The present invention relates generally to ice dispensers with the capability to dispense either crushed or cubed ice.
The ice dispenser of the present invention allows for the selection of either cubed ice or crushed ice. More specifically, the present invention relates to an improved self-contained, modular design. The present invention may be adapted for use in both consumer and commercial markets and has the potential for, but is not limited to, applications in equipment such as stand-alone ice crushers, refrigerators, and soft drink dispensers.
Accordingly, the present invention comprises of an ice feeding mechanism which transports ice through a duct to an ice crusher assembly. The ice crusher is driven by a separate motor. The invention also includes a bypass gate which allows ice to bypass the crusher assembly when cubed ice is selected for dispensing. Both cubed and crushed ice are routed and dispensed through a single ice chute.
The present ice dispenser allows for the selection of the type of ice to be dispensed: cubed ice or crushed ice. The ice type selection type usually occurs prior to dispensing, but the selection may also be made during the dispensing of ice. The means for the ice type selection may be made by, but is not limited to, a device such as a switch. If cubed ice is selected, the bypass gate is opened allowing ice to bypass the ice crusher assembly. If crushed ice is selected, the bypass gate is closed, and ice is delivered to the ice crusher. Opening and closing of the bypass gate is accomplished by means of a motor-driven worm drive, but may also be accomplished by means of an electric solenoid, pneumatic or hydraulic cylinder, or other actuating device.
Ice is supplied to the ice dispenser assembly from an ice bin, ice chest, or other ice reservoir and enters the auger duct. When the ice dispenser is activated, by means of a switch or other input device, the ice is transported through the length of the duct by a motor-driven auger. If cubed ice is the current selection, the ice then passes through the bypass gate, and the cubed ice exits the dispenser through the ice chute. If crushed ice is the current selection, the ice is delivered to the ice crusher, is crushed, and crushed ice exits the dispenser through the ice chute.
Brief Explanation of Unique Components
1. Two Motor System
2. Modular Design
3. Bypass gate system
4. Paddle blades
5. Ice crusher assembly
6. Ice crusher drive system
7. Ice chute
8. Electronic Controls
1. Two-Motor System
2. Modular Design
3. Bypass Gate System
4. Paddle Blades
5. Ice Crusher Assembly
6. Ice Crusher Drive System
7. Ice Chute
8. Electronic Controls
Advantages and Objects of the invention over the prior products, patents, and publications:
The invention is pointed out with particularity in the claims. The above and further features and benefits of the invention are better understood by reference to the following detailed description taken together with the accompanying drawings in which:
An example configuration of the crushed ice dispenser is shown in the drawings. The primary external components are shown; the auger motor is coupled to the auger; the auger resides within the auger duct; the bypass gate is positioned in front of the crusher assy and slides along the auger duct. In this example, a motor rotates a worm drive shaft to open and close the bypass gate. The crusher motor is located above the crusher assy; and in this example, a timing belt system transmits power from the crusher motor to the crusher assy. The ice chute is assembled at the end of the auger duct, below the ice crusher assy.
Crushed Ice Dispenser Assy, Exploded
The exploded assembly of the crushed ice dispenser is shown illustrating all the major components. The auger is assembled within the auger duct. At the end of the auger is a pair of paddle blades which push the cubed ice into the ice crusher. The paddle blades are constructed of a flexible material which allows the blades to fold and the blade ends touch the wall of the duct. This minimizes the occurrence of ice jams.
Auger and Bypass Gate
The drawing figures illustrate how the auger transports ice through the crushed ice dispenser in both the cubed ice and crushed ice selection modes. Ice enters the auger duct and is pushed down the length of the auger duct by the auger. When the dispenser is in cubed ice mode, the bypass gate is open, and the ice exits the auger duct through the bypass gate and falls into the ice chute. When the dispenser is in crushed ice mode, the bypass gate is closed, the cubed ice is pushed by the auger past the bypass gate, and the paddle blades push the ice into the ice crusher.
