Hysteroscopic system

Information

  • Patent Grant
  • 11889993
  • Patent Number
    11,889,993
  • Date Filed
    Thursday, January 13, 2022
    2 years ago
  • Date Issued
    Tuesday, February 6, 2024
    2 months ago
Abstract
A hysteroscopy system includes a scope having an internal channel, a sheath removably coupled to the scope, and an outflow channel. The sheath has a distal flange extending internally towards an outer surface of the scope. The outflow channel is formed between an inner surface of the sheath and an outer surface of the scope. The distal flange forms a distal end of the outflow channel and is generally located between the scope and the sheath.
Description
FIELD OF THE INVENTION

The present invention relates generally to hysteroscopy systems, and, more particularly, to a hysteroscopy system having a small size for use in an office setting.


BACKGROUND OF THE INVENTION

Hysteroscopy refers generally to the inspection of a uterine cavity using a hysteroscope with access through the cervix. As such, hysteroscopy allows diagnosis of intrauterine pathology and, furthermore, can be used for surgical intervention. The hysteroscope typically includes a scope and a sheath.


One problem associated with some current hysteroscopy systems is that they must be used in an operating room setting with the patient being under some type of anesthesia. Anesthesia is required in particular because the size of current hysteroscopes is large and, as such, they can cause discomfort and pain to the patient. For example, a typical hysteroscope may have an outermost diameter of about 9 millimeters. Such hysteroscopes include a scope having a diameter of about 8 millimeters and a sheath having a diameter of about 9 millimeters. In comparison, scientific literature on the subject agrees that hysteroscopy can be performed using a vaginoscopic approach, which can be performed in an office setting, only when the outermost diameter of the hysteroscope is about 6 millimeters or less.


Another problem associated with current scopes is that they typically include a blunt flange at the scope distal end. The flange extends outwardly from the scope and make it difficult, if not impossible, to use the scope without the sheath and/or without an obturator. Accordingly, the size of some current hysteroscopes is limited to the size of the scope and the sheath, e.g., a diameter of 9 millimeters.


What is needed, therefore, is a hysteroscope system for an office setting that addresses the above-stated and other problems.


SUMMARY OF THE INVENTION

According to one aspect of the present invention, a hysteroscopy system is directed to performing a medical procedure in an office setting. The hysteroscopy system includes a scope having an outer surface, an internal channel defined by an inner surface, and a distal end. A sheath is removably coupled to the scope and has a tip at which a distal flange extends internally towards the outer surface of the scope. The sheath also has an inner surface and a plurality of outflow holes near the distal flange. An outflow channel is formed between the inner surface of the sheath and the outer surface of the scope, the distal flange forming a distal end of the outflow channel. An operative channel is formed within the internal channel of the scope for receiving at least one of a surgical tool and an inflow fluid, and a visualization channel is formed adjacent to the operative channel for receiving a visualization device.


According to yet another aspect of the invention, a hysteroscopy system for a medical procedure includes a scope in the form of an elongated tubular member having an outer surface and an internal surface. The internal surface of the scope defines an internal channel of the scope. A sheath is in the form of an elongated tubular member removably coupled to the scope, the sheath having an outer surface and an internal surface. The sheath has a flange extending internally towards the outer surface of the scope at a distal end of the sheath. An operative member is located within the internal channel of the scope and is in the form of an elongated D-shape tubular member. The operative member has an outer surface and an internal surface, the outer surface being spaced away from the internal surface of the scope to form a visualization channel.


According to yet another aspect of the invention, a hysteroscopy system includes a scope having an outer surface and an internal channel, and a sheath removably coupled to the scope. The sheath has an inner surface and a distal flange, the distal flange extending internally towards the outer surface of the scope. An outflow channel is formed between the inner surface of the sheath and the outer surface of the scope, the distal flange forming a distal end of the outflow channel between the scope and the sheath.


Additional aspects of the invention will be apparent to those of ordinary skill in the art in view of the detailed description of various embodiments, which is made with reference to the drawings, a brief description of which is provided below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a hysteroscope system.



FIG. 2A is an enlarged perspective view of a distal end of the hysteroscope system.



FIG. 2B is an enlarged side view of the distal end of the hysteroscope system.



FIG. 2C is an enlarged cross-sectional end view of the distal end of the hysteroscope system.



FIG. 2D is an enlarged cross-sectional top view of the distal end of the hysteroscope system.



FIG. 3 shows dimensions associated with the distal end of FIG. 2A.



FIG. 4 is a perspective view of the hysteroscope system having a sheath removed from a scope.



FIG. 5 is an enlarged perspective view of the distal end of the hysteroscope system of FIG. 4.



FIG. 6 is a perspective view of an alternative embodiment of the hysteroscope system.





While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.


DETAILED DESCRIPTION

Referring to FIG. 1, a hysteroscope system 100 includes a hysteroscope 102 having, inter alia, a sheath 104, an inflow valve 106, an outflow valve 108, a light post 110, and a morcellator 112. The sheath 104 is a generally an elongated tubular member that has a distal end 114 and a proximal end 116. The hysteroscope system 100 also includes an arm 117 that is connected to an imaging device (e.g., a camera) to capture images received via a visualization device (e.g., visualization device 124).


According to some exemplary embodiments, the hysteroscope system 100 is intended for morcellation of uterine pathology with a scope and accessories having a sufficiently small diameter that can be inserted into a patient's uterus using the vaginoscopic approach. In particular, the hysteroscope system 100 provides a way to minimize patient pain because a tenanculum and speculum are not typically used.


Furthermore, anesthesia is not needed and the medical procedures can be performed in an office setting. This may result, for example, in a quicker surgery with less pain and quicker recovery, and may potentially lower the cost of the surgery. Yet another advantage of the hysteroscope system 100 is that a surgeon has the option to decide if they prefer greater flow instruments (e.g., with a coupled sheath 104) or smaller diameter instruments (e.g., with a removed sheath 104), depending on the patient case.


Referring to FIG. 2A, the sheath 104 is removably coupled to a scope 118, which is generally an elongated tubular member having (similar to the sheath 104) a distal end 114 and a proximal end 116. More specifically, the sheath 104 is slidably fitted in an overlapping manner over the scope 118. The scope 118 includes an operative member 120, which is in the form of an elongated D-shape tubular member.


The operative member 120 receives internally a surgical tool 122, which can be selected from a variety of different tools. For example, the surgical tool 122 can be a rotary morcellator, a reciprocating morcellator, or a morcellator having both reciprocal and rotary capabilities. The scope 118 further includes a visualization device 124. The visualization device 124 is adjacent to the operative member 120 and can include various image devices. For example, the visualization device 124 can include fiber-optic technology for illumination and image transmission.


To maintain continuous outflow, a plurality of outflow holes 126 are formed near the distal end 114 of the sheath 104. The inflow valve 106 (shown in FIG. 1) regulates inflow of a liquid through the operative member 120, as represented by the arrows 107 extending from the operative member 120. The liquid is used, for example, to distend and irrigate the uterus of a patient. Furthermore, the liquid is generally received from an access pump, which delivers the fluid to produce a substantially constant predetermined pressure level within a joint cavity, e.g., a uterus. The outflow valve 108 (shown in FIG. 1) regulates outflow of the liquid through the outflow holes 126 via an outflow channel 128 (shown in FIG. 2C) formed between the sheath 104 and the scope 118. The outflow of the liquid is represented by the arrows 109 extending into the outflow holes 126. The outflow liquid is generally sent to a waste container.


Referring to FIG. 2B, the sheath 104 has at the distal end 114 a flange 130 extending inwardly towards the scope 118 to form a closed end of the outflow channel 128 (shown in FIG. 2C). The flange 130 has a generally oval shape and includes two pairs of opposite sides 130a-130d.


According to the illustrated embodiment, the shape of the flange 130 is non-uniform. For example, a second side 130b extends a greater distance internally towards the center of the scope 118 than a first side 130a. Similarly, based on the symmetric features of this embodiment, a fourth side 130d extends a greater distance internally towards the center of the scope 118 than a third side 130c. In alternative embodiments, the flange 130 can have different shapes and sizes.


