The present invention relates to an evaporator plate assembly for use in an ice making machine. In particular, the present invention relates to an evaporator plate assembly having a pair of dimpled plates between which a serpentine tube is positioned, the plates being spot welded to each other.
Automatic ice making machines are well known and are typically found in food and drink service establishments, hotels, motels, sports arenas and various other places where large quantities of ice are needed on a continuous basis. Some automatic ice making machines produce flaked ice while others produce ice shaped in a variety of configurations, which are commonly referred to as cubes or nuggets.
Automatic ice making machines generally include a refrigeration system having a compressor, a condenser, and an evaporator; a series of individual ice forming locations which may or may not be referred to as pockets; and a water supply system. In a typical ice making machine, the evaporator section of the refrigeration system is connected to the series of individual ice forming locations wherein the individual ice forming locations are directly cooled by the refrigeration system. Water may either be supplied to fill the ice forming locations if the ice forming locations are in the form of a series of pockets, or water may be supplied to the ice forming locations by having the water trickle over or be sprayed onto the individual ice forming locations. The run-off of the trickled or sprayed water is usually recirculated within the water supply. The trickling or spraying methods of supplying water are normally preferred because the methods produce clear ice while the static filled pockets method generally produces white or opaque ice.
Automatic ice making machines are normally controlled by the level or supply of ice in the storage portion of the ice making machine. When the supply of ice in the storage portion is insufficient, automatic controls cycle the ice making machine through ice production and ice harvest modes to supplement the supply of ice in the storage portion. In the production mode, the refrigeration system operates in a normal manner such that expanding refrigerant in the evaporator removes heat from the series of ice forming locations, freezing the water to form an ever growing layer of ice. When the ice thickness reaches a predetermined condition or a specified time period has elapsed, the ice making machine switches to harvest mode.
Typically the harvest mode involves a valve change which directs hot refrigerant gasses to the evaporator. The ice forming locations are heated by the hot refrigerant gasses until the ice in contact with the evaporator begins to thaw. Once the ice eventually falls from the evaporator, the refrigeration system is changed back to production mode, and the cycle begins again. The ice making machine continues to cycle between the production mode and the harvest mode until some type of sensing system in the storage portion signals the refrigeration system to pause.
Conventionally, evaporators are formed by bonding evaporator tubes and partitions to a base wall. The evaporator tubes and the base wall are normally made of copper, which is then plated with tin to protect the copper from oxidation. Forming the copper tubes may create residual stresses in the copper, which may cause cracks with rapid expansion and contraction continuously seen in evaporators.
If copper tubes are left untreated, the tubes corrode over time due to moisture containing dissolved oxygen. The resulting film from this oxidation can flake off into the circulation tank. The tin coating shields the tubes from this harmful process. However, high heat added during the forming process or exposure to high chlorine environments can accidently remove the protective layer in localized areas.
Moreover, the use of copper material for the tubes presents additional issues. For example, the copper must be pre-cleaned by dipping the copper in a chemical or acid cleaning bath and then coated with tin; which results in high lab and manufacturing costs, as well as potentially making workers ill from the fumes emanating from the various chemicals and the like. A tin tape is then laid over the corresponding portions of the respective front and back evaporator plates. The tin plated copper tube is then placed between the tin tape on each evaporator plate and the evaporator plates and tin plated copper tube are joined or sandwiched together, and the assembly is then brazed together.
The manufacturing process is rather time consuming, exhausts high amounts of raw materials, such as water, chemicals, copper and tin, and is relatively expensive.
The assembly 1 includes a first evaporator plate 10 joined to a second evaporator plate 20 with serpentine tubing 30 disposed between the first and second evaporator plates 10, 20. Preferably, the first and second evaporator plates 10 and 20 are made of stainless steel, however, it is within the scope of the present invention for the tubing 30 to be manufactured from copper that is dipped in tin.
Of course, it is also within the scope of the invention for the plate 10, 20 and tubing 30 to be manufactured from any other suitable material, now known or to be developed in the future, that provides, at a minimum, the desired benefits and performance of stainless steel and/or copper dipped in tin.
