Hysteroscopy systems and methods for managing patient fluid

Information

  • Patent Grant
  • 11553977
  • Patent Number
    11,553,977
  • Date Filed
    Thursday, May 21, 2020
    4 years ago
  • Date Issued
    Tuesday, January 17, 2023
    a year ago
Abstract
A low profile surgical system includes a movable cart assembly, an endoscope, and a surgical instrument. The movable cart assembly includes a fluid source and a receptacle assembly that are in fluid communication with one another. The endoscope is operably coupled to the cart assembly and in fluid communication with the fluid source. The surgical instrument is operably coupled to the cart assembly. The surgical instrument and the endoscope are configured to dispense outflow fluid into the receptacle assembly.
Description
TECHNICAL FIELD

This disclosure relates to surgical systems and methods for managing patient fluid, and more particularly, for managing patient fluid during a hysteroscopy procedures.


BACKGROUND

Surgical procedures, such as tissue resection procedures, may be performed endoscopically within an organ, such as a uterus, by inserting an endoscope into the uterus and passing a tissue resection device through the endoscope and into the uterus. With respect to such endoscopic tissue resection procedures, it often is desirable to distend the uterus with fluid provided from a fluid bag, or other fluid source. This fluid may include, for example, saline, sorbitol, or glycine. The inflow and outflow of fluid during the procedure maintains the uterus in a distended state and flushes tissue and other debris from within the uterus to maintain a visible working space.


SUMMARY

The disclosure generally relates to a surgical cart system that facilitates intra-uterine tissue resection and management of fluid during such procedures. Advantageously, the surgical cart system has a low-profile arrangement that can be positioned underneath a patient's bed to effectuate a procedure and rolled out of the way, for example, into a corner when not in use. The surgical cart system also advantageously provides shortened tubing profiles that can be maintained in front of the clinician during a procedure without cumbersome set up or unduly encumbering space within an operating theater.


In aspects of the disclosure, a surgical cart system includes a cart assembly, an endoscope, a fluid source, and a receptacle assembly. The cart assembly includes one or more wheels configured to facilitate transport. The endoscope is operably coupled to the cart assembly. The fluid source is operably supported on cart assembly and in fluid communication with the endoscope. The fluid source is configured to deliver inflow fluid to a patient positioned on a bed of the patient. The receptacle assembly is operably supported on the cart assembly and configured to receive outflow fluid. The surgical cart system includes a profile configured to enable the cart and receptacle assemblies to be positioned beneath the patient's bed when the endoscope is utilized to effectuate a surgical procedure on the patient.


In embodiments, the cart assembly may include an inflow scale and an outflow scale. The inflow and outflow scales may be configured to monitor fluid deficit in the surgical cart system.


In various embodiments, the surgical cart system may further include a pressure pump operably supported on the cart assembly and positioned to pressurize the fluid source.


In embodiments, the surgical cart system may further include a display assembly operably supported on the cart assembly. The display assembly may be electrically coupled to a controller assembly and may be configured to control information displayed on the display assembly. The display assembly may be rotatably coupled to the cart assembly to enable the display assembly to swivel relative to the cart assembly. The display assembly may be a touch-screen display configured to receive input and electrically communicate the input to the controller assembly.


In various embodiments, the surgical cart system may further include a surgical instrument operably supported on the cart assembly and in fluid communication with the receptacle assembly. The surgical instrument may be a tissue resecting instrument.


In embodiments, the receptacle assembly may include a receptacle bag and a container operably supported on the cart assembly. The receptacle bag may be in fluid communication with the container. The receptacle bag may support a trap configured to trap debris or tissue received in the receptacle bag while enabling fluid to pass through the trap so that the fluid can collect in a bottom of the receptacle bag.


According to one aspect, this disclosure is directed to a low profile surgical system. The low profile surgical system includes a movable cart assembly, an endoscope, and a surgical instrument. The movable cart assembly includes a fluid source and a receptacle assembly that are in fluid communication with one another. The endoscope is operably coupled to the cart assembly and in fluid communication with the fluid source. The surgical instrument is operably coupled to the cart assembly. The surgical instrument and the endoscope are configured to dispense outflow fluid into the receptacle assembly.


In embodiments, the cart assembly may include an inflow scale and an outflow scale, the inflow and outflow scales configured to monitor fluid deficit in the low profile surgical system.


In some embodiments, the cart assembly may include a pressure pump configured to pressurize the fluid source.


The cart assembly may include a display assembly and a controller assembly that are electrically coupled together to display information on the display assembly. The display assembly may swivel relative to the cart assembly. The display assembly may be a touch-screen display.


The receptacle assembly may include a receptacle bag and a container operably supported on the cart assembly. The receptacle bag may be in fluid communication with the container by a tube. The receptacle bag may support a trap configured to trap debris or tissue received in the receptacle bag while enabling fluid to pass through the trap so that the fluid collects in a bottom of the receptacle bag and feeds into the container by the tube.