Referring to FIGS. 2C-2D, the sheath 104 has an outer surface 104a and an internal surface 104b, and the scope 118 has an outer surface 118a and an internal surface 118b. The internal surface 104b of the sheath 104 defines an internal channel in which the scope 118 and the visualization device 124 are located. The internal surface 118b of the scope 118 defines an internal channel in which the outer member and thus the surgical tool 122 is located.


The operative member 120 has an outer surface 120a, an internal surface 120b, and a flat outer surface 120c (clearly shown in FIG. 2C). The flat outer surface 120c is spaced away from the internal surface 118b of the scope 118 to form a visualization channel 132 (clearly shown in FIG. 2C) in which the visualization device 124 is located. The visualization channel 132 is only a small part of the larger internal channel of the scope 118.


The outflow channel 128 is formed between the internal surface 104b of the sheath 104 and the outer surface 118a of the scope 118. An inflow channel 134 is formed in the internal channel of the scope 118. If the surgical tool 122 is removed, the inflow channel 134 is simply the entire internal channel of the scope 118. If the surgical tool 122 is in place, the inflow channel 134 is limited to the area between the surgical tool 122 and the internal surface 120b of the operative member 120.


Referring to FIG. 3, the hysteroscopy system 100 is designed to have a size that can be used in an office setting. Specifically, the outer most diameter is designed to be about 6 millimeters or less. According to the illustrated embodiment, the outer diameter D1 of the sheath 104 (which is the same as the diameter of the outer surface 104b) is about 5.6 millimeters. For example, in an alternative embodiment the diameter of the sheath 104 is 5.5 millimeters. The outer diameter D2 of the surgical tool 122 (e.g., morcellator) is about 2.9 millimeters.


The scope 118 has an oval shape with a long diameter D3 of about 5.15 millimeters and a short diameter D4 of about 4.6 millimeters. The operative member 120 has a curvature dimension L1 of about 3.1 millimeters and a flat dimension L2 of about 3.95 millimeters.


The relatively small dimensions of the hysteroscopy system 100 allows a patient to be treated in an office setting. Generally, medical procedures may be provided to a patient with the use of the current hysteroscopy system 100 such that little or no anesthesia may be necessary. Clearly, one advantage of the hysteroscopy system 100 is that it is sufficiently small in diameter to be suitable for the vaginoscopic approach.


Referring to FIG. 4, the hysteroscopy system 100 is also usable without the sheath 104 while still providing continuous flow via a diagnostic cannula 135 (e.g., a cannula having a diameter of about 2.9 millimeters). Specifically, the sheath 104 is removed to allow only the insertion of the scope 118 into a patient, e.g., into an uterus. The removal of the sheath 104 decreases the outermost diameter of the hysteroscopy system 100. For example, in accordance with the dimensions described above in reference to FIG. 3, the outermost diameter decreases to about 5.15 millimeters (the long diameter D3) from about 5.6 millimeters (the outer diameter D1). When the sheath 104 is removed, the outflow can be provided by an operation tool, such as the morcellator 112 described above (shown in FIGS. 1-3), or by the diagnostic cannula 135.


In contrast to previous scopes, the scope 118 does not have a flange extending outwards from its distal end. The outward extending flange of the previous scopes unnecessarily increased the outermost diameter of the respective scopes and created an obtrusive distal end that made it difficult, if not impossible, to introduce into a patient without a sheath and obturator.


Referring to FIG. 5, the hysteroscopy system can be used for diagnostic purposes when the sheath 104 is removed. The sheath 104 is likely to be used in operative cases mostly to clear the visual field before introduction of a morcellator blade. The diagnostic cannula 135, which has a distal end 136, is used to create a smaller overall diameter of the system for diagnostic purposes. According to the dimensions described above, a reduction of approximately 0.5 millimeters can be achieved by removing the sheath 104. Another advantage of the cannula 135 is that it can be made reusable. Yet another advantage of the cannula 135 is that it can be used to distend and irrigate the patient's uterus during the diagnostic procedure.


The cannula 135 allows for continuous outflow but does not extend beyond the distal end of the scope 118. For example, the cannula 135 provides a replacement for the outflow channel 128, which is removed with the removal of the sheath 104. Specifically, the cannula 135 provides an alternative outflow channel 138 to replace the outflow channel 128 formed by the sheath 104. As such, continuous flow can be maintained even if the sheath 104 is removed.


Referring to FIG. 6, the hysteroscope system 100 alternatively includes a flow device 140 inserted within the operative member 120. The flow device 140 has an inflow tubular element 142 and an outflow tubular element 144, which can be conjoined elements or separate elements.


The distal ends of the tubular elements 142, 144 terminate at different points within the operative member 120. Preferably, the distal end of the inflow tubular element 142 terminates at the distal end 114 of the scope 118, and the distal end of the outflow tubular element 144 terminates some distance away from the distal end 114 within the operative member 120. The termination of tubular elements 142, 144 at different points along the operative member 120 eliminates the possibility of fluid short-circuit and provides better circulation and, hence, irrigation within the uterus.


According to one example, the flow device 140 is made of stainless steel and, as such, can be a reusable device. According to another example, the flow device 140 is made from a much more cost-effective material, such as a polymer. If a polymer is used, the flow device 140 will typically be considered a single-use device.


In practice, for example, a surgeon will insert the flow device 140 into the operative member 120 of the hysteroscope 102 prior to introduction into the uterus of a patient. After hysteroscope introduction into the uterus, an inflow valve 146 of the flow device 140 will be opened and the uterus will be distended. Then, by opening an outflow valve 148 of the flow device 140, irrigation is achieved. In the case of a diagnostic procedure, the flow device 140 could stay in place for the duration of the surgery. In the case of an operative procedure, the flow device 140 is removed and an operative tool (e.g., the morcellator 112) is inserted into the scope 118.


While the best modes for carrying out the present invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims. For example, the sheath 104, the scope 118, and the surgical tool 122 can be circular, oval, or any other smooth shape (i.e., an unobtrusive shape such as a shape that does not have a outward extending flange). In another example, the operative member 120 can have a circular shape or any other similar shape to the illustrated D-shape.

Claims
  • 1. A hysteroscopy system comprising: a scope; anda flow device positionable within the scope, the flow device having a distal end portion and a proximal end portion and defining a longitudinal axis extending between the distal and proximal end portions, the flow device including: an outer tube defining a channel extending through the outer tube, the channel having a non-circular cross-section;a first inner tube disposed within the channel, the first inner tube having a distal end portion and a proximal end portion; anda second inner tube disposed within the channel, the second inner tube having a distal end portion and a proximal end portion, wherein the first and second inner tubes cooperate to conform to the non-circular cross-section of the channel,wherein one of the first or second inner tubes is configured for fluid inflow and the other of the first or second inner tubes is configured for fluid outflow, andwherein the distal end portion of the first inner tube is longitudinally offset from the distal end portion of the second inner tube.
  • 2. The hysteroscopy system according to claim 1, wherein the distal end portion of the first inner tube is aligned with a distal end portion of the scope when the flow device is inserted into the scope.
  • 3. The hysteroscopy system according to claim 2, wherein the distal end portion of the second inner tube is recessed within the scope when the flow device is inserted into the scope.
  • 4. The hysteroscopy system according to claim 1, wherein the distal end portion of the first inner tube extends distally beyond the distal end portion of the second inner tube, and wherein the first inner tube is configured for fluid inflow.
  • 5. The hysteroscopy system according to claim 1, further including a visualization device disposed within the scope exteriorly of the flow device.
  • 6. The hysteroscopy system according to claim 1, wherein the first inner tube is coupled with the second inner tube.
  • 7. A hysteroscopy system comprising: a scope; anda flow device positionable within the scope, the flow device having a distal end portion and a proximal end portion and defining a longitudinal axis extending between the distal and proximal end portions, the flow device including: an outer tube defining a channel extending through the outer tube, the channel having a D-shaped cross-section;a first inner tube disposed within the channel, the first inner tube having a distal end portion and a proximal end portion; anda second inner tube disposed within the channel, the second inner tube having a distal end portion and a proximal end portion, the first and second inner tubes cooperating to conform to the D-shaped cross-section,wherein one of the first or second inner tubes is configured for fluid inflow and the other of the first or second inner tubes is configured for fluid outflow, andwherein the distal end portion of the first inner tube is longitudinally offset from the distal end portion of the second inner tube.
  • 8. The hysteroscopy system according to claim 7, wherein the distal end portion of the first inner tube is aligned with a distal end portion of the scope when the flow device is inserted into the scope.
  • 9. The hysteroscopy system according to claim 8, wherein the distal end portion of the second inner tube is recessed within the scope when the flow device is inserted into the scope.
  • 10. The hysteroscopy system according to claim 7, wherein the distal end portion of the first inner tube extends distally beyond the distal end portion of the second inner tube, and wherein the first inner tube is configured for fluid inflow.
  • 11. The hysteroscopy system according to claim 7, further including a visualization device disposed within the scope exteriorly of the flow device.
  • 12. The hysteroscopy system according to claim 7, wherein the first inner tube is coupled with the second inner tube.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 16/358,848, filed on Mar. 20, 2019, which is a divisional of U.S. patent application Ser. No. 14/846,198, filed on Sep. 4, 2015, now U.S. Pat. No. 10,251,539, which is a continuation of U.S. patent application Ser. No. 12/892,355, filed on Sep. 28, 2010, now U.S. Pat. No. 9,155,454. The entire contents of each of which are hereby incorporated by reference.

