WO 1996042076 Dec 1996 WO
WO 199858358 Dec 1998 WO
WO 199901074 Jan 1999 WO
WO 200036577 Jun 2000 WO
WO 200238039 May 2002 WO
WO 2002038039 May 2002 WO
WO 2004032095 Apr 2004 WO
WO 2004082486 Sep 2004 WO
WO 2005071639 Aug 2005 WO
WO 2006083963 Aug 2006 WO
WO 2007068360 Jun 2007 WO
WO 2008021720 Feb 2008 WO
WO 2008103383 Aug 2008 WO
WO 2009000939 Dec 2008 WO
WO 2009089614 Jul 2009 WO
WO 2010094730 Aug 2010 WO
WO 2011035410 Mar 2011 WO
WO 2011046606 Apr 2011 WO
WO 2011127379 Oct 2011 WO
WO 2011151304 Dec 2011 WO
WO 2012149606 Nov 2012 WO
WO 2012168287 Dec 2012 WO
WO 2012175993 Dec 2012 WO
WO 2013048978 Apr 2013 WO
WO 2013103956 Jul 2013 WO
WO 2014022815 Feb 2014 WO
WO 2014093669 Jun 2014 WO
WO 2014197793 Dec 2014 WO
WO 2015148817 Oct 2015 WO
WO 2016138528 Sep 2016 WO
WO 2016183412 Nov 2016 WO
WO 2016198238 Dec 2016 WO
WO 2016201085 Dec 2016 WO
WO 2017031214 Feb 2017 WO
WO 2017042301 Mar 2017 WO
Non-Patent Literature Citations (82)
Entry
Society of Laparoendoscopic Surgeons, “Future Technology Session: The Edge of Innovation in Surgery, Space, and Business,” http://www.laparoscopytoday.com/endourology/page/2/ , Figure 1B: http://laparoscopy.blogs.com/laparoscopy_today/images/6-1/6-1VlaovicPicB.jpg , Sep. 5-8, 2007, 10 pgs.
European Patent Office, International Search Report for International Application No. PCT/US2011/053859 A3, dated Apr. 5, 2012, entitled “Portable Laparoscopic Trainer,” 8 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/60997, dated Mar. 7, 2013, entitled “Simulated Tissue Structure for Surgical Training,” 8 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/070971, entitled “Advanced Surgical Simulation,” dated Mar. 18, 2013, 10 pgs.
Human Patient Simulator, Medical Education Technologies, Inc., http://www.meti.com (1999) all, printed Apr. 12, 2013, 24 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability and Written Opinion for International Application No. PCT/US2011/053859, titled “Portable Laparoscopic Trainer” dated Apr. 2, 2013, 9 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/062363, entitled “Surgical Training Model for Laparoscopic Procedures,” dated Jan. 22, 2014, 11 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/061949, entitled “Surgical Training Model for Laparoscopic Procedures,” dated Feb. 17, 2014, 7 pgs.
Anonymous: Realsim Systems—LTS2000, Sep. 4, 2005, pp. 1-2, XP055096193, Retrieved from the Internet: URL:https://web.archive.org/web/2005090403; 3030/http://www.realsimsystems.com/exersizes.htm (retrieved on Jan. 14, 2014).
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/062269, entitled “Surgical Training Model for Transluminal Procedures,” dated Feb. 17, 2014, 8 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/061557, entitled “Surgical Training Model for Laparoscopic Procedures,” dated Feb. 10, 2014, 9 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/061728, entitled “Surgical Training Model for Laparoscopic Procedures,” dated Oct. 18, 2013, 9 pgs.
Limps and Things, EP Guildford MATTU Hernia Trainer, http://limbsandthings.com/us/products/tep-guildford-mattu-hernia-trainer/, printed May 29, 2014, 11 pgs.
Simulab, Hernia Model, http://www.simulab.com/product/surgery/open/hernia model, printed printed May 29, 2014, 4 pgs.