According to yet another aspect, this disclosure is direct to a method for managing fluid during a surgical procedure. The method includes dispensing inflow fluid from a fluid source into one or more surgical instruments. The fluid source is supported on a movable cart assembly. The method also involves receiving outflow fluid from the one or more surgical instruments in a receptacle assembly supported on the movable cart assembly while the receptacle assembly and the movable cart assembly are positioned beneath a patient's bed.


The details of one or more aspects of this disclosure are set forth in the accompanying drawings and the description below. Other aspects, features, and advantages will be apparent from the description, the drawings, and the claims that follow.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the embodiment(s) given below, serve to explain the principles of the disclosure, wherein:



FIG. 1 is a perspective view of a surgical cart system positioned beneath a patient's bed in accordance with the principles of this disclosure; and



FIG. 2 is a schematic view of a cart assembly of the surgical cart system of FIG. 1.





DETAILED DESCRIPTION

Embodiments of this disclosure are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As commonly known, the term “clinician” refers to a doctor (e.g., a surgeon), a nurse, or any other care provider and may include support personnel. Additionally, the term “proximal” refers to the portion of structure that is closer to the clinician and the term “distal” refers to the portion of structure that is farther from the clinician. In the following description, well-known functions or constructions are not described in detail to avoid obscuring this disclosure in unnecessary detail.


Referring to FIG. 1, a surgical cart system exemplifying the aspects and features of this disclosure is shown generally identified by reference numeral 10. Surgical cart system 10, which may be a hysteroscopy cart system, generally includes an endoscope 100, a surgical instrument 200, and a cart assembly 300 that has a low-profile configuration suitable for positioning underneath a patient's bed “B” (e.g., below a bed height thereof). Cart assembly 300 supports one or more fluid sources 400 that couple to endoscope 100 by an inflow fluid tube 500, a receptacle assembly 410 selectively coupled to cart assembly 300, and a display assembly 320 that may be rotatably mounted to cart assembly 300, as indicated by arrows “A” to facilitate viewing by one or more clinician's in the operating theater. Although detailed herein with respect to surgical cart system 10, the aspects and features of this disclosure are equally applicable for use with other surgical systems.


For the purposes herein, the components of surgical system 10 are generally described.


Endoscope 100 of surgical cart system 10 is detailed herein as a hysteroscope configured for use in gynecological surgical procedures within the uterus of a female patient. However, other suitable endoscopes and fluid-delivery devices are also contemplated. Endoscope 100 includes an elongated tubular member 102 and a proximal body 140. Proximal body 140 includes an inflow valve 146, an outflow valve 148, and an arm 152 that is configured to connect to an imaging device (e.g., a camera) to capture images received via a visualization mechanism, e.g., optics (not shown), extending through elongated tubular member 102.


Elongated tubular member 102 of endoscope 100 defines a first channel 103a for fluid inflow, a second channel 103b that is shared between fluid outflow and instrument access, e.g., for instrument 200, and a third channel 103c housing optics (not shown). First channel 103a is coupled to inflow valve 146 to enable the introduction of fluid through first channel 103a of endoscope 100 and into a patient, e.g., into the patient's uterus. Fluid inflow fluid tube 500 of fluid source 400 is coupled to inflow valve 146 for enabling the delivery of fluid from fluid source 400 to endoscope 100 and, thus, from fluid source 400 into the patient. Second channel 103b is coupled to outflow valve 148 via an outflow fluid tube 600 to enable the withdrawal of fluid from the patient through endoscope 100 and outflow fluid tube 600, e.g., for depositing into receptacle assembly 410 and, ultimately, into one or more collection containers 325 of receptacle assembly 410 via vacuum tubing 252.


Continuing with reference to FIG. 1, surgical instrument 200 is detailed herein as a tissue resecting instrument; however, other suitable surgical instruments are also contemplated. Surgical instrument 200 generally includes a housing 210, a shaft 220, a cutting member 230, a drive mechanism 240, an outflow tissue and fluid tubing 250, and a cable 260. Housing 210 supports drive mechanism 240 therein and functions as a handle to enable a user to grasp and manipulate surgical instrument 200. Housing 210 may include an actuator 212 disposed thereon for selectively activating surgical instrument 200.


Shaft 220 extends distally from housing 210 and, in embodiments, is stationary relative to housing 210, although other configurations are also contemplated. Shaft 220 defines a window 222 through a side wall thereof towards a distal end thereof to provide access to cutting member 230 which is rotatably and/or translatably disposed within shaft 220 and operably coupled to drive mechanism 240, as detailed below. Cutting member 230 defines an opening 232 providing access to the interior thereof and may include a serrated cutting edge 234 surrounding opening 232, although other suitable cutting edge configurations are also contemplated. Alternatively or additionally, shaft 220 may include a cutting edge defined about window 222.


Drive mechanism 240 includes a motor 242 and is operably coupled to cutting member 230 to drive rotation and/or translation of cutting member 230 relative to shaft 220. Drive mechanism 240 is adapted to connect to cart assembly 300 via cable 260 for powering and controlling motor 242. Actuator 212 may be coupled to drive mechanism 240 and/or cart assembly 300 to enable the selective activation of surgical instrument 200, e.g., selective rotation and/or translation of cutting member 230.