US Referenced Citations (282)
Number Name Date Kind
1585934 Muir May 1926 A
1666332 Hirsch Apr 1928 A
1831786 Duncan Nov 1931 A
2708437 Hutchins May 1955 A
3297022 Wallace Jan 1967 A
3686706 Finley Aug 1972 A
3734099 Bender et al. May 1973 A
3791379 Storz Feb 1974 A
3812855 Banko May 1974 A
3835842 Iglesias Sep 1974 A
3850162 Iglesias Nov 1974 A
3945375 Banko Mar 1976 A
3980252 Tae Sep 1976 A
3995619 Glatzer Dec 1976 A
3996921 Neuwirth Dec 1976 A
4011869 Seiler, Jr. Mar 1977 A
4108182 Hartman et al. Aug 1978 A
4146405 Timmer et al. Mar 1979 A
4198958 Utsugi Apr 1980 A
4203444 Bonnell et al. May 1980 A
4210146 Banko Jul 1980 A
4246902 Martinez Jan 1981 A
4247180 Norris Jan 1981 A
4258721 Parent et al. Mar 1981 A
4261346 Wettermann Apr 1981 A
4294234 Matsuo Oct 1981 A
4316465 Dotson, Jr. Feb 1982 A
4369768 Vukovic Jan 1983 A
4392485 Hiltebrandt Jul 1983 A
4414962 Carson Nov 1983 A
4449538 Corbitt et al. May 1984 A
4493698 Wang et al. Jan 1985 A
4517977 Frost May 1985 A
4543965 Pack et al. Oct 1985 A
4567880 Goodman Feb 1986 A
4589414 Yoshida et al. May 1986 A
4601284 Arakawa et al. Jul 1986 A
4601290 Effron et al. Jul 1986 A
4606330 Bonnet Aug 1986 A
4630598 Bonnet Dec 1986 A
4644952 Patipa et al. Feb 1987 A
4646722 Silverstein Mar 1987 A
4649919 Thimsen et al. Mar 1987 A
4667656 Yabe May 1987 A
4700694 Shishido Oct 1987 A
4706656 Kuboto Nov 1987 A
4718291 Wood et al. Jan 1988 A
4737142 Heckele Apr 1988 A
4749376 Kensey et al. Jun 1988 A
4756309 Sachse et al. Jul 1988 A
4779130 Yabe Oct 1988 A
4819635 Shapiro Apr 1989 A
4844064 Thimsen et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4856919 Takeuchi et al. Aug 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4924851 Ognier et al. May 1990 A
4940061 Terwilliger et al. Jul 1990 A
4950278 Sachse et al. Aug 1990 A
4955882 Hakky Sep 1990 A
4986827 Akkas et al. Jan 1991 A
4998527 Meyer Mar 1991 A
4998914 Wiest et al. Mar 1991 A
5007917 Evans Apr 1991 A
5027792 Meyer Jul 1991 A
5037386 Marcus et al. Aug 1991 A
5105800 Takahashi et al. Apr 1992 A
5106364 Hayafuji et al. Apr 1992 A
5112299 Pascaloff May 1992 A
5116868 Chen et al. May 1992 A
5125910 Freitas Jun 1992 A
5133713 Huang et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5158553 Berry et al. Oct 1992 A
5163433 Kagawa et al. Nov 1992 A
5169397 Sakashita et al. Dec 1992 A
5176677 Wuchinich Jan 1993 A
5195541 Obenchain Mar 1993 A
5226910 Kajiyama et al. Jul 1993 A
5244459 Hill Sep 1993 A
5254117 Rigby et al. Oct 1993 A
5269785 Bonutti Dec 1993 A
5270622 Krause Dec 1993 A
5275609 Pingleton et al. Jan 1994 A
5288290 Brody Feb 1994 A
5304118 Trese et al. Apr 1994 A
5312399 Takky et al. May 1994 A
5312425 Evans et al. May 1994 A
5312430 Rosenbluth et al. May 1994 A
5320091 Grossi et al. Jun 1994 A
5347992 Pearlman et al. Sep 1994 A
5350390 Sher Sep 1994 A
5364395 West, Jr. Nov 1994 A
5374253 Burns, Sr. et al. Dec 1994 A
5390585 Ryuh Feb 1995 A
5392765 Muller Feb 1995 A
5395313 Naves et al. Mar 1995 A
5403276 Schechter et al. Apr 1995 A
5409013 Clement Apr 1995 A
5409453 Lundquist et al. Apr 1995 A
5411513 Ireland et al. May 1995 A
5421819 Edwards et al. Jun 1995 A
5425376 Banys et al. Jun 1995 A
5429601 Conley et al. Jul 1995 A
5435805 Edwards et al. Jul 1995 A
5443476 Shapiro Aug 1995 A
5449356 Walbrink et al. Sep 1995 A
5456673 Ziegler et al. Oct 1995 A
5456689 Kresch et al. Oct 1995 A
5483951 Frassica et al. Jan 1996 A
5490819 Nicholas et al. Feb 1996 A
5490860 Middle et al. Feb 1996 A
5492537 Vancaillie Feb 1996 A
5498258 Hakky et al. Mar 1996 A
5527331 Kresch et al. Jun 1996 A
5549541 Muller Aug 1996 A
5556378 Storz et al. Sep 1996 A
5563481 Krause Oct 1996 A
5569164 Lurz Oct 1996 A
5569254 Carlson et al. Oct 1996 A
5569284 Young et al. Oct 1996 A
5575756 Karasawa et al. Nov 1996 A
5591187 Dekel Jan 1997 A
5601583 Donahue et al. Feb 1997 A
5601603 Illi Feb 1997 A
5602449 Krause et al. Feb 1997 A
5603332 O'Connor Feb 1997 A
5630798 Beiser et al. May 1997 A
5649547 Ritchart et al. Jul 1997 A
5669927 Boebel et al. Sep 1997 A
5672945 Krause Sep 1997 A
5674179 Bonnet et al. Oct 1997 A
5676497 Kim Oct 1997 A
5695448 Kimura et al. Dec 1997 A
5702420 Sterling et al. Dec 1997 A
5709698 Adams et al. Jan 1998 A
5730752 Alden et al. Mar 1998 A
5733298 Berman et al. Mar 1998 A
5741286 Recuset Apr 1998 A
5741287 Alden et al. Apr 1998 A
5749885 Sjostrom et al. May 1998 A
5749889 Bacich et al. May 1998 A
5759185 Grinberg Jun 1998 A
5772634 Atkinson Jun 1998 A
5775333 Burbank et al. Jul 1998 A
5782849 Miller Jul 1998 A
5807240 Muller et al. Sep 1998 A
5807282 Fowler Sep 1998 A
5810770 Chin et al. Sep 1998 A
5810861 Gaber Sep 1998 A
5814009 Wheatman Sep 1998 A
5833643 Ross et al. Nov 1998 A
5840060 Beiser et al. Nov 1998 A
5857995 Thomas et al. Jan 1999 A
5873886 Larsen et al. Feb 1999 A
5899915 Saadat May 1999 A
5911699 Anis et al. Jun 1999 A
5911722 Adler et al. Jun 1999 A
5913867 Dion Jun 1999 A
5916229 Evans Jun 1999 A
5925055 Adrian et al. Jul 1999 A
5928163 Roberts et al. Jul 1999 A
5944668 Vancaillie et al. Aug 1999 A
5947990 Smith Sep 1999 A
5951490 Fowler Sep 1999 A
5956130 Vancaillie et al. Sep 1999 A
5957832 Taylor et al. Sep 1999 A
6001116 Heisler et al. Dec 1999 A
6004320 Casscells et al. Dec 1999 A
6007513 Anis et al. Dec 1999 A
6024751 Lovato et al. Feb 2000 A
6032673 Savage et al. Mar 2000 A
6039748 Savage et al. Mar 2000 A
6042552 Cornier Mar 2000 A
6068641 Varsseveld May 2000 A
6086542 Glowa et al. Jul 2000 A
6090094 Clifford, Jr. et al. Jul 2000 A
6090123 Culp et al. Jul 2000 A
6113594 Savage Sep 2000 A
6119973 Galloway Sep 2000 A
6120147 Vijfvinkel et al. Sep 2000 A
6120462 Hibner et al. Sep 2000 A
6132448 Perez et al. Oct 2000 A
6149633 Maaskamp Nov 2000 A
6156049 Lovato et al. Dec 2000 A
6159160 Hsei et al. Dec 2000 A
6159209 Hakky Dec 2000 A
6203518 Anis et al. Mar 2001 B1
6217543 Anis et al. Apr 2001 B1
6224603 Marino May 2001 B1
6244228 Kuhn et al. Jun 2001 B1
6258111 Ross et al. Jul 2001 B1
6277096 Cortella et al. Aug 2001 B1
6315714 Akiba Nov 2001 B1
6358200 Grossi Mar 2002 B1
6358263 Mark et al. Mar 2002 B2
6359200 Day Mar 2002 B1
6402701 Kaplan et al. Jun 2002 B1
6428486 Ritchart et al. Aug 2002 B2
6443947 Marko Sep 2002 B1
6471639 Rudischhauser et al. Oct 2002 B2
6494892 Ireland et al. Dec 2002 B1
6585708 Maaskamp Jul 2003 B1
