The subject matter of the present disclosure relates to an ice dispenser for a refrigerator appliance and, more specifically, to an ice dispenser also having an ice crusher.
Generally, a refrigerator includes a freezer compartment and a fresh food compartment, which are partitioned from each other to store various foods at appropriate low temperatures. It is common to provide an automatic icemaker/water dispenser with a refrigerator. In a “side-by-side” type of refrigerator where the freezer compartment is arranged to the side of the fresh food compartment, the icemaker is usually disposed in the freezer compartment and, thus, utilizes the cold air in the freezer compartment, which typically includes an evaporator also disposed in the freezer compartment.
In a “bottom freezer” type of refrigerator where the freezer compartment is arranged beneath a top mounted fresh food compartment, convenience necessitates that the icemaker is disposed in a sub-compartment (often referred to as an “icebox”) that is usually thermally insulated and configured in one of the top mounted fresh food compartment doors with ice delivered through an opening on the door. In such an arrangement, provision must be made for providing adequate refrigeration to the icebox to enable the icemaker to form and store the ice. An access door is commonly provided on the icebox to allow the consumer to access the internal ice bucket and icemaker.
Typically, the ice maker delivers ice into a storage container or bucket where the ice is kept until used. A panel on the front of the refrigerator allows the user to select between the dispensing of crushed ice or non-crushed ice. Conventionally, the ice is pushed by e.g., an auger through a chute or channel equipped with one or more blades, which are carried on a shaft and rotate with the shaft to contact and crush the ice. Chilled water can also be provided by routing a thermally conductive conduit to the panel such that the water is cooled before reaching the dispenser.
The ice container and dispenser can consume a significant amount of space from the freezer or fresh food compartment. Space is consumed not only by the volume required for ice creation and storage, but the mechanisms for moving and/or crushing the ice can also consume space the user might otherwise prefer to have available for food storage. Additionally, the mechanisms needed for crushing ice can also consume additional space. Depending upon how the components are positioned within these compartments, user access to portions of the compartment and/or to the ice storage container (e.g., for cleaning or manually collecting ice) can be inconvenient as well.
Accordingly, an ice dispensing system for a refrigerator appliance would be useful. More particularly, an ice dispensing system for a refrigerator appliance that can allow for the positioning of the ice storage container and/or ice crushing mechanism on a door of the refrigerator would be beneficial as it could provide savings in space. Additionally, such a system that can provide more convenient access to the refrigerator compartments and/or the ice storage container would be also be useful.
The present invention provides an ice dispensing system for a refrigeration appliance. The ice dispensing system includes a mechanism for crushing ice such that both crushed ice or non-crushed ice can be dispensed to a user of the appliance. A rotating drum or cylinder carries one or more blades that can crush ice against non-rotating blades carried on an axis or rod that extends into the drum. The direction of rotation of the drum can be selected so as to determine whether crushed or non-crushed ice is dispensed. The dispensing system can be located on the door of the refrigerator. An ice maker can also be positioned with the ice dispenser on the door of the appliance or, optionally, can be located in a compartment of the refrigerator. Additional aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one exemplary embodiment, the present invention provides an ice dispensing assembly for an appliance. The assembly includes a container for the receipt of ice. The container has a bottom defining a first opening for the passage of ice from the container. A cylindrically-shaped sleeve is connected with the opening at the bottom of the container and extending from the bottom of the container. A base is connected with the sleeve and defines a second opening for the passage of ice from the container. A cylinder is positioned at least partially within the sleeve and is rotatable with respect to the sleeve. The cylinder has a wall and defines an inner diameter. At least one rotatable blade extends along the inner diameter between opposing ends positioned at the wall of the cylinder. The at least one rotatable blade defines a guide hole that is centrally positioned along the at least one rotatable blade. A shaft extends into the cylinder and through the guide hole of the at least one rotatable blade. The shaft has a bottom end connected to the base. At least one non-rotating blade is attached to the shaft.