McGill Laparoscopic Inguinal Hernia Simulator, Novel Low-Cost Simulator for Laparoscopic Inguinal Hernia Repair, Feb. 8, 2011, 1 pg.
University of Wisconsin-Madison Biomedical Engineering, Inguinal Hernia Model, http://bmedesign.engr.wisc.edu/projects/s10/hernia_model/, printed May 29, 2014, 62 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2012/070971, titled “Advanced Surgical Simulation” dated Jun. 24, 2014, 7 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2014/038195 titled “Hernia Model”, dated Oct. 15, 2014, 20 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2014/048027 titled “First Entry Model”, dated Oct. 17, 2014, 10 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2012/060997, titled “Simulated Tissue Structure for Surgical Training” dated Apr. 22, 2014, 6 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2014/019840, entitled “Advanced Surgical Simulation Constructions and Methods,” dated Jul. 4, 2014, 8 pgs.
Kurashima Y et al, “A tool for training and evaluation of Laparoscopic inguinal hernia repair; the Global Operative Assessment of Laparoscopic Skills—Groin Hernia” American Journal of Surgery, Paul Hoeber, New York, NY, US vol. 201, No. 1, Jan. 1, 2011, pp. 54-61 XP027558745.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2014/042998, title; Gallbladder Model, dated Jan. 7, 2015, 20 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for PCT application No. PCT/US2013/053497, titled, Simulated Stapling and Energy Based Ligation for Surgical Training, dated Feb. 12, 2015, 6 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/062363, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015, 9 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/062269, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015, 6 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/061557, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015, 6 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/061728, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015, 7 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/061949, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015, 6 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/019840, titled “Simulated Tissue Structure for Surgical Training” dated Sep. 11, 2015, 8 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2015/020574, titled “Advanced First Entry Model for Surgical Simulation,” dated Jun. 1, 2015, 12 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2015/022774, entitled “Simulated Dissectible Tissue,” dated Jun. 11, 2015, 13 pgs.
Anonymous: Silicone rubber—from Wikipedia, the free encyclopedia, pp. 1-6, XP055192375, Retrieved from the Internet: URL:http://en.wikipedia.org/w.index.php?title=Silicone_rubber&oldid=596456058 (retrieved on May 29, 2015).
Lamouche, et al., “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomedical Optics Express, Jun. 1, 2012, 18 pgs., vol. 3, No. 6.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/038195, titled “Hernia Model,” dated Nov. 26, 2015, 16 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/042998, titled “Gallbladder Model,” dated Dec. 30, 2015, 15 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2013/053497, titled “Simulated Stapling and Energy Based Ligation for Surgical Training,” dated Nov. 5, 2013, 8 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/048027, titled “First Entry Model,” dated Feb. 4, 2016, 8 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2015/059668, titled “Simulated Tissue Models and Methods,” dated Apr. 26, 2016, 20 pgs.
Australian Patent Office, Patent Examination Report No. 1 for Australian Application No. 2012358851, titled “Advanced Surgical Simulation,” dated May 26, 2016, 3 pgs.
Miyazaki Enterprises, “Miya Model Pelvic Surgery Training Model and Video,” www.miyazakienterprises, printed Jul. 1, 2016, 1 pg.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2016/032292 titled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Jul. 14, 2016, 11 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2016/018697 titled “Simulated Tissue Structures and Methods,” dated Jul. 14, 2016, 21 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2016/034591, titled “Surgical Training Model for Laparoscopic Procedures,” dated Aug. 8, 2016, 18 pgs.
3D-MED Corporation, “Validated Training Course for Laparoscopic Skills,” https://www.3-dmed.com/sites/default/files/product-additional/product-spec/Validated%20Training%20Course%20for%20Laparoscopie%20Skills.docx_3.pdf , printed Aug. 23, 2016, pp. 1-6.
3D-MED Corporation, “Loops and Wire #1,” https://www.3-dmed.com/product/loops-and-wire-1 , printed Aug. 23, 2016, 4 pgs.