Outflow tissue and fluid tubing 250 receives the resected tissue as well as fluid and debris suctioned through cutting member 230 when surgical instrument 200 is activated. Outflow tissue and fluid tubing 250 is operably coupled with a vacuum pump assembly 360 (FIG. 2) of cart assembly 300 to enable the suctioning of the resected tissue, fluid, and debris through cutting member 230 and into outflow tissue and fluid tubing 250 for depositing within one or more collection containers 325 coupled with tissue and fluid tubing 250.


With continued reference to FIG. 1, cart assembly 300, as noted above, is configured to power and control motor 242 of drive mechanism 240 of surgical instrument 200 and to provide suction, via vacuum pump assembly 360 (although other suitable suction sources are also contemplated), to suction resected tissue, fluid, and debris through surgical instrument 200 and outflow tissue and fluid tubing 250 for depositing in one or more of the collection containers 325. Cart assembly 300 may additionally or alternatively include communication, identification, and parameter monitoring components, as detailed below.


Cart assembly 300 generally includes an outer housing 310, a display assembly 320 (e.g., touch screen) accessible from the exterior of outer housing 310 and a controller assembly 330 and associated circuitry (e.g., a printed circuit board, conductors, electronic components, etc.) which may be disposed within outer housing 310 and/or integrally formed with display assembly 320. Controller assembly 330 is configured to control the display of information on display 320 and can be configured to sense information input thereto (e.g., touch-screen). Cart assembly 300 further supports a motor control assembly 340 disposed within outer housing 310 and configured to control drive mechanism 240 of surgical instrument 200, a power supply 350 disposed within outer housing 310 and configured to convert power from a main power supply (not shown) into suitable form for powering drive mechanism 240 of surgical instrument 200, and a vacuum pump assembly 360 configured to suction and control the suctioning of resected tissue, fluid, and debris through surgical instrument 200 via outflow tissue and fluid tubing 250. Vacuum pump assembly 360 can also be configured to suction and control the suctioning of tissue, fluid, and debris collected in receptacle assembly 410 via vacuum tubing 252 coupled to receptacle assembly 410. In some embodiments, tubing 252 can deliver fluid from receptacle assembly 410 to container 325 by gravity feed.


Vacuum pump assembly 360 may include any suitable vacuum pump having an exhaust to expel waste air therefrom, which may be expelled from the outer housing 310 via vents 364 and/or directed towards, over/under, around, between, through, etc. some or all of components (e.g., pump 312, assemblies 320-380, etc.) such that the waste air is utilized to help those components. This repurposing of the waste air eliminates the need for a cooling fan or fans, reduces the number of cooling fans, and/or reduces the required output of the cooling fan(s). In some embodiments, cart assembly 300 supports one or more cooling fans or heat sinks 314. Additionally, and/or alternatively, an exhaust augmenter 316 operably coupled to the exhaust outflow of vacuum pump assembly 360 may be provided to draw in external air, e.g., through vents 364, to supplement the waste air, thereby further facilitating cooling of the various components of cart assembly 300.


Cart assembly 300 may further include an identification (ID) assembly 370 configured to identify a surgical instrument, e.g., surgical instrument 200, coupled thereto, e.g., via RFID. Cart assembly 300 may additionally or alternatively include a fluid monitoring assembly 380 configured to, for example, monitor fluid flow rate, fluid pressure, total fluid volume, fluid impedance, fluid deficit, etc., and provide feedback regarding the same, e.g., suitable alarms and/or disabling of one or more other assemblies.


As can be appreciated in view of the above, the various components of cart assembly 300 include suitable hardware components and may also include one or more processors and associated memories storing software to be executed by the processor(s) to control the hardware components (although one or more centralized processors and/or memories may alternatively be provided). These components, namely the circuitry thereof, generate waste heat which can be dissipated (e.g., by use of the cooling fans/heats sinks 314, vents 364, etc.) so as to maintain circuitry of these components at safe operating temperatures.


Cart assembly 300 further includes an output 390 enabling coupling of cable 260 of surgical instrument 200 to cart assembly 300. Additional or alternative assemblies and/or other components associated with cart assembly 300 may also be provided. For instance, cart assembly 300 can include a footswitch 342 that may be recessed within housing 310 of cart assembly 300 and is operatively connected to surgical instrument 200, controller 350 and/or motor control assembly 340 of cart assembly 300. Cart assembly 300 can include any number of wheels 394 (e.g., casters) that may be lockable to prevent cart assembly 300 from rolling, or unlockable to enable cart assembly 300 to roll, for example, under the patient's bed “B” or out from under the patient's bed “B” to access, remove, repair and/or replace one or more components of surgical cart system 10. Cart assembly 300 can also include receptacle support poles 396 that support receptacle assembly 410 and fluid source support poles 398 that support fluid sources 400 and include an inflow scale 398a configured to measure fluid characteristics (e.g., volume, weight thereof) within fluid sources 400. Cart assembly 300 can also include an outflow scale 325a configured to measure outflow fluid characteristics (e.g., volume or weight of fluid extracted from the patient and received by the receptacle assembly 410 and/or the one or more containers 325, and which can include outflow fluid from endoscope 100, outflow fluid from the surgical instrument 200, and/or outflow fluid from an underbuttocks drape “D”). In particular, the outflow fluid is collectively weighted by outflow scale 325a to determine fluid deficit.