Bypass Gate System
The functionality of the bypass gate is shown in both the cubed ice and crushed ice selection modes. In the crushed ice mode, the bypass gate is closed, and the auger transports the cubed ice to the crusher. In the cubed ice mode, the bypass gate is open, and the cubed ice falls through the opening and into the ice chute. The bypass gate slides along the auger duct. In this example, the bypass gate is driven by a motor and worm dive.
Bypass Gate Assy
Shown in the drawings is one possible configuration of the bypass gate assembly with a worm drive system. The bypass gate motor turns a worm drive. Assembled to the bypass gate are bearings that run along the helix of the worm drive. As the motor turns, the bypass gate is moved along the length of the auger duct. The bypass gate is curved to conform to the outer diameter of the auger duct.
Ice Crusher System
The drawings illustrate how the crushed ice dispenser dispenses crushed ice. In the crushed ice selection mode, the bypass gate is closed, and cubed ice is transported by the auger to the paddle blades. The paddle blades push the ice into the crusher assembly where the cubed ice is crushed by the rotating crusher blades. The crusher blades are attached to the rotating crusher shaft which is driven by the crusher motor. In this example, the crusher motor transmits power to the crusher through a timing belt system. The crusher blades also add velocity to the ice as it exits the crusher and enters the ice chute, resulting in a greater crushed ice dispense rate than existing crushed ice dispensers.
Ice Crusher Assy
The ice crusher assembly is includes a set of stationary blades integrated into the base of the crusher and a set or rotating blades assembled to a rotating shaft. As ice enters the crusher assembly, the ice is crushed between the stationary and rotating blades and then pushed out of the crushing assembly by the motion of the rotating blades into the ice chute. The blades are spaced along the shaft by spacers, and the shaft is secured to the base with retainers. In this example, the shaft rotates on bushings, but bearings may also be used in higher demand applications. The geometry of the blades is such that the blades can crush ice in either rotational direction. This gives the ice dispenser greater effectiveness in eliminating ice jams.
Ice Chute
These drawings illustrate the ice chute design used in the crushed ice dispenser. The ice chute is configured to have two inlets: one inlet for cubed ice and one inlet for crushed ice; and one outlet for both cubed and crushed ice. Cubed ice falls into the cubed ice inlet when the crushed ice dispenser is in cubed ice selection mode and the bypass gate is open. Crushed ice is pushed into the crushed ice inlet by the crusher when the crushed ice dispenser is in crushed ice mode and the bypass gate is closed. Both cubed ice and crushed ice inlets converge, and both types of ice exit the ice chute through the same outlet.
Refering now to the drawings,
The ice dispenser 40 is positioned in the dispenser 20 so that the mounting flange 44 is disposed against the outer front wall of an ice bin 24 (not shown). More particularly, the ice dispenser 40 is positioned so that auger duct inlet opening 46 is in registration with an ice discharge opening formed in the front wall of the ice bin 24 (ice bin opening not illustrated). Fasteners (not illustrated) extend through openings 50 formed in the mounting flange 44 to secure the ice dispenser 40 to the rest of the beverage dispenser 20. In some versions of the invention, mounting plate flange openings 50 are keyhole-shaped openings. Pins with relatively large heads are permanently affixed to and extend out from the wall of the ice bin 24 to which the ice dispenser 40 is attached. In this version of the invention, ice dispenser 40 is removably attached to the ice bin 24 by positioning the mounting flange 44 so that the ice bin pins seat and lock in the flange openings 50. This feature makes it easy to remove and replace ice dispenser 40 for maintenance.