Each plate 10, 20 includes a plurality of ice forming locations 40, which may also be interchangeably referred to herein as dimples, wells, and the like. As shown in
Similarly, the second plate 20 includes a plurality of dimples 40 that are separated from neighboring dimples 40 by fins 21, 21, which are configured in the same manner as the fins 11, 11 of the first plate 10. Also, the left and right ends of the second plate 20 have ribs 21a and 21b, which oppose each other. Moreover, the rib 12a of the first plate 10 faces away from the rib 21b of the second plate 20, while the rib 12b of the first plate faces away from the rib 21a of the second plate 20. See
The plates 10, 20 may be manufactured by any process now known or to be developed in the future. Preferably, a blank sheet of stainless steel having suitable proportions, including length, width and thickness, is fed into an appropriate apparatus or machine wherein the sheet is at least one of folded, pressed, die-stamped, milled, and the like to form the ribs 12a, 12b and 21a, 21b, and fins 11, 21. Either concurrently or subsequent to the formations of the ribs 12a, 12b and 21a, 21b and fins 11, 21, the dimples 40 are formed in each of the plates 10, 20 between neighboring pairs of fins 11, 21.
Turning to
As shown in
As also clearly shown in
The serpentine tubing coil, which can be made from the tubing 30, can comprise straight portions of tubing extending horizontally and connected serially at their ends by connecting portions. The straight portions of the tubing coil 30 can comprise a first straight portion and a second straight portion connected to the first straight portion and being immediately adjacent to the first straight portion in the vertical direction. The second straight portion can be connected to the first straight portion by a first connecting portion of the connecting portions. The tubing 30 can be in contact with the rear surface of the plate, the first straight portion of the tubing coil 30 can be disposed between the first row 110 of the dimples 40 and the second row 120 of the dimples 40, and the second straight portion can be disposed between the third row 130 of the dimples 40 and the fourth row 140 of the dimples 40. Likewise, additional straight portions of the tubing 30 can pass between additional adjacent pairs of rows of the dimples 40. In addition to the first row 110, the second row 120, the third row 130, and the fourth row 140 of the dimples 40; each of the plates 10, 20 can further comprise the fifth row 150, the sixth row 160, the seventh row 170, and the eight row 180 of the dimples 40. Each of the straight portions of the tubing 30 can be positioned immediately adjacent to any other straight portion of the tubing 30. Likewise, with the assembly 1 as oriented in
Referring to
Outer sloped surfaces 51c and 52c of the first and second dimple dies 51 and 52 face away from each other and form the side face 40c of each dimple 40. Opposing sloped ends 51a and 51b and 52a and 52b of the dimple dies 51 and 52, respectively, form the end faces 40a and 40b of each dimple 40. The apex of each dimple die 51 and 52, includes a substantially planar surface 51e and 52e which form the valleys 40e, 40e of each dimple 40, 40. For the embodiment of the dimple 40 that is free of the planar valley 40e, the dimple dies 51 and 52 are similarly formed to be free of the corresponding planar surfaces 51e and 52 which form the valleys 40e, 40e.
Moreover, opposing side faces of the planar surfaces 51e and 52e of each die 51 and 52, respectively, join the inner sloped surface 51d and 52d to the outer sloped surfaces 51c and 52c, respectively. Moreover, opposing ends of the planar surfaces 51e and 52e of each die 51 and 52, respectively, join the sloped ends 51a and 52a to their corresponding other sloped end 51b and 52b, respectively. In the embodiment of the die 50 that is free of the planar surfaces 51e and 52e, the outer sloped surfaces 51c and 52c directly abut against corresponding inner sloped surfaces 51d and 52d.