Fluid sources 400 may be, for example, fluid bags 401 containing a fluid, e.g., saline, sorbitol, or glycine, therein. Fluid bag 401 is connected to an input end of fluid inflow tube 500 which, as noted above, is coupled at an output end thereof to inflow valve 146 of endoscope for enabling delivery of fluid from fluid source 400 to endoscope 100. A pressure pump 312 or other suitable pump (not shown) supported by cart assembly 300 communicates with fluid source 400 via a pressure line 402 to pressurize the fluid supplied to endoscope 100. In some embodiments the pressure pump 312 and the vacuum pump assembly 360 may be the same pump or part of the same assembly. In other embodiments, fluid source 400 can deliver fluid to endoscope 100 under gravity pressure.


Receptacle assembly 410 includes a receptacle bag 412 supported on a mounting ring 414 that holds receptacle bag 412 in place. Mounting ring 414 is supported on support poles 396. Receptacle bag 412 has an open end 412a that receives outflow fluid therein, which includes debris, tissue, and fluid (e.g., blood, saline, etc.). Receptacle assembly 410 further includes a trap 416 that seats in receptacle bag 412 to trap debris and/or tissue received in receptacle bag 412. Trap 416 can include any number of holes 416a configured to enable fluids to pass through trap 416, but prevent the debris and/or tissue from passing through trap 416. Trap 416 is configured to seat in the receptacle bag 412 at a position offset from a bottom of receptacle bag 412 to enable fluid to collect beneath trap 416 before being suctioned out through vacuum tubing 252 and into one or more containers 325 of receptacle assembly 410. Receptacle bag 412 may be formed of any suitable material such a polymeric material (e.g., nylon) and which may be translucent and/or transparent to facilitate visualization through receptacle bag 12. In embodiments, receptacle bag 412 may including a conical configuration, which may facilitate support of trap 416 at a position spaced from a bottom of receptacle bag 412.


Securement of any of the components of the disclosed devices may be effectuated using known securement techniques such welding, crimping, gluing, heat-shrinking, fastening, etc.


The various embodiments disclosed herein may also be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery.” Such systems employ various robotic elements to assist the clinician and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the clinician during the course of an operation or treatment. Such robotic systems may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.


The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of clinicians may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein while another clinician (or group of clinicians) remotely controls the instruments via the robotic surgical system. As can be appreciated, a highly skilled clinician may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients. For a detailed description of exemplary medical work stations and/or components thereof, reference may be made to U.S. Pat. No. 8,828,023, and PCT Application Publication No. WO2016/025132, the entire contents of each of which are incorporated by reference herein.


Persons skilled in the art will understand that the structures and methods specifically described herein and shown in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely as exemplary of particular embodiments. It is to be understood, therefore, that this disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of this disclosure. Additionally, the elements and features shown or described in connection with certain embodiments may be combined with the elements and features of certain other embodiments without departing from the scope of this disclosure, and that such modifications and variations are also included within the scope of this disclosure. Accordingly, the subject matter of this disclosure is not limited by what has been particularly shown and described.

