1. Field of the Invention
The invention relates to an ice and water dispenser positioned on the refrigerator compartment door of a bottom freezer refrigerator.
2. Description of the Related Art
Automatic ice making systems for use in refrigerator freezers are well known. Typically, ice making systems include an ice maker mounted in the freezer compartment with an ice cube storage bin supported under the ice maker. Ice making systems may also include ice dispensing systems for delivering ice cubes through a dispenser on the face of the refrigerator freezer. Side by side refrigerator freezers typically have the ice dispenser on the face of the freezer compartment door. Side by side refrigerator freezers can have the ice storage bin, and even the ice maker positioned on the freezer compartment door.
Automatic ice making systems mounted in the refrigerator compartment or on the refrigerator compartment door are also known. Top freezer or side by side refrigerators having an automatic ice maker in the freezer compartment and an ice dispenser on the face of the refrigerator compartment door are also known.
The invention relates to an ice maker and dispenser for a bottom freezer refrigerator having a freezer compartment maintained at a temperature below 0° C., a refrigerator compartment positioned above the freezer compartment maintained at a temperature above 0° C., an insulated freezer compartment door, an insulated refrigerator compartment door, and a refrigeration system for cooling the freezer compartment and the refrigerator compartment. The ice maker is positioned on the refrigerator compartment door, an ice cube storage bin is positioned on the refrigerator door below the ice maker, and an ice dispenser positioned on the refrigerator door for dispensing ice pieces from the ice cube storage bin through the refrigerator door. The bottom freezer refrigerator includes an air delivery system leading to the ice maker and ice cube storage bin from a source of below 0° C. air for supplying air cooled to below 0° C. to the ice maker and to the ice storage bin.
The air delivery system can lead from the freezer compartment to the ice maker and ice cube storage bin and can include a supply duct and a return duct. The supply duct and return duct can each include a first air delivery portion carried on the refrigerator compartment door and a second air delivery portion leading from the bottom of the refrigerator door to the freezer compartment.
The supply duct and return duct can include a seal to seal the first air delivery portion to the second air delivery portion when the refrigerator door is closed.
The air delivery system can include an ice maker fan connected to the air delivery system wherein operation of the ice maker fan causes air from the below freezing compartment to flow to the ice maker and to the ice cube storage bin and return to the freezer compartment. The ice maker fan can be connected to the return duct so that the ice maker fan draws below 0° C. air from the freezer compartment through the supply duct to the ice maker and ice cube storage bin and then through the return duct to the ice maker fan. The ice maker fan can discharge air from the return duct into the freezer compartment.
In another aspect the invention relates to an air delivery system for a bottom freezer refrigerator that leads from the evaporator compartment of the refrigeration system to the ice maker and ice cube storage bin.
In another aspect the invention relates to an ice maker and dispenser for a bottom freezer refrigerator having a freezer compartment maintained at a temperature below 0° C., a refrigerator compartment positioned above the freezer compartment maintained at a temperature above 0° C., an insulated freezer compartment door, an insulated refrigerator compartment door, and a refrigeration system for cooling the freezer compartment and the refrigerator compartment. An ice maker is positioned in an insulated ice maker sub-compartment on the refrigerator compartment door, an insulated ice cube storage bin is positioned on the refrigerator door below the ice maker, and an ice dispenser is positioned on the refrigerator door below the ice cube storage bin for dispensing ice pieces from the ice cube storage bin through the refrigerator door. An air delivery system leads to the ice maker and ice cube storage bin from a source of below 0° C. air for supplying air cooled to below 0° C. to the ice maker and to the ice storage bin.
The ice cube storage bin can be positioned in an insulated ice cube storage bin sub-compartment on the refrigerator door. The insulated ice cube storage bin sub-compartment can comprise a space enclosed by an insulated cover movably carried by the refrigerator compartment door. The insulated cover can be transparent and the insulated cover can be pivotally mounted on the refrigerator door. The insulated cover can include a gasket for forming a seal to the refrigerator door liner.