As shown in
To manufacture the evaporator plate assembly 1, the plates 10 and 20 are first manipulated to form the fins 11 and 21 and ribs 12a, 12b and 21a, 21b, respectively, in the manner discussed above. The tubing 30 is then positioned between the plates 10 and 20, and the plates 10 and 20 are then welded to each other and/or to the tubing 30. It is within the scope of the present invention for the plates 10, 20 and tubing 30 to be welded using any welding method now known or to be developed in the future, but it is preferable that the plates 10, 20 and tubing 30 are joined by one of spot welding, ultrasonic welding, cold welding, and the like. It is also within the scope of the present invention for the plates 10, 20 and tubing 30 to be joined using mechanical joining techniques, such as a slot and groove system, and clamping the plates 10, 20 together in a manner that fixedly secures the tubing 30 between the plates 10, 20.
Subsequent to the joining of the plates 10, 20 and tubing 30, the dimple forming tool 50 (shown, e.g., in
Referring to
Furthermore, the radius Rd of the inner sloped surfaces 51d and 52d of the dimple dies 51 and 52, respectively, result in an outer surface of the side face 40d of each dimple 40 having the same radius Rd, such that the outer surface of each side face 40d provides a fairly snug or tight fit with a corresponding outer surface of the crushed or flattened tubing 30. As can be seen in
In operation, once the evaporator plate assembly 1 is installed in a refrigeration system, whether conventional or developed in the future, during the ice making operation or production mode, water is directed from the top of each plate 10 and 20, down the channels defined by the neighboring vertically extending fins 11, 11 and 21, 21, and over the dimples 40. Expanding refrigerant passing through the tubing 30 freezes the water passing over the dimples 40.
As shown in
The above-described ice-making process is carried out such that the exposed surface of each of the plates 10 and 20 is entirely or at least substantially covered with ice cubes Ic. Preferably, there is a water tank beneath the evaporator plate assembly 1 to catch run-off water falling from the plates 10, 20. The run-off water is then recycled through the refrigeration system and over the plates 10, 20 until it is determined that there is an insufficient amount of water left in the circulation tank due to the amount of ice cubes Ic formed on the plates 10, 20.
The refrigeration system then switches from production mode to harvesting mode, during which a hot gas is directed through the tubing 30 and/or water passes between the plates over the tubing 30. The projections 73, 74 of each ice cube Ic then fall or slide out of a corresponding dimple 40 and the cube Ic is collected in a bin (not shown) below the plates 10, 20. An innovative aspect of the crescent shaped front surface 72 and projections 73, 73 extending from the substantially flat back surface 71 prevent neighboring ice cubes Ic from sticking to each other in the collection bin (not shown).
Current conventional evaporator plate assemblies use copper tubes that are coated with tin according to NSF requirements. The brazing, acid washing and coating of the copper tubes result in high labor and material costs, not to mention causing illness to laborers from inhaling or making skin contact with the various chemicals involved in such processes. The all stainless steel aspect of the above-described innovative evaporator plate assembly 1, according to a preferred embodiment of the invention, eliminates tin-tape, brazing and tin-plating while being able to maintain or increase production of the ice nuggets Ic. Moreover, the all stainless steel evaporator plate assembly 1 eliminates all of the chemicals used for fluxing prior to tin plating of the tubes, eliminates all chemicals needed for acid cleaning of the tubing, eliminates tin silver solder needed for joining the evaporator plates and tube plating, saves energy due to elimination of the infrared oven need to heat the conventional plate and tubing assembly process, greatly reduces water use, and greatly reduces air make up and exhaust air requirements. In essence, the innovative evaporator plate assembly 1 provides a more environmental friendly assembly than is currently available in the marketplace.
Furthermore, the all stainless steel aspect of the evaporator plate assembly 1 presents possibilities wherein each assembly 1 may easily be removed from the refrigeration system by a technician to be cleaned, serviced and possibly even replaced.
While the preferred embodiment of the evaporator plate assembly 1 described above includes components which are all made of stainless steel, as an innovative aspect of the invention is the configuration of the dimples relative to the crushed tubing between the evaporator plates, it is also within the scope of the present invention to provide an embodiment having a copper tube that is plated with tin.