Barrier, et al., “A Novel and Inexpensive Vaginal Hysterectomy Simulatory, ” Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare, vol. 7, No. 6, Dec. 1, 2012, pp. 374-379.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/036664 titled “Hysterectomy Model”, dated Aug. 19, 2016, 15 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/020574, entitled “Advanced First Entry Model for Surgical Simulation,” dated Sep. 22, 2016, 9 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/0043277 titled “Appendectomy Model”, dated Oct. 4, 2016, 12 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/022774, titled “Simulated Dissectible Tissue,” dated Oct. 6, 2016, 9 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/041852 titled “Simulated Dissectible Tissue”, dated Oct. 13, 2016, 12 pgs.
European Patent Office, Invitation to Pay Additional Fees for International Application No. PCT/US2016/062669, titled “Simulated Dissectible Tissue”, dated Feb. 10, 2017, 8 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/055148 titled “Hysterectomy Model”, dated Feb. 28, 2017, 12 pgs.
European Patent Office, Examination Report for European Application No. 14733949.3 titled “Gallbladder Model,” dated Dec. 21, 2016, 6 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/062669 titled “Simulated Dissectible Tissue,” dated Apr. 5, 2017, 19 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2017/020389 titled “Simulated Tissue Cartridge”, dated May 24, 2017, 13 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability and Written Opinion for International Application No. PCT/US2015/059668, entitled “Simulated Tissue Models and Methods,” dated May 26, 2017, 16 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/018697, entitled “Simulated Tissue Structures and Methods,” dated Aug. 31, 2017, 14 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/0032292, entitled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Nov. 23, 2017, 2017, 8 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/034591, entitled “Surgical Training Model for Laparoscopic Procedures,” dated Dec. 7, 2017, 2017, 14 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/036664, entitled “Hysterectomy Model,” dated Dec. 21, 2017, 10 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/041852, entitled “Simulated Dissectible Tissue,” dated Jan. 25, 2018, 12 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 17202365.7, titled “Gallbladder Model”, dated Jan. 31, 2018, 8 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/043277, entitled “Appendectomy Model,” dated Feb. 1, 2018, 9 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/055148, entitled “Hysterectomy Model,” dated Apr. 12, 2018, 12 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2018/018895, entitled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated May 17, 2018, 12 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/062669, entitled “Simulated Dissectible Tissue,” dated May 31, 2018, 11 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2018/018036, entitled “Laparoscopic Training System,” dated Jun. 8, 2018, 13 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2017/039113, entitled “Simulated Abdominal Wall,” dated Aug. 7, 2017, 13 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18177751.7, titled “Portable Laparoscopic Trainer,” dated Jul. 13, 2018, 8 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2018/034705, entitled “Laparoscopic Training System,” dated Aug. 20, 2018, 14 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2017/020389, entitled “Simulated Tissue Cartridge,” dated Sep. 13, 2018, 8 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18184147.9, titled “First Entry Model,” dated Nov. 7, 2018, 7 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2017/039113, entitled “Simulated Abdominal Wall,” dated Jan. 10, 2019, 8 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18210006.5, titled “Surgical Training Model for Laparoscopic Procedures,” dated Jan. 21, 2019, 7 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18207214.0, titled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Mar. 28, 2019, 6 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18216002.8, titled “Surgical Training Model for Laparoscopic Procedures,” dated Feb. 4, 2019, 6 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18216005.1, titled “Surgical Training Model for Laparoscopic Procedures,” dated Feb. 4, 2019, 7 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 19159065.2, titled “Simulated Tissue Structures and Methods,” dated May 29, 2019, 8 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2018/018036, entitled “Laparoscopic Training System,” dated Aug. 29, 2019, 8 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2018/018895, entitled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Sep. 6, 2019, 7 pgs.
Related Publications (1)
Number Date Country
20190147766 A1 May 2019 US
Provisional Applications (1)
Number Date Country
62173180 Jun 2015 US
Continuations (2)
Number Date Country
Parent 15202327 Jul 2016 US
Child 16249276 US
Parent PCT/US2016/036664 Jun 2016 US
Child 15202327 US