In another aspect the insulated ice cube storage bin comprises side walls and a bottom wall formed of insulating material. The ice cube storage bin can be formed of clear insulating double wall material.
In another aspect the invention relates to an ice maker and dispenser for a bottom freezer refrigerator having a freezer compartment maintained at a temperature below 0° C., a refrigerator compartment positioned above the freezer compartment maintained at a temperature above 0° C., an insulated freezer compartment door, an insulated refrigerator compartment door, and a refrigeration system for cooling the freezer compartment and the refrigerator compartment. An ice maker is positioned in an insulated ice maker sub-compartment on the refrigerator compartment door having a mold for forming ice pieces, an ice cube storage bin is positioned on the refrigerator door below the ice maker, and an ice dispenser is positioned on the refrigerator door below the ice cube storage bin for dispensing ice pieces from the ice cube storage bin through the refrigerator door. The bottom freezer refrigerator includes air delivery system having a supply duct and a return duct leading to the ice maker and ice cube storage bin from a source of below 0° C. air for supplying air cooled to below 0° C. to the ice maker and to the ice storage bin. The air delivery system includes an ice maker fan connected to the air delivery system wherein operation of the ice maker fan causes air from the source of below 0° C. air to flow to the ice maker and to the ice storage bin. The supply duct and the return duct include a first air delivery portion carried on the refrigerator door and a second air delivery portion leading from the bottom of the refrigerator door to the source of below 0° C. air.
The first air delivery portion of the supply duct and the return duct includes a vertical portion extending from the bottom of the refrigerator door to the ice maker sub-compartment.
The ice maker mold includes side walls and a bottom wall and the ice maker further comprises a housing enclosing the side walls and bottom wall of the ice mold forming an air flow passage around the ice maker mold. The housing includes side walls and a bottom wall spaced from the side walls and bottom wall of the ice mold and the air flow passage comprises the space between the ice mold and the housing.
The ice maker mold can include a plurality of fins extending from the side walls and bottom wall of the ice mold and extending substantially to the side walls and bottom wall of the housing. The fins can be arranged to form an elongated air flow passage around the bottom and sides of the ice maker mold.
A supply connector can be provided to lead from the outlet in the top of the vertical portion of the supply duct to the air flow passage around the ice maker mold. A return connector can be provided to lead from the air flow passage around the ice maker mold to the return duct.
An inlet port can be provided in the vertical portion of the supply duct adjacent the ice cube storage bin and an outlet port can be provided in the vertical portion of the return duct adjacent the ice storage bin. An ice cube storage bin damper can be provided to control air flow through one or both of the inlet port and the outlet port.
An ice cube storage bin temperature sensor can be positioned adjacent the ice cube storage bin and connected to a control to regulate the position of the ice cube storage bin damper in response to the temperature sensed by the ice cube storage bin temperature sensor. The ice storage damper can be a two position damper arranged to open or close one or both of the inlet and outlet ports.
In another aspect of the invention the ice storage damper can be continuously adjustable in response to the temperature sensed by the ice cube storage bin temperature sensor.
Another aspect of the invention relates to an ice maker and dispenser for a bottom freezer refrigerator a freezer compartment maintained at a temperature below 0° C., a refrigerator compartment positioned above the freezer compartment maintained at a temperature above 0° C., an insulated freezer compartment door, an insulated refrigerator compartment door, and a refrigerator system for cooling the freezer compartment and the refrigerator compartment including a compressor. An automatic ice maker is positioned on the refrigerator compartment door, an ice cube storage bin is positioned on the refrigerator door below the ice maker, an ice cube storage bin temperature sensor is positioned adjacent the ice storage bin, and an ice dispenser positioned on the refrigerator door below the ice cube storage bin for dispensing ice pieces from the ice cube storage bin through the refrigerator door. An air delivery system is provided leading to the ice maker and ice cube storage bin from a source of below 0° C. air for supplying air cooled to below 0° C. to the ice maker and ice cube storage bin and having at least one port adjacent the ice storage bin, an ice cube storage bin damper to control air flow through the at least one port, and an ice maker fan connected to the air delivery system wherein operation of the ice maker fan causes air from the source of below 0° C. air to flow to the ice maker and to the ice storage bin. An ice maker control is provided for the automatic ice maker, the ice maker fan and the ice cube storage bin damper to open the ice cube storage bin damper and operate the ice maker fan when the ice cube storage bin temperature sensor indicates ice cube storage bin needs cooling, and to operate the ice maker fan when the ice maker is producing ice.