6610066 Dinger et al. Aug 2003 B2
6626827 Felix et al. Sep 2003 B1
6632182 Treat Oct 2003 B1
6656132 Ouchi Dec 2003 B1
6712773 Viola Mar 2004 B1
6824544 Boebel et al. Nov 2004 B2
6837847 Ewers et al. Jan 2005 B2
7025720 Boebel et al. Apr 2006 B2
7025732 Thompson et al. Apr 2006 B2
7150713 Shener et al. Dec 2006 B2
7226459 Cesarini et al. Jun 2007 B2
7249602 Emanuel Jul 2007 B1
7510563 Cesarini et al. Mar 2009 B2
7763033 Gruber et al. Jul 2010 B2
7922737 Cesarini et al. Apr 2011 B1
8061359 Emanuel Nov 2011 B2
8062214 Shener et al. Nov 2011 B2
8419626 Shener-Irmakoglu et al. Apr 2013 B2
8663264 Cesarini et al. Mar 2014 B2
8678999 Isaacson Mar 2014 B2
8852085 Shener-Irmakoglu et al. Oct 2014 B2
8893722 Emanuel Nov 2014 B2
8932208 Kendale et al. Jan 2015 B2
8951274 Adams et al. Feb 2015 B2
9060800 Cesarini et al. Jun 2015 B1
9060801 Cesarini et al. Jun 2015 B1
9066745 Cesarini et al. Jun 2015 B2
9072431 Adams et al. Jul 2015 B2
9089358 Emanuel Jul 2015 B2
9125550 Shener-Irmakoglu et al. Sep 2015 B2
9155454 Sahney et al. Oct 2015 B2
10251539 Sahney et al. Apr 2019 B2
20010039370 Takahashi Nov 2001 A1
20010039963 Spear et al. Nov 2001 A1
20010047183 Privitera et al. Nov 2001 A1
20020058859 Brommersma May 2002 A1
20020165427 Yachia et al. Nov 2002 A1
20030050603 Todd Mar 2003 A1
20030050638 Yachia et al. Mar 2003 A1
20030078609 Finlay et al. Apr 2003 A1
20030114875 Sjostrom Jun 2003 A1
20040204671 Stubbs et al. Oct 2004 A1
20040220452 Shalman Nov 2004 A1
20050043690 Todd Feb 2005 A1
20050085692 Kiehn et al. Apr 2005 A1
20050234298 Kucklick Oct 2005 A1
20060036132 Renner et al. Feb 2006 A1
20060047185 Shener Mar 2006 A1
20060241586 Wilk Oct 2006 A1
20070073101 Queyroux et al. Mar 2007 A1
20080015621 Emanuel Jan 2008 A1
20080045859 Fritsch Feb 2008 A1
20080058588 Emanuel Mar 2008 A1
20080058842 Emanuel Mar 2008 A1
20080097468 Adams et al. Apr 2008 A1
20080097469 Gruber et al. Apr 2008 A1
20080097470 Gruber et al. Apr 2008 A1
20080097471 Adams et al. Apr 2008 A1
20080135053 Gruber et al. Jun 2008 A1
20080146872 Gruber et al. Jun 2008 A1
20080146873 Adams et al. Jun 2008 A1
20080245371 Gruber Oct 2008 A1
20080249366 Gruber et al. Oct 2008 A1
20080249534 Gruber et al. Oct 2008 A1
20080249553 Gruber et al. Oct 2008 A1
20080262308 Prestezog et al. Oct 2008 A1
20090012362 Kucklick Jan 2009 A1
20090082628 Kucklick et al. Mar 2009 A1
20090270812 Litscher et al. Oct 2009 A1
20090270895 Churchill et al. Oct 2009 A1
20090270896 Sullivan et al. Oct 2009 A1
20090270897 Adams et al. Oct 2009 A1
20090270898 Chin et al. Oct 2009 A1
20100087798 Adams et al. Apr 2010 A1
20100152647 Shener et al. Jun 2010 A1
20110166419 Reif et al. Jul 2011 A1
20120078038 Sahney et al. Mar 2012 A1
20130131452 Kuroda et al. May 2013 A1
20140031834 Germain et al. Jan 2014 A1
Foreign Referenced Citations (100)
Number Date Country
1695546 Nov 2005 CN
101662993 Mar 2010 CN
3206381 Sep 1983 DE
3339322 May 1984 DE
3601453 Sep 1986 DE
3615694 Nov 1987 DE
4038398 Jun 1992 DE
4440035 May 1996 DE
19633124 May 1997 DE
19751632 Sep 1999 DE
102006022827 Dec 2006 DE
0310285 Apr 1989 EP
0327410 Aug 1989 EP
0557044 Aug 1993 EP
0582295 Feb 1994 EP
0606531 Jul 1994 EP
0621008 Oct 1994 EP
0806183 Nov 1997 EP
1681022 Jul 2006 EP
2093353 Sep 1982 GB
2311468 Oct 1997 GB
2001075416 Mar 2001 JP
2002529185 Sep 2002 JP
2002538889 Nov 2002 JP
2003245247 Sep 2003 JP
2005319086 Nov 2005 JP
1006944 Mar 1999 NL
8101648 Jun 1981 WO
20198101648 Jun 1981 WO
9211816 Jul 1992 WO
9307821 Apr 1993 WO
20199307821 Apr 1993 WO
9315664 Aug 1993 WO
20199315664 Aug 1993 WO
9426181 Nov 1994 WO
20199426181 Nov 1994 WO
9505777 Mar 1995 WO
20199505777 Mar 1995 WO
9510981 Apr 1995 WO
9510982 Apr 1995 WO
20199510981 Apr 1995 WO
20199510982 Apr 1995 WO
9522935 Aug 1995 WO
20199522935 Aug 1995 WO
9530377 Nov 1995 WO
20199530377 Nov 1995 WO
9611638 Apr 1996 WO
20199611638 Apr 1996 WO
9626676 Sep 1996 WO
20199626676 Sep 1996 WO
9709922 Mar 1997 WO
20199709922 Mar 1997 WO
9717027 May 1997 WO
20199717027 May 1997 WO
9719642 Jun 1997 WO
20199719642 Jun 1997 WO
9724071 Jul 1997 WO
20199724071 Jul 1997 WO
9734534 Sep 1997 WO
20199734534 Sep 1997 WO
9735522 Oct 1997 WO
20199735522 Oct 1997 WO
9809569 Mar 1998 WO
9810707 Mar 1998 WO
20199809569 Mar 1998 WO
9846147 Oct 1998 WO
20199846147 Oct 1998 WO
9903407 Jan 1999 WO
9903409 Jan 1999 WO
20199903407 Jan 1999 WO
20199903409 Jan 1999 WO
9907295 Feb 1999 WO
20199907295 Feb 1999 WO
9911184 Mar 1999 WO
20199911184 Mar 1999 WO
9939648 Aug 1999 WO
20199939648 Aug 1999 WO
9944506 Sep 1999 WO
20199944506 Sep 1999 WO
9960935 Dec 1999 WO
20199960935 Dec 1999 WO
0012010 Mar 2000 WO
0028890 May 2000 WO
0033743 Jun 2000 WO
0044295 Aug 2000 WO
0047116 Aug 2000 WO
0057797 Oct 2000 WO
0135831 May 2001 WO
0158368 Aug 2001 WO
0195810 Dec 2001 WO
02069808 Sep 2002 WO
03022164 Mar 2003 WO
03077767 Sep 2003 WO
2005060842 Jul 2005 WO
2005096963 Oct 2005 WO
2006105283 Oct 2006 WO
2006121968 Nov 2006 WO
2006121970 Nov 2006 WO
2007044833 Apr 2007 WO
2012044705 Apr 2012 WO
Non-Patent Literature Citations (197)
Entry
Reexamination No. 95/002,058, Third Party's Jul. 24, 2012 Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359 (1050 pages).
Reexamination No. 95/002,058, Third Party's Oct. 19, 2012 Request for Reconsideration of Certain Decisions Regarding Third Party Requestor's Request for Reexamination of U.S. Pat. No. 8,061,359 (19 pages).
Reexamination No. 95/002,058, Third Party's Oct. 29, 2014 Comments on Second Action Closing Prosecution mailed Aug. 27, 2014 (31 pages).
Reexamination No. 95/002,058, Third Party's Oct. 9, 2013 Comments on First Action Closing Prosecution mailed Aug. 9, 2013 (25 pages).
Reference AQ “Fishing Reel produced and sold by Shimano of Japan in to the U.S. prior to Oct. 26, 2001,” as cited in the IDS filed Oct. 17, 2005 in the prosecution file history of U.S. Appl. No. 09/983,810 (7 pages).
Richard Wolf “‘Morce—Power 2306’ Electronic Morcellator” (2 pages).
Richard Wolf “The Fluid Manager” (2 pages).
Sheth, “Fiberoptic Light for Oophorectomy at Vaginal Hysterectomy”, Journal of Gynecologic Surgery, vol. 14, No. 3, pp. 119-122, 1998 (4 pages).
Substantive Examination Report in the corresponding Patent Application No. MX/a/2013/003535, dated Aug. 20, 2015, 4 pages.
Sugimoto “A Color Atlas of Hysteroscopy” Springer-Verlag Tokyo, 1999 (17 pages).