Claims
  • 1. A surgical cart system, comprising: a cart assembly including an outer housing and at least one wheel configured to facilitate transport;an endoscope operably coupled to the cart assembly;a fluid source operably supported on the cart assembly and in fluid communication with the endoscope, the fluid source configured to deliver inflow fluid to a patient positioned on a bed of the patient; anda receptacle assembly operably supported on the cart assembly and configured to receive outflow fluid, the receptacle assembly including a receptacle bag and a container in fluid communication with the receptacle bag, the receptacle bag suspended above the outer housing of the cart assembly and the container supported within the outer housing, wherein the receptacle bag is supported on a mounting ring, the mounting ring supported over the outer housing of the cart assembly by at least one pole extending from the outer housing of the cart assembly,wherein the surgical cart system includes a profile configured to enable the cart and receptacle assemblies to be positioned beneath the patient's bed when the endoscope is utilized to effectuate a surgical procedure on the patient.
  • 2. The surgical cart system of claim 1, wherein the cart assembly includes an inflow scale and an outflow scale, the inflow and outflow scales configured to monitor fluid deficit in the surgical cart system.
  • 3. The surgical cart system of claim 1, further comprising a pressure pump operably supported on the cart assembly and positioned to pressurize the fluid source.
  • 4. The surgical cart system of claim 1, further comprising a display assembly operably supported on the cart assembly, the display assembly electrically coupled to a controller assembly and configured to control information displayed on the display assembly.
  • 5. The surgical cart system of claim 4, wherein the display assembly is rotatably coupled to the cart assembly to enable the display assembly to swivel relative to the cart assembly.
  • 6. The surgical cart system of claim 4, wherein the display assembly is a touch-screen display configured to receive input and electrically communicate the input to the controller assembly.
  • 7. The surgical cart system of claim 1, further comprising a surgical instrument operably supported on the cart assembly and in fluid communication with the receptacle assembly.
  • 8. The surgical cart system of claim 7, wherein the surgical instrument is a tissue resecting instrument.
  • 9. The surgical cart assembly of claim 1, wherein the receptacle bag supports a trap configured to trap debris or tissue received in the receptacle bag while enabling fluid to pass through the trap so that the fluid can collect in a bottom of the receptacle bag and drain into the container via a tube extending between the container and the receptacle bag.
  • 10. A surgical system, comprising: a movable cart assembly including a fluid source and a receptacle assembly that are in fluid communication with one another, the receptacle assembly including a receptacle bag and a container in fluid communication with the receptacle bag, the receptacle bag suspended above the movable cart assembly and the container supported within the movable cart assembly, wherein the receptacle bag is supported on a mounting ring, the mounting ring supported by at least one pole extending from the movable cart assembly;an endoscope operably coupled to the cart assembly and in fluid communication with the fluid source; anda surgical instrument operably coupled to the cart assembly,wherein the surgical instrument and the endoscope are configured to dispense outflow fluid into the receptacle assembly.
  • 11. The surgical system of claim 10, wherein the movable cart assembly includes an inflow scale and an outflow scale, the inflow and outflow scales configured to monitor fluid deficit in the low profile surgical system.
  • 12. The surgical system of claim 10, wherein the movable cart assembly includes a pressure pump configured to pressurize the fluid source.
  • 13. The surgical system of claim 10, wherein the movable cart assembly includes a display assembly and a controller assembly that are electrically coupled together to display information on the display assembly.
  • 14. The surgical system of claim 13, wherein the display assembly swivels relative to the movable cart assembly.
  • 15. The surgical system of claim 13, wherein the display assembly is a touch-screen display.
  • 16. The surgical system of claim 10, wherein the surgical instrument is a tissue resecting instrument.
  • 17. The surgical system of claim 10, wherein the receptacle bag supports a trap configured to trap debris or tissue received in the receptacle bag while enabling fluid to pass through the trap so that the fluid collects in a bottom of the receptacle bag and feeds into the container by the tube.
  • 18. The surgical cart system of claim 10, wherein the receptacle bag has a conical configuration.
  • 19. The surgical system of claim 10, wherein the receptacle bag has a conical configuration with an open end portion that tapers to a closed end portion, the closed end portion coupled to a tube that is disposed in fluid communication with the container.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 62/854,205, filed May 29, 2019, the entire contents of which are incorporated by reference herein.