That is, instead of using tin tape and brazing to join the copper tubing to the evaporator plates, a second embodiment of the present invention includes tin plating a copper tube which is then spot welded to the evaporator plates before being crushed by the dimple making tool in the manner described above. A motivation for implementing the second embodiment of the innovative evaporator plate assembly having the tin plated copper tubing is a significant increase in ice production. That is, referring to the graph shown in
Moreover, when the tin plated copper tubes are used with dimples described as HK copper (Narrow), which are narrower than the dimples 40 described above, the production of ice increases 15%-16% to 555 pounds of ice. Even more significant is that when the wider dimples 40 described above—also described as HK copper (Wide)—are used, it can be seen that production of ice increases up to 25% compared with the conventional tin taped copper tubing assembly KM used in the conventional evaporator plate assembly.
The second embodiment produces more ice cubes Ic than the all stainless steel embodiment and is more resistant to corrosion due to the tin plated copper tubing, which must be counter balanced with the manufacturers concerns and costs associated the additional materials and chemicals needed with the second embodiment relative to the first, all stainless steel embodiment.
Compared to the conventional KM evaporator plate assemblies, the tin plated copper tubing or second embodiment of the present invention, HK copper (Narrow) and HK copper (Wide) eliminate the cleaning and soldering that is necessary with the conventional KM assembly, while the preferred or all stainless steel embodiment eliminates the additional manufacturing processes and materials, chemicals and the like associated therewith that are noted above.
While the invention has been described in conjunction with regards to specific aspects, it is evident that various changes and modifications may be made, and the equivalents substituted for elements thereof without departing from the true scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the scope thereof. Therefore, it is intended that this invention not be limited to the particular aspects disclosed herein, but will include all embodiments within the spirit and scope of the disclosure.
This application claims the benefit of U.S. Provisional Application No. 61/699,171 filed Sep. 10, 2012, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2014703 | Smith | Sep 1935 | A |
3280585 | Lowe | Oct 1966 | A |
3511059 | Hoenisch et al. | May 1970 | A |
3650121 | Kimpel et al. | Mar 1972 | A |
4344298 | Biemiller | Aug 1982 | A |
4366679 | Van Steenburgh, Jr. | Jan 1983 | A |
4412429 | Kohl | Nov 1983 | A |
4417450 | Morgan, Jr. et al. | Nov 1983 | A |
4458503 | Nelson | Jul 1984 | A |
4489567 | Kohl | Dec 1984 | A |
4555913 | Ishiguro | Dec 1985 | A |
4573325 | Chiu et al. | Mar 1986 | A |
4580410 | Toya | Apr 1986 | A |
4589261 | Ohashi et al. | May 1986 | A |
4986088 | Nelson | Jan 1991 | A |
4995245 | Chang | Feb 1991 | A |
5060484 | Bush et al. | Oct 1991 | A |
5097897 | Watanabe et al. | Mar 1992 | A |
5182925 | Alvarez et al. | Feb 1993 | A |
5291752 | Alvarez et al. | Mar 1994 | A |
5345782 | Takahashi et al. | Sep 1994 | A |
5479707 | Alvarez et al. | Jan 1996 | A |
5586439 | Schlosser et al. | Dec 1996 | A |