The control can include a quick ice mode of operation and the compressor can be arranged to operate at multiple speeds including high speed and the ice maker fan can be arranged to operate at a high speed and a normal speed. In the quick ice mode the control is arranged to operate the compressor at high speed and the ice maker fan at high speed.
The bottom freezer refrigerator can include a freezer temperature controller and a refrigerator compartment controller connected to the ice maker control. The ice maker control can be arranged to reduce the compressor speed when the freezer compartment temperature control or the refrigerator compartment temperature control sense a temperature below a predetermined temperature in the refrigerator compartment or the freezer compartment.
The ice maker control can be arranged to operate the ice maker fan at normal speed when the quick ice mode is not selected. The ice maker control can be arranged to turn off the compressor in the event the freezer compartment or refrigerator compartment temperature controls sense a temperature below a predetermined temperature and the compressor is operating at the lowest speed.
The ice maker control can be arranged to stop the ice maker fan when the ice cube storage bin temperature sensor indicates the ice cube storage bin does not need cooling.
In another aspect the invention relates to the method of producing ice cubes in a bottom freezer refrigerator having a refrigerator compartment maintained at a temperature above 0° C. positioned above a freezer compartment maintained at a temperature below 0° C., a refrigeration system for cooling the refrigerator and freezer compartments, and an automatic ice maker positioned on the refrigerator compartment door comprising the steps of operating the refrigeration system to provide cooling to the refrigerator and freezer compartments, filling the ice maker with water, and supplying the ice maker with below 0° C. air for forming ice cubes.
The step of supplying below 0° C. air can comprise causing below 0° C. air to flow through an air delivery system leading from a source of below 0° C. air to the ice maker. The step of supplying below 0° C. air can comprise causing below 0° C. air to flow through a supply duct to the ice maker and returning below 0° C. air from the ice maker through a return duct.
The bottom freezer refrigerator can include an ice cube storage bin on the refrigerator compartment door below the ice maker and the method of producing ice cubes further includes the step of supplying below 0° C. air to the ice storage bin.
In another aspect the invention relates to a method of producing and storing ice pieces in a bottom freezer refrigerator having a freezer compartment maintained at a temperature below 0° C., a refrigerator compartment positioned above the freezer compartment maintained at a temperature above 0° C., an insulated refrigerator compartment door, and a refrigeration system for cooling the freezer compartment and the refrigerator compartment having a compressor. An ice maker is positioned on the refrigerator door, an ice cube storage bin is positioned on the refrigerator door below the ice maker, and an air delivery system is provided leading to the ice maker and ice cube storage bin from a source of below 0° C. air for supplying air cooled to below 0° C. to the ice maker and ice cube storage bin and having at least one port adjacent the ice bin and having an ice bin damper for selectively opening and closing the at least one port. An ice maker fan is connected to the air delivery system wherein operation of the ice maker fan supplies air cooled to below 0° C. to the ice maker and ice cube storage bin, and the method comprises opening the ice maker damper and operating the ice maker fan when the ice cube storage bin needs cooling and closing the ice maker damper when the ice cube storage bin no longer requires cooling.
The automatic ice maker can have a quick ice mode of operation and the method of producing and storing ice pieces can further comprises operating the compressor at high speed and the ice maker fan at high speed when the quick mode is requested, and reducing the compressor speed when the refrigerator or freezer compartment temperatures are below a predetermined minimum temperature.
The method of producing and storing ice pieces can include the step of turning off the compressor if the step of reducing the compressor speed reduces the compressor speed below a predetermined minimum speed. The method can further comprise operating the ice maker fan at the normal speed when the quick ice mode is not requested.
