1. Field of the Invention
This invention relates to axle suspension systems for wheeled vehicles and to a method of construction of axle suspension systems. More particularly, this invention relates to an axle suspension system in which the beams are I-beams and the I-beams have an upper section and a lower section, the upper and lower sections being installed on the axle laterally.
2. Description of the Prior Art
Axle suspension systems are known. In one such system described in the Dilling et al U.S. Pat. No. 5,366,237, each beam has a pair of side walls extending in substantially the vertical direction with respect to the vehicle with an orifice in each sidewall through which the axle extends and is rigidly attached thereto. To install the axle suspension system on an axle, the beams must be placed over a free end of the axle and slid longitudinally along the axle to the appropriate location with the axle extending through the orifices in the two sides walls of each beam.
It is an object of the present invention to provide an axle bearing suspension system in which each beam has an upper section and a lower section that together form an I-Beam when the two sections are installed laterally on an axle.
It is a further object of the present invention to provide an axle bearing suspension system wherein each section of each beam has an attachment portion at an end that is affixed to the axle, the attachment portions of each section corresponding to the cross sectional shape of the axle and being sized to be affixed around the axle with the lower section being substantially on the bottom half of the axle and the upper section being substantially on the upper half of the axle.
An axle bearing suspension system of a leading or trailing beam type for an axle of a wheeled vehicle has a pair of elongated beams. One of the beams is located adjacent to each side of the vehicle and the beams are spaced from one another. The axle extends across an entire width of the vehicle, the axle having at least one wheel located at each end thereof. The axle has a pneumatic bellows located on each of the beams and a hanger bracket located at one end of each beam for connecting the axle to a frame of the vehicle. Each beam has an upper section and a lower section, the upper and lower sections each having a T-shaped cross section. The lower section is inverted relative to the upper section, the upper and lower sections having a corresponding shape to one another to fit together to form an I-Beam when the two sections are installed on an axle. Each section has an attachment portion on an end that is to be affixed to the axle, the attachment portions corresponding to a cross sectional shape of the axle and being sized to be affixed around the axle with the lower section substantially on a bottom half of the axle and the upper section being substantially on an upper half of the axle.
A method of installing an axle bearing suspension system of a leading of trailing beam type for an axle of a wheeled vehicle, the suspension system having a pair of elongated beams, one of the beams being located adjacent to each side of the vehicle and the beams being spaced from one another. The axle extends across an entire width of the vehicle, the axle having at least one wheel located on each end thereof. A pneumatic bellows is located on each of the beams and a hanger bracket is located on one end of each beam for connecting the axle to the frame of the vehicle. Each beam has an upper and lower section, the upper and lower sections each having a T-shaped cross section with an attachment portion on an end that is to be affixed to the axle. The attachment portions have a cross sectional shape corresponding to a cross sectional shape of the axle. The method comprises connecting to the hanger bracket an end of each of the upper and lower sections that is located opposite to the attachment portions to the hanger bracket, positioning the attachment portions at the ends of the upper and lower sections that are to be affixed to the axle around the axle with the lower section being substantially on the bottom half of the axle and the upper section being substantially on an upper half of the axle and affixing the attachment portions to the axle and affixing a lower edge of the upper section and an upper edge of the lower section located between the axle and the hanger bracket to one.
Preferably, the method comprises of fixing the attachment portions to the axle another by one of welding, brazing, soldering and adhesively bonding and affixing the lower section to the upper section by one of welding brazing, soldering and adhesively bonding.
In
Each section 10, 12 has an attachment portion 14, 16 respectively at an end that is affixed to the axle 4. The attachment portions 14, 16 have a cross sectional shape corresponding to the cross sectional shape of the axle and being sized to be affixed around the axle 4 with the attachment portion 16 of the lower section 12 being substantially on a bottom half of the axle 4 and the attachment portion 14 of the upper section 10 being substantially on an upper half of the axle 4. A pneumatic bellows 18 is located on each of the beams 6, 8. The pneumatic bellows 18 has a plate 20 containing openings 22 that are sized and located to fit over bolts 24 of the bellows 18. A hanger bracket 26 is located on at end of each beam opposite to the bellows 18 for connecting each of the beams to a frame (not shown) of the vehicle (not shown). A pneumatic cylinder 27 extends between the hanger bracket 26 and an axle end of the beams 6, 8.
The beams 6, 8 each have a cylindrical connector 28 for pivotally connecting each beam to one of the hanger brackets 26. The connector 28 is pivotally connected to the hanger bracket by a bolt 29, washers 30, 31, sleeve 32 and nut 33.
In
In
In
In
In the top view shown in
In
In
The cross sectional shape of the axle will usually be circular, but other cross sectional shapes will be suitable including, rectangular, square and oval. Also, the axle will usually be hollow, but axles can also be solid.
Application claims the benefits of application Ser. No. 61/529,765 filed on Aug. 31, 2011.
Number | Name | Date | Kind |
---|---|---|---|
4615539 | Pierce | Oct 1986 | A |
4693486 | Pierce et al. | Sep 1987 | A |
5037126 | Gottschalk et al. | Aug 1991 | A |
5116075 | Pierce | May 1992 | A |
5375871 | Mitchell et al. | Dec 1994 | A |
5690353 | Vandenberg | Nov 1997 | A |
7347435 | Chalin | Mar 2008 | B2 |
7607670 | Raidel et al. | Oct 2009 | B2 |
7717442 | Chalin | May 2010 | B2 |
8002297 | Keiserman | Aug 2011 | B2 |
8292313 | Pierce et al. | Oct 2012 | B2 |
20010017451 | Smith et al. | Aug 2001 | A1 |
Number | Date | Country | |
---|---|---|---|
20130228993 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
61529765 | Aug 2011 | US |