The subject matter disclosed herein relates generally to an ice and cold water dispensing assembly suitable for removable attachment to a refrigeration appliance and to a related refrigeration appliance having such a dispensing assembly.
Various ice maker designs have been proposed for refrigeration appliances such as commercial or home refrigerators and/or freezers. In certain ice makers known as float ice makers, ice cubes are formed beneath the surface of chilled water. The water is generally maintained just above the freezing point and elements that are colder than the freezing point are employed to form ice cubes beneath the surface. When the ice is sufficiently formed for harvesting, it is floats upward to be removed from the chilled water for storage or dispensing.
The tank of chilled water in a float ice maker must therefore be attached to cooling elements of some sort that are in intimate contact with parts of the tank. This equipment can add complexity to a refrigeration appliance. If a user were to wish to remove the water tank for emptying in bulk, cleaning or servicing, however, the cooling elements could be exposed or become subject to damage. Further, with current designs, the locations at which such tanks may be placed within a refrigeration appliance are limited by such complexity and concerns. Accordingly, an improved and modular design for an ice and cold water dispenser would be welcome.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
According to certain aspects of the disclosure, an ice and cold water dispensing assembly for a refrigeration appliance is disclosed including a reservoir holding water having a water level and an ice maker for making ice cubes to be held within the water within the reservoir. Structure is provided on the reservoir allowing the reservoir to be removably attached to the refrigeration appliance. A handle and a spout are attached to the reservoir and are configured for allowing manual dispensing of ice cubes or water from the reservoir when the reservoir is removed from the refrigeration appliance. An ice dispenser and a water dispenser are provided in the refrigeration appliance for dispensing ice cubes or water respectively from the reservoir when the reservoir is attached to the refrigeration appliance. Various options and modifications are possible.
According to certain other aspects of the disclosure, a refrigeration appliance is disclosed including a refrigeration cabinet and a reservoir removably attachable within the refrigeration cabinet holding water having a water level. An ice maker is provided within the refrigeration cabinet for making ice cubes to be held within the water within the reservoir. A handle and a spout are attached to the reservoir and are configured for allowing manual dispensing of ice cubes or water from the reservoir when the reservoir is removed from the refrigeration cabinet. An ice dispenser and a water dispenser are provided for dispensing ice cubes or water respectively from the reservoir when the reservoir is attached to the refrigeration cabinet. As above, various options and modifications are possible.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Referring to
A breaker strip 22 extends between a case front flange and outer front edges of inner liners 18 and 20. The breaker strip 22 is formed from a suitable resilient material, such as an extruded acrylo-butadiene-styrene based material (commonly referred to as ABS). The insulation in the space between inner liners 18 and 20 is covered by another strip of suitable resilient material, which also commonly is referred to as a mullion 24 and may be formed of an extruded ABS material. Breaker strip 22 and mullion 24 form a front face, and extend completely around inner peripheral edges of the outer case 16 and vertically between inner liners 18 and 20.
Slide-out drawers 26, a storage bin 28 and shelves 30 are normally provided in fresh food storage compartment 12 to support items being stored therein. In addition, at least one shelf 30 and at least one wire basket 32 are also provided in freezer storage compartment 14.
The refrigerator features are controlled by a controller 34 according to user preference via manipulation of a control interface 36 mounted in an upper region of fresh food storage compartment 12 and coupled to the controller 34. As used herein, the term “controller” is not limited to just those integrated circuits referred to in the art as microprocessor, but broadly refers to computers, processors, microcontrollers, microcomputers, programmable logic controllers, application specific integrated circuits, and other programmable circuits, and these terms are used interchangeably herein.
A freezer door 38 and a fresh food door 40 close access openings to freezer storage compartment 14 and fresh food storage compartment 12. Each door 38, 40 is mounted by a top hinge 42 and a bottom hinge (not shown) to rotate about its outer vertical edge between an open position, as shown in
The freezer storage compartment 14 may include an automatic ice maker 52 and a dispenser 54 provided in the freezer door 38 such that ice and/or chilled water can be dispensed without opening the freezer door 38, as is well known in the art. Doors 38 and 40 may be opened by handles 56 is conventional. A housing 58 may hold a water filter 60 used to filter water for the ice maker 52 and/or dispenser 54.