The end of auger duct 42 adjacent mounting flange 44 is closed by a disc-shaped end cap 54 (shown in
Auger duct 42 is further formed to have four rectangularly-shaped protuberances 61. Two of the protuberances 61 are positioned on the outer surface of the top wall of flange 58. The remaining two protuberances 61 (one illustrated in
An auger 62 is disposed inside the auger duct 42. The auger 62 is disposed over an elongated shaft 64 that extends axially through the auger duct 42. One end of shaft 64 is mounted in and extends a short distance beyond a through hole 68 formed in end cap 54. The opposed end of shaft 64 is rotatably seated in a center-located boss 71 formed in end cap 55. Not identified is the opening in boss 71 in which the shaft 64 is seated. In some versions of the invention, sleeves formed of low friction material are positioned between the ends of shaft 64 and the static parts of the auger duct to function as bearings.
Auger 62 extends longitudinally through the auger duct 42 from duct inlet opening 46 to the bypass opening 60. The auger 62 is mounted to shaft 64 to rotate with the shaft. A paddle blade 66 is mounted to the end of the shaft 64 that extends through the space internal to the auger duct 42 subtended by primary opening 56. Paddle blade 66, like auger 62, is fitted to shaft 64 to rotate with the shaft. In the illustrated version of the invention, a cylindrical spacer 69 disposed on shaft 64 longitudinally separates the paddle blade 66 from the auger 62. Auger 62 is shaped so that, upon rotation, the auger pushes the ice cubes from duct inlet opening 46 towards primary opening 56 and bypass opening 60. Paddle blade 66 is shaped to, upon rotation, push ice cubes through the primary opening 56. Paddle blade 66 is preferably made of a flexible material, such as rubber, which allows the blade to fold so as to minimize the occurrence of ice jams.
Shaft 64 and, by extension, auger 62 and paddle blade 66, are rotated by an auger motor 70. The auger motor 70 is located adjacent end cap 54. Not shown is a bracket that holds auger motor 70 fast to either auger duct 42 or mounting flange 44. The auger motor 70 has an output shaft 72 directed toward end cap 54. A cylindrical coupling sleeve 74 couples the auger shaft 64 to the motor shaft 72 so the two shafts move in unison. As seen in
A bypass gate 80, also part of ice dispenser 40, selectively opens and closes the auger duct bypass opening 60. The bypass gate 80, best seen in
In addition to the curved main body 81, bypass gate 80 has three parallel aligned and spaced apart tabs 86 that extend away from the plate main body (see
Head 94 is formed to have two rows of parallel stationary blades 96. The two rows of stationary blades 96 are spaced apart from each other to define an elongated gap 98 in the head 94 that extends along the longitudinal axis of the head. In each row, the individual stationary blades 96 are spaced apart from each other to define a longitudinally extending slot 102 between each pair of adjacent blades. Each stationary blade 96 is further positioned to be longitudinally aligned with a blade in the opposed row. Thus, each slot 102 is aligned with a complementary slot 102 in the opposed row. Base 90 is further formed so that the stationary blades 96 have tapered cross-sectional profiles. Specifically, the rearward directed face of each stationary blade 96 has a relatively narrow cross sectional width; the forward directed face of the blade has wider cross sectional width. Slots 102 thus have tapered profiles opposite in direction to those of the stationary blades 96.
A moving blade assembly 104 is rotatably mounted to ice crusher base 90. Blade assembly 104 includes an elongated shaft 106 that seats in base gap 98. Shaft 106 has a main body 108 with a square cross-sectional profile. At one end of the main body 108, shaft 106 has a cylindrical head 110. Head 110 has a diameter larger than the cross sectional area subtended by the shaft main body 108. The opposed end of the shaft 106 has a cylindrical stem 112. Stem 112 has a diameter smaller than the cross sectional area subtended by the shaft main body 108.
A number of blades 114 are mounted to the shaft 106 to rotate with the shaft. Each blade 114 has a circular base 116. The blade base 116 is formed to have a center located opening 118. The blade base openings 118 are square in shape and are dimensioned to facilitate the close slip fitting of the blade bases 116 over the shaft main body 108. A head 120 is integrally formed with and extends radially outwardly from each blade base 116. The opposed surfaces that define the sides of the head 120 are inwardly curved. The edge surface that defines the top of blade head 120 curves outwardly.