U.S. Appl. No. 09/486,977, Office Action dated Sep. 7, 2005 (7 pages).
U.S. Appl. No. 11/780,759, Applicant's Mar. 31, 2011 Response to Office Action dated Jan. 5, 2010 (15 pages).
U.S. Appl. No. 11/780,759, Applicant's Oct. 25, 2010 Response to Office Action dated Jul. 26, 2010 (13 pages).
U.S. Appl. No. 11/780,759, Office Action dated Jan. 5, 2011 (7 pages).
U.S. Appl. No. 11/780,759, Office Action dated Jul. 22, 2010 (5 pages).
U.S. Appl. No. 11/780,759, Office Action dated Jul. 26, 2010 (7 pages).
U.S. Appl. No. 11/929,938, Office Action dated Jan. 5, 2011 (10 pages).
U.S. Appl. No. 11/929,938, Office Action dated Jul. 30, 2010 (10 pages).
U.S. Appl. No. 11/929,940, Advisory Action dated Sep. 10, 2010 (3 pages).
U.S. Appl. No. 11/929,940, Office Action dated Dec. 30, 2009 (9 pages).
U.S. Appl. No. 11/929,940, Office Action dated Jul. 1, 2010 (12 pages).
Valle “Hysteroscopic Removal of Submucous Leiomyomas”, Journal of Gynecologic Surgery, vol. 6, No. 1, pp. 89-96, 1990 (9 pages).
Weck “A Direct Path to Diagnostic and Operative Control: The Weck-Baggish Hysteroscopy System” Advertisement, Journal of Gynecologic Surgery, vol. 7, No. 1, 1991 (2 pages).
Williamson et al., Editorial 1 “Complications of hysteroscopic treatments of menorrhagia”, British Journal of Anesthesia, vol. 77, No. 3, pp. 305-308, 1996 (4 pages).
Reexamination No. 95/002,058, Patent Owner's May 5, 2015 Appeal Brief (47; pages).
Reexamination No. 95/002,058, Third Party's Jun. 5, 2015 Respondent Brief (21 pages).
Reexamination No. 95/002,058, Patent Owner's Jul. 1, 2015 Corrected Appeal Brief (47 pages).
Reexamination No. 95/002,058, Third Party's Jul. 24, 2015 Resubmitted Respondent Brief (21 pages).
Reexamination No. 95/002,058, Examiner's Answer dated Sep. 17, 2015 (3 pages).
Reexamination No. 95/002,058, Patent Owner's Oct. 19, 2015 Rebuttal Brief (25 pages).
Reexamination No. 95/001,933, Patent Owner's Apr. 24, 2015 Rebuttal Brief (8 pages).
Notification on Results of Patentability Examination for Russian Application No. 2013119298/14(028553), dated Jan. 14, 2016, 8 pages, with English language translation.
Notification of Second Office Action issued in corresponding Chinese Application No. 201611020781.6 dated Jun. 1, 2018, 18 pages with English translation.
U.S. Appl. No. 95/001,933, Appendices 14-28 to Request for Inter Partes Reexamination of U.S. Pat. No. 7,226,459, Claim Charts for VariousClaims in view of Various References (436 pages).
U.S. Appl. No. 95/001,933, Appendix 2 to Request for Inter Partes Reexamination of U.S. Pat. No. 7,226,459, Memorandum of Decision dated Apr. 21, 2011, in Smith & Nephew, Inc. v. Interlace Medical, Inc., Civil Action No. 10-10951-RWZ, U.S. District Court for the District of Massachusetts (14 pages).
U.S. Appl. No. 95/001,933, Appendix 6 to Request for Inter Partes Reexamination of U.S. Pat. No. 7,226,459, Opening Markman Brief of Plaintiff Smith & Nephew, Inc. dated Oct. 13, 2010, in Smith & Nephew, Inc. v. Interlace Medical, Inc., CivilAction No. 10-10951-RWZ, U.S. District Court for the District of Massachusetts (23 pages).
U.S. Appl. No. 95/001,933, Appendix 7 to Request for Inter Partes Reexamination of U.S. Pat. No. 7,226,459, Defendant Interlace Medical, Inc's Responsive Markman Brief (Redacted) dated Oct. 27, 2010, in Smith & Nephew, Inc. v. Interlace Medical, Inc., Civil Action No. 10-10951-RWZ, U.S. District Court for the District of Massachusetts (26 pages).
U.S. Appl. No. 95/001,933, Appendix 8 to Request for Inter Partes Reexamination of U.S. Pat. No. 7,226,459, Plaintiff Smith & Nephew, Inc.'s Reply in Support of Markman Brief dated Nov. 3, 2010, in Smith & Nephew, Inc. v. InterlaceMedical, Inc., Civil Action No. 10-10951-RWZ, U.S. District Court for the District of Massachusetts (8 pages).
U.S. Appl. No. 95/001,933, Examiner's Answer dated Mar. 25, 2015 (3 pages).
U.S. Appl. No. 95/001,933, Executed Expert Declaration of Hal Walbrink in support of Request for Inter Partes Reexamination of U.S. Pat. No. 7,226,459, Executed Mar. 9, 2012 (42 pages).
U.S. Appl. No. 95/001,933, First Office Action dated Jun. 5, 2012 (37 pages).
U.S. Appl. No. 95/001,933, Litigation Search Report CRU 3999 dated Mar. 29, 2012 (24 pages).
U.S. Appl. No. 95/001,933, Order Granting Request for Reexamination dated Jun. 5, 2012 (29 pages).
U.S. Appl. No. 95/001,933, Patent Owner's Apr. 14, 2014 Appeal Brief (334 pages).
U.S. Appl. No. 95/001,933, Patent Owner's Feb. 13, 2014 Notice of Appeal (2 pages).
U.S. Appl. No. 95/001,933, Patent Owner's Aug. 6, 2012 Response to First Office Action dated Jun. 5, 2012 (156 pages).
U.S. Appl. No. 95/001,933, Patent Owner's Jun. 3, 2013 Response to Second Office Action dated Apr. 1, 2013 (37 pages).
U.S. Appl. No. 95/001,933, Patent Owner's Oct. 21, 2013 Response to Action Closing Prosecution dated Sep. 19, 2013 (180 pages).
U.S. Appl. No. 95/001,933, Right of Appeal Notice mailed Jan. 14, 2014 (58 pages).
U.S. Appl. No. 95/001,933, Second Office Action dated Apr. 1, 2013 (56 pages).
U.S. Appl. No. 95/001,933, Third Party's Dec. 19, 2012 Response to Notification of Defective Paper and Comments on First Office Action dated Jun. 5, 2012 (38 pages).
U.S. Appl. No. 95/001,933, Third Party's Jul. 3, 2013 Comments on Second Office Action dated Apr. 1, 2013 (62 pages).
U.S. Appl. No. 95/001,933, Third Party's Mar. 12, 2012 Request for Inter Partes Reexamination of U.S. Pat. No. 7,226,459 (130 pages).
U.S. Appl. No. 95/001,933, Third Party's May 14, 2014 Respondent's Brief (303 pages).
U.S. Appl. No. 95/001,933, Third Party's Nov. 20, 2013 Comments on Action Closing Prosecution mailed Sep. 19, 2013 (38 pages).
U.S. Appl. No. 95/001,933, Third Party's Sep. 5, 2012 Comments on First Office Action dated Jun. 5, 2012 (210 pages).
U.S. Appl. No. 95/001,955, Appendix 19 to Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359, Opening Claim Construction Brief of Defendant Hologic, Inc., dated Feb. 24, 2012, in Smith & Nephew, Inc. v. Hologic, Inc.,Civil ActionNo. 11-12064-RWZ, U.S. District Court for the District of Massachusetts (24 pages).
U.S. Appl. No. 95/001,955, Appendix 20 to Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359, Opening Markman Brief of Plaintiff Smith & Nephew, Inc., dated Feb. 24, 2012, in Smith & Nephew, Inc. v. Hologic, Inc., CivilAction No. 11-12064-RWZ, U.S. District Court for the District of Massachusetts (24 pages).