As with known refrigerators, the refrigerator 10 also includes a machinery compartment (not shown) that at least partially contains components for executing a known vapor compression cycle for cooling air. The components include a compressor, a condenser, an expansion device, and an evaporator connected in series as a loop and charged with a refrigerant. The evaporator is a type of heat exchanger which transfers heat from air passing over the evaporator to the refrigerant flowing through the evaporator, thereby causing the refrigerant to vaporize. The cooled air is used to refrigerate one or more refrigerator or freezer compartments via fans. Also, a cooling loop can be added to directly cool the ice maker to form ice cubes, and a heating loop can be added to help remove ice from the ice maker. Collectively, the vapor compression cycle components in a refrigeration circuit, associated fans, and associated compartments are conventionally referred to as a sealed system. The construction and operation of the sealed system are well known to those skilled in the art.
More particularly, as shown in
At least one conductor 84 extends into reservoir 72 below water level 76. As shown, a row of such conductors 84 is visible along bottom wall 82. If desired, multiple rows could be provided in a grid format. Such conductors 84 could also or alternatively be located at other places within reservoir 72, such as along side walls 78,80, as long as the conductors are below water level 76. Conductors 84 may be rod-shaped, so as to form a cup-shaped ice cube 86, as discussed below.
A cooling device cools the conductors 84 to a temperature sufficient to form an ice cube on each of the conductors. As shown, cooling device comprises a Peltier device 96 (also known as a thermoelectric heat pump). Peltier device 96 may either be in contact with conductors 84 indirectly (via a heat transfer structure such as a metal heat transfer plate 94 known as a cold plate) or directly. Peltier devices are solid state devices that create a temperature gradient when attached to a source of DC voltage. The temperature gradient is reversible by reversing the polarity of the voltage. Therefore, with voltage provided in a first DC polarity, Peltier device 96 will cool conductors 84, and in a second DC polarity, it will heat conductors 84. A suitable Peltier device may be obtained from Kryotherm NA, of Carson City, Nev., although others could be employed. The capacity of the Peltier device would vary depending on the size and throughput desired for the ice maker.
If desired, a heat sink 88 may be provided. As shown, heat sink 88 may include a fan 90 blowing cold air from freezer storage compartment 14 along passageway 92 past Peltier device 96. Alternately, the cooling air flow could be sourced from outside of refrigeration appliance 10, refrigerator compartment 12, etc. Heat sink 88 could include another plate, fins, other structures, etc., as is known to enhance heat transfer from Peltier device 96. The design of heat sink 88 may vary depending on where (i.e., refrigerator or freezer compartment, refrigerator or freezer door, etc.) reservoir 72 is located.
Reservoir 72 may be cooled by cooling device 88 or an additional cooling device (not shown), or simply by virtue of its location within a refrigerated compartment or freezer, to a chilled temperature above the freezing point of water but not so far above that ice cubes melt rapidly in the reservoir. If reservoir 72 were mounted in a freezer, it might be necessary to heat the reservoir slightly to prevent all water 74 in it from freezing. Therefore, maintaining the water within reservoir 72 at a temperature no more than a few degrees above 32° F. would likely be acceptable.
Reservoir 72 is formed so as to be removable from refrigeration appliance 10 for manual dispensing of ice or water via open top 93 or spout 95. Peltier device 96 is attached to the bottom or reservoir 72 so as to be removable with the reservoir, connected to electronics via snap in quick connect elements 97 or the like. If desired, a curtain, flange or the like (not shown for clarity) can be provided around the bottom of reservoir 72 to shield Peltier device 96, connector 97, etc., when the reservoir is removed. Alternatively, Peltier device 96 could be mounted to the refrigeration appliance 10, appliance door 40, etc. A handle 99 may be provided on reservoir 72 for sliding the reservoir into or out of place and for pouring, etc. Reservoir 72 as shown is essentially in the shape of a pitcher which lends itself to such pouring.
When it is desired to harvest the ice cubes 86 from conductors 84, the polarity on Peltier device 96 can be reversed briefly, actively reversing the direction of heat transfer. Such reversal heats the side of Peltier device 96 facing conductors 84, thereby slightly melting ice cubes 86 on the conductors and allowing them to float upward to become ice cubes 98 ready for harvest. If desired, heat sink 88 can be shut off at this point. Alternatively, depending on the location of reservoir 72, Peltier device 96 and heat sink 88 can simply be shut off momentarily to allow slight melting. Other heating sources, such as warm refrigerant or warm air generated by the refrigerant cycle, could be also provided to supplement the function of Peltier device 96.