US Referenced Citations (301)
Number Name Date Kind
1585934 Muir May 1926 A
1666332 Hirsch Apr 1928 A
1831786 Duncan Nov 1931 A
2708437 Hutchins May 1955 A
3297022 Wallace Jan 1967 A
3686706 Finley Aug 1972 A
3734099 Bender et al. May 1973 A
3791379 Storz Feb 1974 A
3812855 Banko May 1974 A
3835842 Iglesias Sep 1974 A
3850162 Iglesias Nov 1974 A
3945375 Banko Mar 1976 A
3980252 Tae Sep 1976 A
3995619 Glatzer Dec 1976 A
3996921 Neuwirth Dec 1976 A
4011869 Seiler, Jr. Mar 1977 A
4108182 Hartman et al. Aug 1978 A
4146405 Timmer et al. Mar 1979 A
4198958 Utsugi Apr 1980 A
4203444 Bonnell et al. May 1980 A
4210146 Banko Jul 1980 A
4246902 Martinez Jan 1981 A
4247180 Norris Jan 1981 A
4258721 Parent et al. Mar 1981 A
4261346 Wettermann Apr 1981 A
4294234 Matsuo Oct 1981 A
4316465 Dotson, Jr. Feb 1982 A
4369768 Vukovic Jan 1983 A
4392485 Hiltebrandt Jul 1983 A
4414962 Carson Nov 1983 A
4449538 Corbitt et al. May 1984 A
4493698 Wang et al. Jan 1985 A
4517977 Frost May 1985 A
4543965 Pack et al. Oct 1985 A
4567880 Goodman Feb 1986 A
4589414 Yoshida et al. May 1986 A
4601284 Arakawa et al. Jul 1986 A
4601290 Effron et al. Jul 1986 A
4606330 Bonnet Aug 1986 A
4630598 Bonnet Dec 1986 A
4644952 Patipa et al. Feb 1987 A
4649919 Thimsen et al. Mar 1987 A
4700694 Shishido Oct 1987 A
4706656 Kuboto Nov 1987 A
4718291 Wood et al. Jan 1988 A
4737142 Heckele Apr 1988 A
4749376 Kensey et al. Jun 1988 A
4756309 Sachse et al. Jul 1988 A
4819635 Shapiro Apr 1989 A
4844064 Thimsen et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4856919 Takeuchi et al. Aug 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4924851 Ognier et al. May 1990 A
4940061 Terwilliger et al. Jul 1990 A
4950278 Sachse et al. Aug 1990 A
4955882 Hakky Sep 1990 A
4971034 Doi et al. Nov 1990 A
4986827 Akkas et al. Jan 1991 A
4998527 Meyer Mar 1991 A
4998914 Wiest et al. Mar 1991 A
5007917 Evans Apr 1991 A
5027792 Meyer Jul 1991 A
5037386 Marcus et al. Aug 1991 A
5105800 Takahashi et al. Apr 1992 A
5106364 Hayafuji et al. Apr 1992 A
5112299 Pascaloff May 1992 A
5116868 Chen et al. May 1992 A
5125910 Freitas Jun 1992 A
5133713 Huang et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5158553 Berry et al. Oct 1992 A
5163433 Kagawa et al. Nov 1992 A
5169397 Sakashita et al. Dec 1992 A
5176677 Wuchinich Jan 1993 A
5195541 Obenchain Mar 1993 A
5226910 Kajiyama et al. Jul 1993 A
5244459 Hill Sep 1993 A
5254117 Rigby et al. Oct 1993 A
5269785 Bonutti Dec 1993 A
5270622 Krause Dec 1993 A
5275609 Pingleton et al. Jan 1994 A
5288290 Brody Feb 1994 A
5304118 Trese et al. Apr 1994 A
5312399 Hakky et al. May 1994 A
5312425 Evans et al. May 1994 A
5312430 Rosenbluth et al. May 1994 A
5320091 Grossi et al. Jun 1994 A
5347992 Pearlman et al. Sep 1994 A
5350390 Sher Sep 1994 A
5364395 West, Jr. Nov 1994 A
5374253 Burns, Sr. et al. Dec 1994 A
5390585 Ryuh Feb 1995 A
5392765 Muller Feb 1995 A
5395313 Naves et al. Mar 1995 A
5403276 Schechter et al. Apr 1995 A
5409013 Clement Apr 1995 A
5409453 Lundquist et al. Apr 1995 A
5411513 Ireland et al. May 1995 A
5421819 Edwards et al. Jun 1995 A
5425376 Banys et al. Jun 1995 A
5429601 Conley et al. Jul 1995 A
5435805 Edwards et al. Jul 1995 A
5443476 Shapiro Aug 1995 A
5449356 Walbrink et al. Sep 1995 A
5456673 Ziegler et al. Oct 1995 A
5456689 Kresch et al. Oct 1995 A
5460490 Carr et al. Oct 1995 A
5483951 Frassica et al. Jan 1996 A
5490819 Nicholas et al. Feb 1996 A
5490860 Middle et al. Feb 1996 A
5492537 Vancaillie Feb 1996 A
5498258 Hakky et al. Mar 1996 A
5527331 Kresch et al. Jun 1996 A
5549541 Muller Aug 1996 A
5556378 Storz et al. Sep 1996 A
5563481 Krause Oct 1996 A
5569164 Lurz Oct 1996 A
5569254 Carlson et al. Oct 1996 A
5569284 Young et al. Oct 1996 A
5575756 Karasawa et al. Nov 1996 A
5586973 Lemaire et al. Dec 1996 A