U.S. Appl. No. 95/001,955, Appendix 28 to Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359, Claim chart for anticipation of claims 1-8 based on U.S. Pat. No. 5,456,689 to Kresch (4 pages).
U.S. Appl. No. 95/001,955, Appendix 29 to Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359, Claim chart for anticipation of claims 1-8 based on U.S. Pat. No. 6,032,673 to Savage (13 pages).
U.S. Appl. No. 95/001,955, Appendix 30 to Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359, Claim chart for anticipation of claims 1-8 based on U.S. Pat. No. 3,945,375 to Banko (4 pages).
U.S. Appl. No. 95/001,955, Decision Denying Petition dated Sep. 28, 2012 (5 pages).
U.S. Appl. No. 95/001,955, Executed Expert Declaration of Dr. Henry A. Dominicis in support of Request for Inter Partes Reexamination of U.S Pat. No 8,061,359, Executed Apr. 1, 2012 (150 pages).
U.S. Appl. No. 95/001,955, Executed Expert Declaration of Hal Walbrink in support of Request for Inter Partes Reexamination of U.S. Pat No. 8,061,359, Executed Apr. 2, 2012 (22 pages).
U.S. Appl. No. 95/001,955, Litigation Search Report CRU 3999 dated Apr. 3, 2012 (33 pages).
U.S. Appl. No. 95/001,955, Order Denying Request for Inter Partes Reexamination mailed Jun. 4, 2012 (35 pages).
U.S. Appl. No. 95/001,955, Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359, filed Apr. 2, 2012 (265 pages).
U.S. Appl. No. 95/001,955, Request for Reconsideration of Third Party Requestor's Petition for Reexamination mailed Jul. 3, 2012 (32 pages).
U.S. Appl. No. 95/002,058, Executed Expert Declaration of Dr. Henry A. Dominicis in support of Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359, Executed Jul. 24, 2012 (101 pages).
U.S. Appl. No. 95/002,058, First Action Closing Prosecution mailed Aug. 9, 2013 (34 pages).
U.S. Appl. No. 95/002,058, First Office Action dated Sep. 19, 2012 (37 pages).
U.S. Appl. No. 95/002,058, Litigation Search Report CRU 3999 dated Aug. 13, 2012 (29 pages).
U.S. Appl. No. 95/002,058, Patent Owner's Mar. 5, 2015 Notice of Appeal (2 pages).
U.S. Appl. No. 95/002,058, Patent Owner's Jan. 22, 2013 Response to First Office Action dated Sep. 19, 2012 (379 pages).
U.S. Appl. No. 95/002,058, Patent Owner's Mar. 24, 2014 Response to Second Office Action dated Jan. 24, 2014 (55 pages).
U.S. Appl. No. 95/002,058, Patent Owner's Sep. 29, 2014 Response to Second Action Closing Prosecution mailed Aug. 27, 2014 (12 pages).
U.S. Appl. No. 95/002,058, Patent Owner's Sep. 9, 2013 Response to First Action Closing Prosecution dated Aug. 9, 2013 (159 pages).
U.S. Appl. No. 95/002,058, Reexam Order dated Sep. 19, 2012 (54 pages).
U.S. Appl. No. 95/002,058, Right of Appeal Notice mailed Feb. 4, 2015 (35 pages).
U.S. Appl. No. 95/002,058, Second Action Closing Prosecution mailed Aug. 27, 2014 (35 pages).
U.S. Appl. No. 95/002,058, Second Office Action dated Jan. 24, 2014 (31 pages).
U.S. Appl. No. 95/002,058, Third Party's Apr. 23, 2014 Comments on Second Office Action dated Jan. 24, 2014 (117 pages).
U.S. Appl. No. 95/002,058, Third Party's Feb. 21, 2013 Comments on First Office Action dated Sep. 19, 2012 (771 pages).
U.S. Appl. No. 95/002,058, Third Party's Jul. 24, 2012 Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359 (1050 pages).
U.S. Appl. No. 95/002,058, Third Party's Oct. 19, 2012 Request for Reconsideration of Certain Decisions Regarding Third Party Requestor's Request for Reexamination of U.S. Pat. No. 8,061,359 (19 pages).
U.S. Appl. No. 95/002,058, Third Party's Oct. 29, 2014 Comments on Second Action Closing Prosecution mailed Aug. 27, 2014 (31 pages).
U.S. Appl. No. 95/002,058, Third Party's Oct. 9, 2013 Comments on First Action Closing Prosecution mailed Aug. 9, 2013 (25 pages).
U.S. Appl. No. 95/002,058, Patent Owner's May 5, 2015 Appeal Brief (47; pages).
U.S. Appl. No. 95/002,058, Third Party's Jun. 5, 2015 Respondent Brief (21 pages).
U.S. Appl. No. 95/002,058, Patent Owner's Jul. 1, 2015 Corrected Appeal Brief (47 pages).
U.S. Appl. No. 95/002,058, Third Party's Jul. 24, 2015 Resubmitted Respondent Brief (21 pages).
U.S. Appl. No. 95/002,058, Examiner's Answer dated Sep. 17, 2015 (3 pages).
U.S. Appl. No. 95/002,058, Patent Owner's Oct. 19, 2015 Rebuttal Brief (25 pages).
U.S. Appl. No. 95/001,933, Patent Owner's Apr. 24, 2015 Rebuttal Brief (8 pages).
Chinese Office Action for Chinese Application No. 201180046921.6, dated Dec. 15, 2015, 3 pages, with English anguage translation.
Emanuel et al., “Long-term Results of Hysteroscopic Myomectomy for Abnormal Uterine Bleeding”, Obstetrics & Gynecoogy, vol. 93, No. 5, Part 1, pp. 743-748, 1999 (6 pages).
U.S. Appl. No. 95/001,933, Action Closing Prosecution mailed Sep. 19, 2013 (41 pages).
European examination report issued in corresponding EP application No. 11770261.3 dated Aug. 4, 2016.
Notification of Reason for Refusal issued in corresponding Korean application No. 10-2013-7008294 dated Dec. 14, 2017.
Chinese Office Action for Chinese Application No. 201180046921.6, dated Dec. 15, 2015, 3 pages, with English language translation.
Inquiry Made in Course of Substantive Examination for Russian Patent Application No. 2013119298/14(028553) dated Sep. 29, 2015, 5 pages, with English language translation.
ACMI Corporation, “Dolphin II Hysteroscopic Fluid Management Systems,” ACMI Corporation, 2002 (1 page).
ACMI Corporation, “Dolphin II and DISTEN-U-FLO Fluid Management Systems for Hysteroscopy”, ACMI Corporation, 2002 (1 page).
Bacsko “Uterine Surgery by Operative Hysteroscopy”, European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 71, pp. 219-222, 1997 (4 pages).
Baggish et al., “Diagnostic and Operative Hysterectomy,” Mosby, pp. 97-105, 123-125, 127-132, 353-355, and 394-398, 1999 (27 pages).
Chinese Office Action for Chinese Application No. 201180046921.6, dated Dec. 23, 2014, 29 pages, with English language translation.
C.R. Bard, Inc, “The HydroFlex HD System” (1 page).
Cravello et al., “Hysteroscopic Resection of Fibroids: Results with a 6-Year Follow-up Period”, Journal of Gynecologic Surgery, vol. 15, No. 1, 1-5 1999 (5 pages).