6148621 | Byczynski et al. | Nov 2000 | A |
6161396 | Allison et al. | Dec 2000 | A |
6205807 | Broadbent | Mar 2001 | B1 |
6247318 | Stensrud et al. | Jun 2001 | B1 |
6347526 | Ledbetter | Feb 2002 | B1 |
6463746 | Bethuy et al. | Oct 2002 | B1 |
6619051 | Kilawee | Sep 2003 | B1 |
6725675 | Kampert et al. | Apr 2004 | B2 |
6742576 | Bergevin | Jun 2004 | B2 |
7017355 | Allison et al. | Mar 2006 | B2 |
7243508 | Sanuki et al. | Jul 2007 | B2 |
7281385 | Wakatsuki | Oct 2007 | B2 |
7340913 | Miller et al. | Mar 2008 | B2 |
7556236 | Slappay | Jul 2009 | B2 |
7779641 | Lee et al. | Aug 2010 | B2 |
8635877 | Kim et al. | Jan 2014 | B2 |
8677774 | Yamaguchi et al. | Mar 2014 | B2 |
8677777 | Yamaguchi et al. | Mar 2014 | B2 |
8857198 | Styn et al. | Oct 2014 | B2 |
9017485 | Murthy et al. | Apr 2015 | B2 |
9056337 | Walker et al. | Jun 2015 | B2 |
9604324 | An et al. | Mar 2017 | B2 |
9643742 | Metzger | May 2017 | B2 |
9644879 | Broadbent | May 2017 | B2 |
9688423 | Metzger | Jun 2017 | B2 |
9719710 | Yang | Aug 2017 | B2 |
9733003 | Hoti | Aug 2017 | B2 |
9803907 | Erbs et al. | Oct 2017 | B2 |
9845982 | Knatt | Dec 2017 | B2 |
9857117 | Kim | Jan 2018 | B2 |
9863682 | Broadbent | Jan 2018 | B2 |
9869502 | Gardner et al. | Jan 2018 | B2 |
9933195 | Roth et al. | Apr 2018 | B2 |
9939186 | Roth et al. | Apr 2018 | B2 |
20040026599 | Lacan et al. | Feb 2004 | A1 |
20050252233 | Sanuki et al. | Nov 2005 | A1 |
20080264090 | Sowa et al. | Oct 2008 | A1 |
20090100847 | Moon et al. | Apr 2009 | A1 |
20090165492 | Wilson et al. | Jul 2009 | A1 |
20100250005 | Hawkes et al. | Sep 2010 | A1 |
20100257886 | Suzuki et al. | Oct 2010 | A1 |
20110005263 | Yamaguchi et al. | Jan 2011 | A1 |
20120031135 | Schill | Feb 2012 | A1 |
20150219380 | Murthy et al. | Aug 2015 | A1 |
20150375349 | Gotterbarm et al. | Dec 2015 | A1 |
20160054043 | Broadbent | Feb 2016 | A1 |
20160081365 | Bertone | Mar 2016 | A1 |
20160290697 | Broadbent et al. | Oct 2016 | A1 |
20160298892 | Matsumoto | Oct 2016 | A1 |
20160298893 | Knatt et al. | Oct 2016 | A1 |
20160298894 | Matsumoto | Oct 2016 | A1 |
20160370061 | Erbs | Dec 2016 | A1 |
20170067678 | Melton et al. | Mar 2017 | A1 |
20170122643 | Cravens et al. | May 2017 | A1 |
20170176077 | Knatt | Jun 2017 | A1 |
20170205129 | Metzger | Jul 2017 | A1 |
20170227274 | Almblad | Aug 2017 | A1 |
20170370628 | Knatt | Dec 2017 | A1 |
20180017304 | Knatt | Jan 2018 | A1 |
20180031294 | Olson, Jr. et al. | Feb 2018 | A1 |
20180038623 | Hoti | Feb 2018 | A1 |
20180058743 | Vorosmarti, III et al. | Mar 2018 | A1 |
20180106521 | Broadbent et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
2400243 | Dec 2011 | EP |
1020150124222 | Nov 2015 | KR |
2009134102 | Nov 2009 | WO |
2018011711 | Jan 2018 | WO |
Entry |
---|
Melton, Glenn O'Neal; Applicant-Initiated Interview Summary for U.S. Appl. No. 15/353,833, filed Nov. 17, 2016, dated Mar. 13, 2018, 3 pgs. |
Melton, Glenn O'Neal; Non-Final Office Action for U.S. Appl. No. 15/353,833, filed Nov. 17, 2016, dated Jan. 3, 2018, 22 pgs. |
Melton, Glenn O'Neal; Extended European Search Report for serial No. 17202170.1, filed Nov. 16, 2017, dated Apr. 5, 2018, 9 pgs. |
Melton, Glenn O'Neal; Notice of Allowance for U.S. Appl. No. 15/353,833, filed Nov. 17, 2016, dated Jun. 28, 2018, 15 pgs. |
Number | Date | Country | |
---|---|---|---|
20140138065 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61699171 | Sep 2012 | US |