5591187 Dekel Jan 1997 A
5601583 Donahue et al. Feb 1997 A
5601603 Illi Feb 1997 A
5602449 Krause et al. Feb 1997 A
5603332 O'Connor Feb 1997 A
5630798 Beiser et al. May 1997 A
5649547 Ritchart et al. Jul 1997 A
5669927 Boebel et al. Sep 1997 A
5672945 Krause Sep 1997 A
5674179 Bonnet et al. Oct 1997 A
5676497 Kim Oct 1997 A
5695448 Kimura et al. Dec 1997 A
5702420 Sterling et al. Dec 1997 A
5709698 Adams et al. Jan 1998 A
5730752 Alden et al. Mar 1998 A
5733298 Berman et al. Mar 1998 A
5741286 Recuset Apr 1998 A
5741287 Alden et al. Apr 1998 A
5749885 Sjostrom et al. May 1998 A
5749889 Bacich et al. May 1998 A
5759185 Grinberg Jun 1998 A
5772634 Atkinson Jun 1998 A
5775333 Burbank et al. Jul 1998 A
5782849 Miller Jul 1998 A
5807240 Muller et al. Sep 1998 A
5807282 Fowler Sep 1998 A
5810770 Chin et al. Sep 1998 A
5810861 Gaber Sep 1998 A
5814009 Wheatman Sep 1998 A
5833643 Ross et al. Nov 1998 A
5840060 Beiser et al. Nov 1998 A
5857995 Thomas et al. Jan 1999 A
5873886 Larsen et al. Feb 1999 A
5899915 Saadat May 1999 A
5911699 Anis et al. Jun 1999 A
5911722 Adler et al. Jun 1999 A
5913867 Dion Jun 1999 A
5916229 Evans Jun 1999 A
5925055 Adrian et al. Jul 1999 A
5928163 Roberts et al. Jul 1999 A
5944668 Vancaillie et al. Aug 1999 A
5947990 Smith Sep 1999 A
5951490 Fowler Sep 1999 A
5956130 Vancaillie et al. Sep 1999 A
5957832 Taylor et al. Sep 1999 A
6001116 Heisler et al. Dec 1999 A
6004320 Casscells et al. Dec 1999 A
6007513 Anis et al. Dec 1999 A
6024751 Lovato et al. Feb 2000 A
6032673 Savage et al. Mar 2000 A
6039748 Savage et al. Mar 2000 A
6042552 Cornier Mar 2000 A
6068641 Varsseveld May 2000 A
6086542 Glowa et al. Jul 2000 A
6090094 Clifford, Jr. et al. Jul 2000 A
6090123 Culp et al. Jul 2000 A
6113594 Savage Sep 2000 A
6117127 Helmreich Sep 2000 A
6119973 Galloway Sep 2000 A
6120147 Vijfvinkel et al. Sep 2000 A
6120462 Hibner et al. Sep 2000 A
6132448 Perez et al. Oct 2000 A
6149633 Maaskamp Nov 2000 A
6156049 Lovato et al. Dec 2000 A
6159160 Hsei et al. Dec 2000 A
6159209 Hakky Dec 2000 A
6203518 Anis et al. Mar 2001 B1
6217543 Anis et al. Apr 2001 B1
6224603 Marino May 2001 B1
6224617 Saadat et al. May 2001 B1
6244228 Kuhn et al. Jun 2001 B1
6258111 Ross et al. Jul 2001 B1
6277096 Cortella et al. Aug 2001 B1
6315714 Akiba Nov 2001 B1
6358200 Grossi Mar 2002 B1
6358263 Mark et al. Mar 2002 B2
6359200 Day Mar 2002 B1
6402701 Kaplan et al. Jun 2002 B1
6428486 Ritchart et al. Aug 2002 B2
6471639 Rudischhauser et al. Oct 2002 B2
6494892 Ireland et al. Dec 2002 B1
6585708 Maaskamp Jul 2003 B1
6610066 Dinger et al. Aug 2003 B2
6626827 Felix et al. Sep 2003 B1
6632182 Treat Oct 2003 B1
6656132 Ouchi Dec 2003 B1
6712773 Viola Mar 2004 B1
6824544 Boebel et al. Nov 2004 B2
6837847 Ewers et al. Jan 2005 B2
7025720 Boebel et al. Apr 2006 B2
7025732 Thompson et al. Apr 2006 B2
7150713 Shener et al. Dec 2006 B2
7226459 Cesarini et al. Jun 2007 B2
7249602 Emanuel Jul 2007 B1
7510563 Cesarini et al. Mar 2009 B2
7597662 Litscher et al. Oct 2009 B2
7763033 Gruber et al. Jul 2010 B2
7922737 Cesarini et al. Apr 2011 B1
8025656 Gruber et al. Sep 2011 B2
8061359 Emanuel Nov 2011 B2
8062214 Shener et al. Nov 2011 B2
8419626 Shener-Irmakoglu et al. Apr 2013 B2
8465421 Finkman et al. Jun 2013 B2
8528563 Gruber Sep 2013 B2
8574253 Gruber et al. Nov 2013 B2
8647349 Gruber et al. Feb 2014 B2
8663264 Cesarini et al. Mar 2014 B2
8678999 Isaacson Mar 2014 B2
8828023 Neff et al. Sep 2014 B2
8834487 Gruber et al. Sep 2014 B2
8840625 Adams et al. Sep 2014 B2
8840626 Adams et al. Sep 2014 B2
8852085 Shener-Irmakoglu et al. Oct 2014 B2
8893722 Emanuel Nov 2014 B2
8932208 Kendale et al. Jan 2015 B2
8951274 Adams et al. Feb 2015 B2
9060760 Sullivan et al. Jun 2015 B2
9060800 Cesarini et al. Jun 2015 B1
9060801 Cesarini et al. Jun 2015 B1
9066745 Cesarini et al. Jun 2015 B2