Blade assembly 104 has a number of blades 114 equal to the number of pairs of opposed aligned slots 102 defined by the ice crusher base 90. Tube-shaped spacers 122 longitudinally separate the blades 114 along the length of the shaft main body 108. An additional spacer 122 is located over the shaft main body 108 between the shaft head 110 and the adjacent blade 114. A spacer 122 is located between the shaft stem 112 and the adjacent blade 114. When the blade assembly 104 is assembled, the individual blades 114 are oriented relative to each other so that the radial positions of the blade heads 120 are angularly spaced apart. The geometry of the blades is such that ice is crushed in either rotational direction, which provides greater effectiveness in eliminating ice jams.
Shaft retainers 124 and 126 and bushings 128 and 130 rotatably hold blade assembly 104 to the crusher base 90. At one end of the base 90, frame 92 has an inner section formed with a concave surface (not identified) that defines a circular notch 132 in which shaft head 110 is seated. Shaft retainer 124 seats over the shaft head 110 and holds shaft head 110 in position. While the shaft retainer 124 is generally in the form of a bar, the retainer has a concave surface 134 to facilitate the close seating of the retainer over shaft head 110. Fasteners 135 extend through holes formed in the shaft retainer 124 and frame 92 to hold the shaft retainer to the ice crusher frame 90 (holes not identified).
Bushing 128, formed of a solid low friction material, is disposed around shaft head 10. Bushing 128 provides a low friction interface between the rotating shaft 106 and the static ice crusher base 90 and retainer 124.
The side of the base frame 92 opposite the side that defines notch 132 is formed with an inwardly curved inner surface 136. Surface 136 is curved to define a notch (not identified) identical in shape to notch 132. The side of the base frame in which curved inner surface 136 is formed with a slot 138. Slot 138 opens into the notch defined by surface 136. When ice crusher 28 of this invention is assembled, the shaft stem 112 extends outwardly across frame inner surface 136 and out through slot 138.
Shaft retainer 126 seats over the shaft stem 112. The shaft retainer 126 has a shape similar to, if not identical to, that of shaft retainer 124. Bushing 130, formed from the same material as bushing 128, is disposed around the portion of shaft stem 112 that extends between the frame inner surface 136 and the shaft retainer 126 and through slot 138. Fasteners 135 hold the shaft retainer 126 to the ice crusher base 90.
The base frame 92 is further formed so that the surfaces that define the spaces in which the shaft 108, shaft retainers 124 and 126 and bearings 128 and 130 seat are recessed relative to the rear edge of the frame. Thus, blade assembly 104, with the exception of the blade heads 120, is disposed within the space enclosed by the base frame 92.
Ice crusher base 90 seats over the rectangular flange 58 of auger duct 42. To facilitate the mounting of the ice crusher 28 to the rest of the ice dispenser 40, the base frame 92 is formed on the top and bottom surfaces to have raised ribs 140 and 142, respectively. Each rib 140 and 142 extends the width of the frame surface with which the rib is integral. When the ice crusher 28 is seated against duct flange 58, ribs 140 and 142 abut the protuberances 61 integral with the flange.
A crusher motor 144, best seen in
A pulley 148 is mounted for rotation to the free end of motor shaft 146. A complementary pulley 150 is mounted to the end of the blade assembly shaft stem 112 that extends beyond the crusher base 90. A drive belt 152 disposed around the pulleys 148 and 150 couples the pulleys for simultaneous rotation. Alternately, a roller chain and sprocket arrangement may be utilized instead of a drive belt and pulley arrangement to drive the ice crusher.