The method of producing and storing ice pieces can include the step of operating the ice maker fan when ice is requested form the ice maker. The method can include the step of stopping the ice maker fan when ice is not requested from the ice maker and the ice cube storage bin does not require cooling.
There are three basic configurations of refrigerator freezers for consumers to choose from, a bottom freezer configuration, a top freezer configuration and a side by side configuration. For consumers that desire to have an ice and water dispenser on the exterior of their refrigerator freezer the choice is essentially reduced to the side by side configuration. Bottom freezer refrigerators are desirable for the easy access to the refrigerator compartment. Thus, many consumers are torn between the easy refrigerator compartment access bottom freezer refrigerators offer and the availability of ice and water dispensing in the side by side configuration. Most refrigerator freezers having ice dispensers are configured with the ice cube storage bin positioned below the ice maker in the freezer compartment and the ice dispenser positioned on the freezer compartment door below the ice cube storage bin. This arrangement is not practical for bottom freezer refrigerators since the ice dispenser would be at the very bottom of the freezer compartment door adjacent to the floor.
According to the present invention, the ice maker, ice cube storage bin and ice dispenser can be positioned on a refrigerator compartment door. Turning to
Refrigerator 50 can have a refrigeration system (not shown) for cooling the refrigerator compartment 54 and freezer compartment 56. The refrigeration system can include a compressor, condenser, evaporator and expansion device, all not shown, as is well known in the art. The compressor can be a variable speed compressor to provide variable cooling rates, again well known in the art. Refrigerator 50 can also have a control system (not shown) that can include temperature sensors (not shown) for the refrigerator compartment 54 and freezer compartment 56 connected to refrigerator and freezer compartment temperature controllers (not shown) to maintain the temperatures in the respective compartments at user selected temperatures. The evaporator (not shown) can be positioned in an evaporator compartment 75 that can be positioned along the back wall of the freezer compartment as is well known in the art. Refrigerator 50 can also have one or more water valves 95 positioned in the machinery compartment for supplying the ice maker and ice a water dispenser as is well known in the art. While water valve 95 is illustrated in the machinery compartment as a single valve those skill in the art will understand that more than one valve may be included and may be positioned in other locations in refrigerator 50 as desired. The operation of refrigerator 50 and the control system are described in more detail below in conjunction with
Refrigerator compartment door 69 can include an ice and water dispenser 72 positioned on the face of the door. Ice and water dispenser 72 can be positioned on refrigerator compartment door 69 at a convenient height for user access as is well known in the art. A user interface 73 can be positioned adjacent ice and water dispenser 72 for users to select ice and water dispensing alternatives such as “quick ice” described below, and other refrigerator freezer operation parameters such as described in co-pending U.S. patent application Ser. No. 10/861,203 incorporated herein by reference. Ice making, storage and dispensing apparatus 130 can be positioned on the inside surface of refrigerator compartment door 69 and can include an insulated cover 134. Ice making, storage and dispensing apparatus 130 can be positioned to feed ice cubes to the dispenser 72 as is well known in the art. In the embodiment of
Turning to
Insulated cover 90 can be pivotally mounted to inner door panel 70 with hinges 77. Hinging insulated cover 90 to inner door panel 70 can allow easy access to ice cube storage bin 84 to, for example, facilitate removal of ice cube storage bin 84 to bulk dispense ice cubes into a cooler or the like. Insulated cover 90 can be arranged so that it can be closed automatically as refrigerator compartment door 69 is closed. Insulated cover 90 can be provided with a gasket 79 on the surface facing inner door panel 70 to seal against a surface of inner door panel 70. Those skilled in the art will understand that gasket 79 can be urethane foam or other suitable resilient gasket material. To facilitate sealing, the surface of inner door panel 70 against which insulated cover 90 closes can be arranged in a plane. A mechanical or magnetic latch (not shown) can be provided to hold insulated cover 90 in a closed position as shown in
Insulated cover 90 can be omitted if ice cube storage bin 84 is formed of insulating material. In one embodiment, ice cube storage bin 84 can be formed of double wall plastic material with sufficient insulating properties to maintain ice cubes in the bin frozen and sufficiently cold to preclude individual cubes from melting together. Those skilled in the art will readily understand that suitable clear plastic materials such as described above can be used to form an insulated ice cube storage bin 84. Similarly, those skilled in the art will understand that if no insulating cover is provided below 0° C. air flow can be directed into ice cube storage bin 84 in a manner to preclude undesirable leakage to the refrigerator compartment. Below 0° C. air flow for cooling the ice cube storage bin will be described in further detail below.
