The present invention will now be further described with reference to the following examples, which are illustrative only and non-limiting, and figures wherein:
Ice confection formulations are shown in table 1. The ice structuring protein (ISP) is recombinant ocean pout type III HPLC-12 produced in yeast essentially as described in WO97/02343.
Examples 1 to 3 are milk ice-type formulations according to the invention. Comparative example A is a water ice formulation, which does not contain fat and so is outside the scope of the invention. Comparative example B has a formulation according to the invention, but (as explained below) was not aerated with a water-soluble gas. Comparative example C has the same formulation as example 1 but with no ISP.
The dry ingredients were blended together with the water (at a temperature of 80° C.) using a high shear mixer for approximately 3 minutes. The temperature of the mixes was approximately 55-65° C. after mixing. Each mix was homogenised and passed through a plate heat exchanger for pasteurisation, and then cooled to approximately 4° C. in the plate heat exchanger. ISP was added immediately prior to processing (except for Comparative example C). Each mix was simultaneously frozen and aerated using a WCB MF75 ice cream freezer with an open dasher. Initially the mix was aerated with air, but once the desired overrun and extrusion temperature was achieved the flow of air was replaced with 100% carbon dioxide. Comparative example B was collected while the mix was being aerated with air, not carbon dioxide. The extrusion temperatures on exit from the freezer and overruns at extrusion are given in table 2.
Examples 1, 3 and comparative examples A, B and C were collected in 500 ml cardboard packs and hardened in a blast freezer at −35° C. for 3 hours, then stored in a cold store at −25° C. Example 2 was produced as a stick product by extruding the milk ice into metal moulds, inserting sticks and then hardening in a blast freezer at −35° C. for 3 hours. The products were then removed from the mould and stored in a cold store at −25° C.
Assessment of the appearance of the products was made by taking photographs of slices of the hardened blocks and the surface of the stick product. By assessing the size and distribution of the bubbles in the photographs, the appearance of the products was compared (the desired appearance was foam-like with visible bubbles). Evaluation of the sensory properties, in particular brittle, crumbly and crunchy texture, was carried out through informal tasting.
Comparative example A is a water ice containing ISP that was aerated with carbon dioxide (as disclosed in EP 1158862). Sensory testing showed that it had a brittle and crunchy texture as expected.
Comparative example B is a milk ice containing ISP that was aerated with air. Sensory testing showed that it had a firm, crunchy texture, but that it was not crumbly.
Comparative example C is a milk ice that was aerated with carbon dioxide, but which does not contain ISP. Sensory testing showed that it had a soft, not crunchy texture.
Example 1 is a milk ice containing ISP that was aerated with carbon dioxide. Sensory testing showed that it had a brittle and crunchy texture, and was less icy than the water ice (comparative example A).
Example 2 is a higher fat milk ice containing ISP that was aerated with carbon dioxide and frozen in a mould to form a stick product. Sensory testing showed that it had a brittle and crunchy texture.
Example 3 is a chocolate milk ice containing ISP that was aerated with carbon dioxide. Sensory testing showed that it had a brittle and crunchy texture.
These results demonstrate that aerated ice confections having both a brittle, crunchy texture and the honeycomb-like appearance of ambient foam-like products can be produced by aerating with a water-soluble gas such as carbon dioxide in combination with the presence of an ice structuring protein, provided that a particular formulation window is used in terms of fat and total solids content. The structures of products according to the invention can be distinguished from water ices containing ISP that have been aerated with a water-soluble gas by the presence of large visible, approximately spherical gas cells and an absence of large channels and voids. Furthermore, the products according to the invention have the added advantage that they are less cold and icy than similar water ice products, and therefore are better mimics of the in-mouth properties of ambient honeycomb products.
The various features and embodiments of the present invention, referred to in individual sections above apply, as appropriate, to other sections, mutatis mutandis. Consequently features specified in one section may be combined with features specified in other sections, as appropriate.
All publications mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described methods and products of the invention will be apparent to those skilled in the art without departing from the scope of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are apparent to those skilled in the relevant fields are intended to be within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
EP06118523 | Aug 2006 | EP | regional |