A dispensing device 100 attached to a wall 101 of the refrigeration cabinet 12 removes harvested ice cubes 98 from water 74. As shown, dispensing device 100 includes a scoop having at least one arm 102 driven by a motor 104 about an axle 106. Arms 102 scoop up formed ice cubes 98 from water 74 and deposit them on a separator 108 having drain openings therein sized to let water drip off scooped ice cubes back into reservoir 72 as ice cubes move toward a dispensing opening 110. Separator 108 may be formed as a plate, a grate, etc, and may be slanted downward toward dispensing opening 110 so that scooped ice cubes move toward the opening via gravity. A trigger, such as a mechanical paddle handle 112, a user input device such as a touch screen or a button 114 (see
Accordingly, an ice cube 98 can be provided directly to a user as “soft ice” maintained in a cold water bath just above freezing, which is desired by many consumers. Alternatively, the ice cubes could be provided to a container such as an ice bucket maintained in a freezer compartment, either all the time or selectively via a movable diverter or the like (not shown). Thus, various options are possible for dispensing ice cubes formed in the reservoir.
If desired, a water source 116 and a water level sensor 118 may be provided. Water source 116 provides water to reservoir 72 when water level sensor 118 senses that the water level 76 is below a predetermined point. Also, an ice cube level sensor 120 such as an optical sensor can be provided for sensing a level 122 of ice cubes 98 in reservoir 72. Sensors 118 and 120 may be connected by slide in quick connect elements 119 and 121, respectively, when reservoir is placed in refrigeration cabinet 12. Peltier device 96 may be prevented from forming ice cubes 86 on conductor 84 when the ice cube level sensor 120 senses that the level of ice cubes 122 in reservoir 72 is above a predetermined amount.
If desired, a chilled water outlet 124 may be provided in communication with reservoir 72 for dispensing chilled water. A slide in quick connect liquid fitting 125 may be provided to place water outlet 124 in communication with water 74 inside of reservoir 72.
If desired, a dedicated controller 126 or controller 34 may be employed to control the various elements mentioned above. Valves 128 and 130 may be provided for water source 116 and outlet 124 as well.
Accordingly, during normal operation of ice making assembly 70, starting with a reservoir of water with no ice, the controller monitors signals from sensors 118 and 120, as well as user input devices 112 and 114, etc. If reservoir 72 is not full per sensor 118, controller causes valve 128 to open until sensor 118 detects that water level 76 has reached the sensor. If sensor 120 does not detect ice down to level 122, ice making commences by cooling conductors 84 via Peltier device 96, heat being transferred away by heat sink 88. Periodically, Peltier device 96 is reversed or shut off, as initiated by the controller, to free ice cubes 86 to float upward. This cycle continues until sensor 120 senses that the quantity of ice cubes 98 in reservoir 72 is sufficient to be sensed by sensor 120. At this point, cooling of conductors 84 stops until ice is removed or melts sufficiently that sensor 120 does not detect ice any longer. If a user wishes to receive ice cubes or water, input devices 112,114, etc are employed. Arm 102 is rotated by controller or valve 130 is operated to provide the desired substance (ice or water). After dispensing is completed, the controller evaluates signals from sensors 118 and 120 as to whether to add water to reservoir 72 and/or start or continue making ice cubes on conductors 84. As mentioned above, ice could be harvested by arm 102 and sent to an alternate location (such as an ice bucket in a freezer compartment) either upon user indication, periodically, or as a default if desired as an option.
Conductors 84 may be made in rod-shaped form so as to create a substantially cup-shaped ice cube (see ice 86 being formed in
Use of a Peltier device would most likely require a rectifier or the like to convert source AC electricity to DC for the rectifier, and switching to alternate the polarity. Such is well within the scope of ordinary skill in the art for a given voltage so not discussed here further. Use of a Peltier device may eliminate the need for electrical resistance strips (AC or DC) to heat conductors 84 for harvest.
Accordingly, the present disclosure provides a modular and efficient ice making assembly in which soft ice and/or cold water may be provided from a removable reservoir. The reservoir may be removed for cleaning or manual dispensing, and heating and cooling equipment for the ice making portion of the reservoir may be self contained and modular. A single solid state device may be employed to cool and to heat, and a heat sink may be included if desired. Use of a Peltier device with ice makers in this fashion allows for more choices as to types and location of the ice makers within various parts of a refrigeration appliance. However, other float type ice makers or conventional ice maker designs can also be used.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.