Ice cube storage bin 84 and ice dispenser 86 can be similar to the ice delivery system disclosed in U.S. Pat. No. 6,082,130, assigned to the assignee of this application and incorporated herein by reference. Co-pending patent applications, US20020155 and US20040124, filed concurrently with this application and incorporated herein by reference, disclose ice makers that can be used as the ice maker 82 in this invention. Those skilled in the art that an ice delivery system such as disclosed in U.S. Pat. No. 6,082,130 can be used in the embodiment shown in
In this embodiment of the invention below 0° C. air can be supplied to ice maker 82 and ice cube storage bin 84 by an air delivery system that can lead from freezer compartment 56. The air delivery system can include a first air delivery portion 100 that can be positioned along one side of refrigerator compartment door 69 against inner door panel 70. The air delivery system can include a second air delivery portion 106 positioned along a side wall of refrigerator compartment 54 and leading down toward freezer compartment 56. First air delivery portion 100 can include a supply duct 102 and a return duct 104. Those skilled in the art will understand that first air delivery portion 100 can be a dual passage tube having two air passages forming supply duct 102 and return duct 104. First air delivery portion 100 can be formed of thermoformed or injection molded plastic material and can be covered or enclosed with insulating material such as rigid styrobead. Second air delivery portion 106 can similarly comprise a supply duct 108 and a return duct 110. Second air delivery portion 106 can be a dual passage tube formed of plastic material similar to first air delivery portion 100. The faces of first and second air delivery portions 100 and 106 can abut when refrigerator door 69 is closed and can be arranged so that supply ducts 102 and 108 and return ducts 104 and 110 are opposite one another, and can form a continuous passage when refrigerator compartment door 69 is closed. The face of first and second air delivery portions 100 and 106 can include suitable sealing surfaces for the supply and return ducts so that substantially air tight connections can be made when refrigerator compartment door 69 is closed. For example, resilient gasket material 101 such as urethane foam can be provided around the inlets to ducts 108 and 110 to form a substantially air tight seal when refrigerator door 69 is closed and first air delivery portion 100 contacts second delivery portion 106. Those skilled in the art will understand that other gasket arrangements can be provided to seal the first air delivery portion 100 and second delivery portion 106 when refrigerator door 69 is closed. In addition those skilled in the art will understand that first air delivery portion 100 including supply duct 102 and return duct 104 can be formed as part of inner door panel 70. Alternately, first air delivery portion 100 can be provided between inner door panel 70 and the outer panel of refrigerator compartment door 69. Those skilled in the art will also understand that the interface between supply and return ducts 102 and 104 and return ducts 108 and 110 can be formed as a bellows providing an enclosed passage when door 69 is open in lieu of surface seals.
As mentioned above, the first and second air delivery portions 100 and 106 can be insulated to limit heat transfer from the below 0° C. air being delivered to the ice maker 82 and ice cube storage bin 84 to the above 0° C. refrigerator compartment 54. Similarly, insulation can be provided to prevent the refrigerator cabinet 50 from sweating on or near the interface between the first and second air delivery portions 100 and 106. Alternately, those skilled in the art will understand that heaters can be provided for the cabinet adjacent the interface between the first and second air delivery portions 100 and 106 to prevent condensation or frost buildup inside or outside of refrigerator 50 as is well known in the art.