The ice chute 26, now described by reference to
Bottom molding 156 is further shaped to have second slide 164 parallel to the first slide 162. The bottom molding 156 is formed so that the second slide 164 starts at a position rearward of frame 160. A plate 166 closes the most rearward end of the second slide, the end that extends beyond frame 160. This most-rearward section of the second slide 164 is formed as a three-sided structure; a base wall and two parallel, spaced apart side walls (individual wall sections not identified.) For reasons that are apparent below, side walls of the second slide 164 that extend rearward of frame 160 are formed to have concaved edges 168 which define a radius slightly greater than that defined by the bypass gate main body 81.
Chute bottom molding 156 is further formed so that, forward of frame 160, a single internal flange member 170 forms opposed sides of the first and second slides 162 and 164, respectively. Flange 170 terminates a short distance forward of frame 160 so that the flow path defined by the second slide 164 merges into the flow path defined by the first slide 162.
The chute bottom molding 156 is further formed to have a head piece 172. Head piece 172 extends forward from the outer wall of the molding 156 that defines the outer wall of the second slide 164. At the forward end of the bottom molding 156, the head piece 172 curves around and extends over the space where the flow path of the second slide 164 merges into the flow path of the first slide 162. Bottom molding 156 is further shaped so that a diverter panel 174 extends rearwardly from the free end of the head piece 172. Diverter panel 174 is disposed above the flow path defined by the first slide 162.
Top molding 158 is disposed over bottom molding 156. The top molding 158 is formed to have a first side wall 180 that projects upwardly from the outer wall of first slide 162. The top molding 158 has a second side wall 182 that extends upwardly from the outer wall of the second slide 164. A top wall 184, also part of top molding 158, extends between side walls 180 and 182. The ice chute 26 is further formed so that when top molding 158 is fitted over bottom molding 156, the top wall 184 is disposed over the top of the leading edge of frame 160 and over diverter panel 174.
Extending rearward from the top wall 184, the top molding 158 has a three-sided hood 186. Hood 186 extends rearward from the section of top molding 158 that extends laterally from the ice crusher base 90. A top wall 188 of hood 186 is flush with the molding top wall 184. A first side wall 190 of hood 186 is positioned to be adjacent and extend rearward of bottom molding frame 160. A second side wall 192 of hood 186 extends rearwardly from side wall 182.
The top molding 158 is also shaped to define a nose 196 that extends forward from the top wall 188. Nose 196 has a semicircular cross section profile that is downwardly directed. When moldings 156 and 158 are mated together, the opposed edges of nose 196 seat against the opposed edges of the forward end of the first slide 162. The forward end of the first slide 162 and nose 196 collectively form the opening 198 of chute 26 through which ice is discharged.
In the illustrated version of the invention, bottom and top moldings 156 and 158, respectively, are snap fitted together. Integrally formed with the bottom molding 156 are outwardly directed fingers 202. The top molding side walls 180 and 182 are each formed with a U-shaped downwardly directed bracket 204. Collectively, the fingers 202 and brackets 204 are positioned so that when the top molding 158 is positioned over the bottom molding 156, the fingers snap against surfaces integral with the brackets to hold the moldings together.
The ice chute 26 is further formed to have four tabs 206 integral with bottom molding frame 160. Two of the tabs 206 extend from the top of the frame 160 and are positioned to be aligned with the upper two auger duct protuberances 61. Two of the tabs 206 extend from the bottom of frame 160 (one tab seen) and are positioned to be aligned with the lower two auger duct protuberances.
As part of the assembly of ice dispenser 40, the ice crusher 28 is fitted against auger duct flange 58 and the ice chute 26 is fitted over the ice crusher so that crusher head 94 seats in the duct frame 160. Pairs of fasteners 208 and 210 extend through concentric openings formed in the flange protuberances 61, ice crusher ribs 140 and 142 and chute tabs 206 (openings not identified). Each pair of fasteners 208 and 210 interlock to hold the ice chute 26 and ice crusher 28 to the auger duct 42.