Defendant Hologic Inc.'s Preliminary, Non-Binding List of Asserted Prior Art References, dated Feb. 8, 2012, in Smith & Nephew, Inc. v. Hologic, Inc., Civil Action Nos. 11-12064-RWZ and 10-10951-RWZ, U.S. District Court for the District ofMassachusetts (7 pages).
Dictionary definition of reciprocate, Merrian-Webster Dictionary, on-line edition, retrieved Mar. 20, 2013 (1 page).
Dictionary definition of rotate, Merriam-Webster Dictionary, on-line edition, retrieved Mar. 20, 2013 (1 page).
Dictionary definition of translate, Merriam-Webster Dictionary, on-line edition, retrieved Mar. 20, 2013 (1 page).
Drews et al., “Surgical Approach to Myomas: Laparoscopy and Hysteroscopy”, Seminars in Reproductive Endocrinology, vol. 10, No. 4, pp. 367-377, 1992 (11 pages).
Dumesic et al., “A New Approach to Hysteroscopic Cannulation of the Fallopian Tube”, Journal of Gynecologic Surgery, vol. 7, No. 1, pp. 7-9, 1991 (3 pages).
Emanuel et al., “Long-term Results of Hysteroscopic Myomectomy for Abnormal Uterine Bleeding”, Obstetrics & Gynecoogy, vol. 93, No. 5, Part I, pp. 743-748, 1999 (6 pages).
European Patent Application No. 05 786 521.4-2305, Examination Report dated Apr. 21, 2010 (4 pages).
European Patent Application No. 05 786 521.4-2305, Examination Report dated Sep. 26, 2012 (5 pages).
European Patent Application No. 11 770 261.3-1657, Examination Report dated Feb. 11, 2014 (4 pages).
Exhibit P to Hologic's Opposition to Smith & Nephew's Motion for Preliminary Injunction, Redacted, filed Dec. 30, 2011, In Smith & Nephew, Inc. v. Hologic, Inc., Civil Action No. 11-12064-RWZ, U.S. District Court for the District of Massachusetts(99 pages).
First Office Action for Japanese Patent Application No. 213-531779 dated May 18, 2015, with English translation, 6 pages.
Franchini et al., “Endometrial resection: a diagnostic tool in postmenopausal women”, Gynecological Endoscopy, 8, pp. 111-114, 1999 (5 pages).
“From Distention to Deficit Monitoring Taking the All-In-One Approach”, W.O.M. World of Medicine (1 page).
Gerber et al., “The Endoscapel: A new endoscopic instrument for supracervical hysterectomy and morcellation of masses; clinical evaluation”, European Journal of Obstetrics & Gynecology and Reproductive Biology, 86, p. S12, 1999 (1 page).
Gynecare “Motor Drive Unit” Instructions for Use (3 pages).
Gynecare X-Tract, “Tissue Morcellator”, Instructions for Use (3 pages).
Gynecare, “Fluid Management System” Instructions for Use (26 pages).
Gynescope Corporation “Laser Fiber Director”, Advertisement, Journal of Gynecologic Surgery, vol. 6, No. 1, 1990 (2 pages).
Hess et al., “Textbook of Bilio-Pancreatic Disease”, vol. III, PICCIN, e.g. Fig 6.5.1, pp. 1584-1586, 1997 (5 pages).
Hologic's Opposition to Smith & Nephew's Motion for Preliminary Injunction, Redacted, filed Dec. 30, 2011, in Smith & Nephew, Inc. v. Hologic, Inc., Civil Action No. 11-12064-RWZ, U.S. District Court for the District of Massachusetts (26 pages).
“HysteRo-Purator 1143-1 Technical Data” WISAP (2 pages).
International Application No. PCT/US2005/029807, International Preliminary Report on Patentability dated Feb. 28, 2007 (9 pages).
International Application No. PCT/US2005/029807, International Search Report dated Jun. 13, 2006 (5 pages).
International Application No. PCT/US2011/053753, International Preliminary Report on Patentability dated Apr. 2, 2013 (7 pages).
International Application No. PCT/US2011/053753, International Search Report dated Dec. 20, 2011 (4 pages).
Japanese Patent Application No. 2007-530014, Translation of Office Action dated Feb. 15, 2011 (10 pages).
Karl Storz “Pilot a Course to Successful Outcomes”, Intermetro Industries Corporation, 2001 (2 pages).
Karl Storz “Uterine Resectoscopes for Endometrial Ablation and Resection”, Advertisement, Journal of Gynecologic Surgery, vol. 6, No. 1, 1990 (3 pages).
Karl Storz, Advertisement, Journal of Gynecologic Surgery, vol. 5, No. 4, 1989 (3 pages).
Lin et al. “Clinical Applications of a New Fujinon Operating Fiberoptic Hysteroscope”, Journal of Gynecologic Surgery, vol. 6, No. 2, pp. 81-87, 1990 (7 pages).
Mettler et al., “Pelviscopic uterine surgery” Surgical Endoscopy, 6, pp. 23-31, 1992 (9 pages).
Neis et al., “Hysteroscopy: Textbook and Atlas”, Thieme Medical Publishers, pp. 91-103, 1994 (13 pages).
Nisolle et al., “Endometrial ablation with the Nd-YAG laser in dysfunctional bleeding” Minimally Invasive Therapy, vol. 1, pp. 35-39, 1991 (5 pages).
Olympus Product Catalogue: Part No. A2461—OP Nephroscope, Sep. 1991 (3 pages).
Office Action in Chinese Patent Application No. 201180046921.6, dated Aug. 4, 2015, 13 pages.
Park et al., “Endoscopic Management of Uterine Myoma”, Yonsei Medical Journal, vol. 40, No. 6, pp. 583-588, 1999 (6 pages).
Patent Examination Report No. 1 for Australian Patent Application No. 2011308834 dated Jun. 11, 2015, 3 pages.
Reexamination No. 95/001,933, Action Closing Prosecution mailed Sep. 19, 2013 (41 pages).
Reexamination No. 95/001,933, Appendices 14-28 to Request for Inter Partes Reexamination of U.S. Pat. No. 7,226,459, Claim Charts for Various Claims in view of Various References (436 pages).
Reexamination No. 95/001,933, Appendix 2 to Request for Inter Partes Reexamination of U.S. Pat. No. 7,226,459, Memorandum of Decision dated Apr. 21, 2011, in Smith & Nephew, Inc. v. Interlace Medical, Inc., Civil Action No. 10-10951-RWZ, U.S.District Court for the District of Massachusetts (14 pages).
Reexamination No. 95/001,933, Appendix 6 to Request for Inter Partes Reexamination of U.S. Pat. No. 7,226,459, Opening Markman Brief of Plaintiff Smith & Nephew, Inc. dated Oct. 13, 2010, in Smith & Nephew, Inc. v. Interlace Medical, Inc., CivilAction No. 10-10951-RWZ, U.S. District Court for the District of Massachusetts (23 pages).
Reexamination No. 95/001,933, Appendix 7 to Request for Inter Partes Reexamination of U.S. Pat. No. 7,226,459, Defendant Interlace Medical, Inc's Responsive Markman Brief (Redacted) dated Oct. 27, 2010, in Smith & Nephew, Inc. v. Interlace Medical, Inc., Civil Action No. 10-10951-RWZ, U.S. District Court for the District of Massachusetts (26 pages).
Reexamination No. 95/001,933, Appendix 8 to Request for Inter Partes Reexamination of U.S. Pat. No. 7,226,459, Plaintiff Smith & Nephew, Inc.'s Reply in Support of Markman Brief dated Nov. 3, 2010, in Smith & Nephew, Inc. v. Interlace Medical, Inc.,Civil Action No. 10-10951-RWZ, U.S. District Court for the District of Massachusetts (8 pages).