Turning to
Turning to
Turning to
Returning to
A temperature sensor 94 can be provided for the ice cube storage bin 84 as can be seen in
Alternately, only a supply duct port 103 can be provided. After cooling the ice cube storage bin 84 the below 0° C. air can be allowed to enter the refrigerator compartment 54 and return to the refrigeration system with air in the refrigerator compartment. In this embodiment a damper 111 and feedback control as described above can be provided to control the ice cube storage bin temperature.
As mentioned above, the ice maker according to the invention can provide enhanced ice production. In one embodiment of the ice maker according to the invention the ice maker control 138 can be arranged to provide enhanced (“quick ice”) and normal ice production rates. Ice maker control 138 can be a control dedicated to operation of the ice maker and ice dispenser, or can be a portion of an integrated controller for the bottom freezer refrigerator 50 as will be readily understood by those skilled in the art. In order to provide “quick ice” operation, ice maker fan 122 can be a multiple speed fan having normal and high speed capability. Turning to
If ice maker control 138 determines ice is requested in step 154, an ice maker harvest cycle can be initiated, step 159. Ice maker operation including filling the ice mold with water, ice cube formation and ice harvesting are all well known in the art. One example of automatic ice maker operation to harvest ice cubes can be found in U.S. Pat. No. 6,082,130 referred to above and incorporated herein by reference. After a harvest cycle is initiated ice maker control 138 determines if enhanced ice production, or “quick ice” has been selected by the user, step 160. Those skilled in the art will understand that “quick ice” can be a user selection that can be included on a user interface 73 that can be positioned on the face of the refrigerator compartment door 69 adjacent the ice and water dispenser 72, see
Turning to
Refrigerator compartment door 170 can include an ice and water dispenser 72 positioned on the face of the door. Ice and water dispenser 72 can be positioned on refrigerator compartment door 170 at a convenient height for user access as is well known in the art. As in the embodiment of
Turning to FIGS. 13 to 15 an alternate embodiment of an ice maker air delivery system can be seen removed from the bottom freezer refrigerator. Air delivery system 180 can include a first air delivery portion 182 that can be mounted to or in a refrigerator compartment door (not shown) that can be a door like that shown in the embodiment of
In the embodiment of the air delivery system shown in FIGS. 13 to 15 an ice maker fan 204 can be positioned on the refrigerator compartment door, not shown. Ice maker fan 204 can be connected to return duct 188 and arranged to draw below 0° C. air through the air delivery system 180 through the supply ducts and ice maker 190 as described above. First air delivery portion 182 can be connected to second air delivery portion 184 when the refrigerator compartment door (not shown) is closed by supply interface 206 and return interface 208. The air delivery system is shown in FIGS. 13 to 15 in the refrigerator compartment door closed position. Supply interface 206 can lead from supply duct 186 to first cabinet duct leg 200. Similarly, return interface 208 can lead from return duct 188 to first cabinet duct leg 200. First cabinet duct leg 200 can have openings (not shown) in surface 210 that communicate with the supply duct and return duct in first cabinet duct leg 200. Supply interface 206 and return interface 208 can have matching openings (not shown) in the face 210 adjoining first cabinet duct leg 200 that can allow below 0° C. air to flow through the ice maker air delivery system 180 in operation. As described above in connection with FIGS. 3 to 5, supply and return interfaces 206 and 208, and first cabinet duct leg 200 can have a gasket or sealing surface (not visible in FIGS. 13 to 15) for the openings to facilitate effective sealing of the first air delivery portion 182 to the second air delivery portion 184 in operation. Second air delivery portion 184 can extend to the rear of freezer compartment 56 and can connect to an evaporator cover 212 that can be positioned along the rear wall 63 of the freezer compartment 56. Below 0° C. air can be drawn out the evaporator compartment (not shown) behind evaporator cover 212 and through the air delivery system 180 to the ice maker (not shown) and ice cube storage bin (not shown).
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.
This application is related to the following U.S. patent applications filed concurrently herewith: US20020155 and US20040124.