9072431 Adams et al. Jul 2015 B2
9089358 Emanuel Jul 2015 B2
9095366 Sullivan et al. Aug 2015 B2
9125550 Shener-Irmakoglu et al. Sep 2015 B2
9155454 Sahney et al. Oct 2015 B2
9259233 Gruber et al. Feb 2016 B2
9943639 Germain Apr 2018 B2
20010039963 Spear Nov 2001 A1
20010047183 Privitera Nov 2001 A1
20020058859 Brommersma May 2002 A1
20020165427 Yachia Nov 2002 A1
20030050603 Todd Mar 2003 A1
20030050638 Yachia Mar 2003 A1
20030078609 Finlay Apr 2003 A1
20030114875 Sjostrom Jun 2003 A1
20030138349 Robinson Jul 2003 A1
20040204671 Stubbs Oct 2004 A1
20050043690 Todd Feb 2005 A1
20050085692 Kiehn Apr 2005 A1
20060036132 Renner Feb 2006 A1
20060047185 Shener Mar 2006 A1
20060241586 Wilk Oct 2006 A1
20080015621 Emanuel Jan 2008 A1
20080058588 Emanuel Mar 2008 A1
20080058842 Emanuel Mar 2008 A1
20080097468 Adams Apr 2008 A1
20080097469 Gruber Apr 2008 A1
20080097470 Gruber Apr 2008 A1
20080097471 Adams Apr 2008 A1
20080135053 Gruber Jun 2008 A1
20080146872 Gruber Jun 2008 A1
20080146873 Adams Jun 2008 A1
20080245371 Gruber Oct 2008 A1
20080249366 Gruber Oct 2008 A1
20080249534 Gruber Oct 2008 A1
20080249553 Gruber Oct 2008 A1
20080262308 Prestezog Oct 2008 A1
20090082628 Kucklick Mar 2009 A1
20090270812 Litscher Oct 2009 A1
20090270895 Churchill Oct 2009 A1
20090270896 Sullivan Oct 2009 A1
20090270897 Adams Oct 2009 A1
20090270898 Chin Oct 2009 A1
20100087798 Adams Apr 2010 A1
20100152647 Shener Jun 2010 A1
20110034943 Churchill Feb 2011 A1
20110077674 Sullivan et al. Mar 2011 A1
20110118544 Adams May 2011 A1
20110166419 Reif Jul 2011 A1
20120067352 Gruber Mar 2012 A1
20120078038 Sahney Mar 2012 A1
20120165642 Krensky Jun 2012 A1
20130131452 Kuroda May 2013 A1
20140031834 Germain Jan 2014 A1
20160220971 Volker Aug 2016 A1
20170172796 Biancalana et al. Jun 2017 A1
20180361055 Pereira Dec 2018 A1
20190008371 Shener-Irmakoglu et al. Jan 2019 A1
20200297900 Holigan Sep 2020 A1
Foreign Referenced Citations (74)
Number Date Country
3206381 Sep 1983 DE
3339322 May 1984 DE
3601453 Sep 1986 DE
3615694 Nov 1987 DE
4038398 Jun 1992 DE
4440035 May 1996 DE
19633124 May 1997 DE
19751632 Sep 1999 DE
102006022827 Dec 2006 DE
0310285 Apr 1989 EP
0327410 Aug 1989 EP
0557044 Aug 1993 EP
0582295 Feb 1994 EP
0606531 Jul 1994 EP
0621008 Oct 1994 EP
0806183 Nov 1997 EP
1681022 Jul 2006 EP
1050834 Oct 1963 GB
2093353 Sep 1982 GB
2311468 Oct 1997 GB
2001075416 Mar 2001 JP
2002045842 Feb 2002 JP
2002529185 Sep 2002 JP
2002538889 Nov 2002 JP
2003245247 Sep 2003 JP
1006944 Mar 1999 NL
8101648 Jun 1981 WO
9211816 Jul 1992 WO
9307821 Apr 1993 WO
9315664 Aug 1993 WO
9426181 Nov 1994 WO
9505777 Mar 1995 WO
9510981 Apr 1995 WO
9510982 Apr 1995 WO
9522935 Aug 1995 WO
9530377 Nov 1995 WO
9611638 Apr 1996 WO
9626676 Sep 1996 WO
9709922 Mar 1997 WO
9717027 May 1997 WO
9719642 Jun 1997 WO
9724071 Jul 1997 WO
9734534 Sep 1997 WO
9735522 Oct 1997 WO
9809569 Mar 1998 WO
9810707 Mar 1998 WO
9846147 Oct 1998 WO
9903407 Jan 1999 WO
9903409 Jan 1999 WO
9907295 Feb 1999 WO
9911184 Mar 1999 WO
9939648 Aug 1999 WO
9944506 Sep 1999 WO
9960935 Dec 1999 WO
0012010 Mar 2000 WO
0028890 May 2000 WO
0033743 Jun 2000 WO
0044295 Aug 2000 WO
0047116 Aug 2000 WO
0057797 Oct 2000 WO
0135831 May 2001 WO
0158368 Aug 2001 WO
0195810 Dec 2001 WO
02069808 Sep 2002 WO
03022164 Mar 2003 WO
03077767 Sep 2003 WO
2005060842 Jul 2005 WO
2005096963 Oct 2005 WO
2006105283 Oct 2006 WO
2006121968 Nov 2006 WO
2006121970 Nov 2006 WO
2007044833 Apr 2007 WO
2012044705 Apr 2012 WO
2016025132 Feb 2016 WO
Non-Patent Literature Citations (1)
Entry
International Search Report and Written Opinion for application No. PCT/US2020/033954 dated Jul. 24, 2020.
Related Publications (1)
Number Date Country
20200375685 A1 Dec 2020 US
Provisional Applications (1)
Number Date Country
62854205 May 2019 US