When the ice dispenser 40 is so assembled, the rear end of the bottom molding second slide 164 is disposed under the auger duct bypass opening 60. Top molding hood 186 extends rearwardly, towards the auger duct bypass opening 60. Thus, hood 186 extends rearwardly beyond the ice crusher 28. The rear end of the second slide 164 is disposed below bypass opening 60. However, the ice chute 26 is shaped so that both the second slide 164 and hood 186 are spaced from the auger duct 42. Specifically, the second slide 164 and hood 186 are positioned to define a space between the ice chute 26 and the auger duct 42 in which the bypass gate main body 81 can freely move.
Ice dispenser 40 also includes a lever arm 214 (
Control unit 220 may be a microcontroller, a PLA, a PGA or a set of discrete components. Based on the depression of lever arm 214 and the setting of switch 222, control unit 220 selectively actuates the auger motor 70, the bypass gate motor 84 and the ice crusher motor 144. Control unit 220 controls the operation and speed of auger motor 70, bypass gate motor 84 and crusher motor 144. Control unit 220 also monitors the current draw of each motor to determine if an ice jam has occurred. If an ice jam does occur, control unit 220 is programmed to rotate auger 62 and/or crusher blade assembly 104 in a manner so as to free the ice jam, for example, by reversing the direction of rotation of one or both of auger 62 and crusher blade assembly 104. Not illustrated is the power supply that supplies the energization signals to the motors 70, 84 and 144.
In some versions of the invention an agitator 224, shown diagrammatically in
When an individual wants an iced beverage from dispenser 20, he often initially fills the container with the desired quantity of ice. The individual first sets switch 222 to choose the form of ice desired for the beverage. If switch 222 is set to indicate a choice of cubed ice, control unit 220, if it has not already done so, actuates the bypass gate motor 84 to cause the bypass gate main body 81 to retract away from the auger duct bypass opening 60. Each time the bypass gate 80 is moved, it is moved a set distance. Therefore, for each extension and retraction of the bypass gate 80, motor 84 is actuated for a set period of time.
Once the signal from sensor 218 indicates that lever 214 is pivoted, the control unit 220 actuates auger motor 70. The auger motor 70 rotates to cause a like movement of auger 62 and paddle blade 66. This results in the movement of ice through the auger duct 42 from the end adjacent opening 46 towards the opposed end. Ice crusher motor 144 is not actuated. Consequently, a head of cubed ice develops in auger duct 42 adjacent the primary opening 56. The ice downstream of this head in the auger duct 42 is, therefore, forced out of the duct through the open bypass opening 60.
The ice discharged from bypass opening 60 flows onto the ice chute second slide 164. Gravity causes the ice to move down the second slide 164 onto the first slide 162 and be discharged through chute opening 198 into the waiting container.
Alternatively, at the start of the ice dispensing process, switch 222 is set to cause crushed ice to be dispensed. If switch 222 is not already in this state, control unit 220, upon sensing the change in switch state, actuates the bypass gate motor 84. Specifically, the bypass gate motor 84 is actuated to move the bypass gate main body 81 over the duct bypass opening 60.
Once sensor 218 transmits a signal indicating lever 214 has been pivoted, control unit 220 causes the auger motor 70 to be actuated as described above. Also during this ice dispensing process, the control unit 220 actuates the ice crusher motor 144. Thus, simultaneously, auger 62 moves ice towards the free end of the auger duct 42 and the ice crusher 28 is actuated. Once the ice reaches the free end of the auger duct 42, the paddle blades 66 force the ice out of the duct through the primary opening 56. The cubed ice is pushed against the rearwardly-directed face of the ice crusher head 94. The rotating blades 114 break the ice and force the crushed ice slivers through slots 102. The crushed ice then moves down the chute slide 162 and is discharged from chute opening 198. The rotating crusher blades 114 also add velocity to the crushed ice, resulting in an improved crushed ice dispense rate from chute opening 198.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
This patent application claims the benefit of U.S. Provisional Patent Application No. 60/648,893, filed Feb. 1, 2005. The entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60648893 | Feb 2005 | US |