Reexamination No. 95/001,933, Examiner's Answer dated Mar. 25, 2015 (3 pages).
Reexamination No. 95/001,933, Executed Expert Declaration of Hal Walbrink in support of Request for Inter Partes Reexamination of U.S. Pat. No. 7,226,459, Executed Mar. 9, 2012 (42 pages).
Reexamination No. 95/001,933, First Office Action dated Jun. 5, 2012 (37 pages).
Reexamination No. 95/001,933, Litigation Search Report CRU 3999 dated Mar. 29, 2012 (24 pages).
Reexamination No. 95/001,933, Order Granting Request for Reexamination dated Jun. 5, 2012 (29 pages).
Reexamination No. 95/001,933, Patent Owner's Apr. 14, 2014 Appeal Brief (334 pages).
Reexamination No. 95/001,933, Patent Owner's Feb. 13, 2014 Notice of Appeal (2 pages).
Reexamination No. 95/001,933, Patent Owner's Aug. 6, 2012 Response to First Office Action dated Jun. 5, 2012 (156 pages).
Reexamination No. 95/001,933, Patent Owner's Jun. 3, 2013 Response to Second Office Action dated Apr. 1, 2013 (37 pages).
Reexamination No. 95/001,933, Patent Owner's Oct. 21, 2013 Response to Action Closing Prosecution dated Sep. 19, 2013 (180 pages).
Reexamination No. 95/001,933, Right of Appeal Notice mailed Jan. 14, 2014 (58 pages).
Reexamination No. 95/001,933, Second Office Action dated Apr. 1, 2013 (56 pages).
Reexamination No. 95/001,933, Third Party's Dec. 19, 2012 Response to Notification of Defective Paper and Comments on First Office Action dated Jun. 5, 2012 (38 pages).
Reexamination No. 95/001,933, Third Party's Jul. 3, 2013 Comments on Second Office Action dated Apr. 1, 2013 (62 pages).
Reexamination No. 95/001,933, Third Party's Mar. 12, 2012 Request for Inter Partes Reexamination of U.S. Pat. No. 7,226,459 (130 pages).
Reexamination No. 95/001,933, Third Party's May 14, 2014 Respondent's Brief (303 pages).
Reexamination No. 95/001,933, Third Party's Nov. 20, 2013 Comments on Action Closing Prosecution mailed Sep. 19, 2013 (38 pages).
Reexamination No. 95/001,933, Third Party's Sep. 5, 2012 Comments on First Office Action dated Jun. 5, 2012 (210 pages).
Reexamination No. 95/001,955, Appendix 19 to Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359, Opening Claim Construction Brief of Defendant Hologic, Inc., dated Feb. 24, 2012, in Smith & Nephew, Inc. v. Hologic, Inc., Civil ActionNo. 11-12064-RWZ, U.S. District Court for the District of Massachusetts (24 pages).
Reexamination No. 95/001,955, Appendix 20 to Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359, Opening Markman Brief of Plaintiff Smith & Nephew, Inc., dated Feb. 24, 2012, in Smith & Nephew, Inc. v. Hologic, Inc., Civil Action No. 11-12064-RWZ, U.S. District Court for the District of Massachusetts (24 pages).
Reexamination No. 95/001,955, Appendix 28 to Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359, Claim chart for anticipation of claims 1-8 based on U.S. Pat. No. 5,456,689 to Kresch (4 pages).
Reexamination No. 95/001,955, Appendix 29 to Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359, Claim chart for anticipation of claims 1-8 based on U.S. Pat. No. 6,032,673 to Savage (13 pages).
Reexamination No. 95/001,955, Appendix 30 to Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359, Claim chart for anticipation of claims 1-8 based on U.S. Pat. No. 3,945,375 to Banko (4 pages).
Reexamination No. 95/001,955, Decision Denying Petition dated Sep. 28, 2012 (5 pages).
Reexamination No. 95/001,955, Executed Expert Declaration of Dr. Henry A. Dominicis in support of Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359, Executed Apr. 1, 2012 (150 pages).
Reexamination No. 95/001,955, Executed Expert Declaration of Hal Walbrink in support of Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359, Executed Apr. 2, 2012 (22 pages).
Reexamination No. 95/001,955, Litigation Search Report CRU 3999 dated Apr. 3, 2012 (33 pages).
Reexamination No. 95/001,955, Order Denying Request for Inter Partes Reexamination mailed Jun. 4, 2012 (35 pages).
Reexamination No. 95/001,955, Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359, filed Apr. 2, 2012 (265 pages).
Reexamination No. 95/001,955, Request for Reconsideration of Third Party Requestor's Petition for Reexamination mailed Jul. 3, 2012 (32 pages).
Reexamination No. 95/002,058, Executed Expert Declaration of Dr. Henry A. Dominicis in support of Request for Inter Partes Reexamination of U.S. Pat. No. 8,061,359, Executed Jul. 24, 2012 (101 pages).
Reexamination No. 95/002,058, First Action Closing Prosecution mailed Aug. 9, 2013 (34 pages).
Reexamination No. 95/002,058, First Office Action dated Sep. 19, 2012 (37 pages).
Reexamination No. 95/002,058, Litigation Search Report CRU 3999 dated Aug. 13, 2012 (29 pages).
Reexamination No. 95/002,058, Patent Owner's Mar. 5, 2015 Notice of Appeal (2 pages).
Reexamination No. 95/002,058, Patent Owner's Jan. 22, 2013 Response to First Office Action dated Sep. 19, 2012 (379 pages).
Reexamination No. 95/002,058, Patent Owner's Mar. 24, 2014 Response to Second Office Action dated Jan. 24, 2014 (55 pages).
Reexamination No. 95/002,058, Patent Owner's Sep. 29, 2014 Response to Second Action Closing Prosecution mailed Aug. 27, 2014 (12 pages).
Reexamination No. 95/002,058, Patent Owner's Sep. 9, 2013 Response to First Action Closing Prosecution dated Aug. 9, 2013 (159 pages).
Reexamination No. 95/002,058, Reexam Order dated Sep. 19, 2012 (54 pages).
Reexamination No. 95/002,058, Right of Appeal Notice mailed Feb. 4, 2015 (35 pages).
Reexamination No. 95/002,058, Second Action Closing Prosecution mailed Aug. 27, 2014 (35 pages).
Reexamination No. 95/002,058, Second Office Action dated Jan. 24, 2014 (31 pages).
Reexamination No. 95/002,058, Third Party's Apr. 23, 2014 Comments on Second Office Action dated Jan. 24, 2014 (117 pages).
Reexamination No. 95/002,058, Third Party's Feb. 21, 2013 Comments on First Office Action dated Sep. 19, 2012 (771 pages).
Related Publications (1)
Number Date Country
20220133142 A1 May 2022 US
Divisions (2)
Number Date Country
Parent 16358848 Mar 2019 US
Child 17574759 US
Parent 14846198 Sep 2015 US
Child 16358848 US
Continuations (1)
Number Date Country
Parent 12892355 Sep 2010 US
Child 14846198 US