In another exemplary embodiment, the present invention provides a refrigerator that includes a cabinet, a fresh food compartment, a freezer compartment, or both, and an ice maker. An ice dispensing assembly is provided that comprises a container for the receipt of ice from the ice maker. The container has a bottom defining a first opening for the passage of ice from the container. A cylindrically-shaped sleeve is connected with the opening at the bottom of the container and extends from the bottom of the container. A base is connected with the sleeve. The base defines a second opening for the passage of ice from the container. A cylinder is positioned at least partially within the sleeve and is rotatable with respect to the sleeve. The cylinder has a wall and defining an inner diameter. At least one rotatable blade extends along the inner diameter between opposing ends positioned at the wall of the cylinder. The at least one rotatable blade defines a guide hole that is centrally positioned along the at least one rotatable blade. A shaft extends into the cylinder and through the guide hole of the at least one rotatable blade. The shaft has a bottom end connected to the base. At least one non-rotating blade is attached to the shaft.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Refrigerator doors 126, 128 are rotatably hinged to an edge of cabinet 120 for accessing fresh food compartment 122. A freezer door 130 is arranged below refrigerator doors 126, 128 for accessing freezer compartment 124. In the exemplary embodiment, freezer door 130 is coupled to a freezer drawer (not shown) slidably coupled within freezer compartment 124.
For this exemplary embodiment, dispenser 114 includes a discharging outlet 132 for accessing ice and water. A single paddle 134 is mounted below discharging outlet 132 for operating dispenser 114. A user interface panel 136 is provided for controlling the mode of operation. For example, user interface panel 136 includes a water dispensing button (not labeled) and an ice-dispensing button (not labeled) for selecting a desired mode of operation such as crushed or non-crushed ice.
Discharging outlet 132 and paddle 134 are an external part of dispenser 114, and are mounted in a concave portion 138 defined in an outside surface of refrigerator door 126. Concave portion 138 is positioned at a predetermined elevation convenient for a user to access ice or water enabling the user to access ice without the need to bend-over and without the need to access freezer compartment 124. In the exemplary embodiment, concave portion 138 is positioned at a level that approximates the chest level of a user.
In this exemplary embodiment, the insulated cavity is constructed and arranged to operate at a temperature that facilitates producing and storing ice. More particularly, the insulated cavity contains an ice maker for creating ice and feeding the same to a container 200 that is mounted on refrigerator door 126. As illustrated in
Operation of the refrigerator 100 can be regulated by a controller (not shown) that is operatively coupled to user interface panel 136 and/or paddle 134. Panel 136 provides selections for user manipulation of the operation of refrigerator 100 such as e.g., selections between whole or crushed ice, chilled water, and/or other options as well. In response to user manipulation of the user interface panel 136, the controller operates various components of the refrigerator 100. The controller may include a memory and one or more microprocessors, CPUs or the like, such as general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with operation of refrigerator 100. The memory may represent random access memory such as DRAM, or read only memory such as ROM or FLASH. In one embodiment, the processor executes programming instructions stored in memory. The memory may be a separate component from the processor or may be included onboard within the processor.
The controller may be positioned in a variety of locations throughout refrigerator 100. In the illustrated embodiment, the controller may be located within the control panel area of door 126. In such an embodiment, input/output (“I/O”) signals may be routed between the controller and various operational components of refrigerator 100 such as a motor for rotating components of an ice crusher as will be described further below. In one embodiment, the user interface panel 136 may represent a general purpose I/O (“GPIO”) device or functional block. In one embodiment, the user interface 136 may include input components, such as one or more of a variety of electrical, mechanical or electro-mechanical input devices including rotary dials, push buttons, and touch pads. The user interface 136 may include a display component, such as a digital or analog display device designed to provide operational feedback to a user. The user interface 136 may be in communication with the controller via one or more signal lines or shared communication busses.
An exemplary embodiment of the ice storage container 200 along with an ice crushing mechanism as may be used with ice dispensing assembly 110 is further illustrated in
As shown, cylinder 208 is positioned at first opening 204 within a cylindrically-shaped sleeve 206 that is also located at first opening 204. Sleeve 206 is connected with the bottom 202 of container 200 and is integrally formed with container 200. As shown in the perspective view of the bottom of container 200 provided in
Referring now to
A bridge 248 extends between opposing ends 250 that are connected to the wall 210 of cylinder 208. Bridge 248 projects from cylinder 208 along vertical direction V. Accordingly, cylinder 208 and bridge 246 rotate together. The movement of bridge 248 stirs ice in container 200 to help move the ice into opening 204. The shape or appearance of bridge 246 can have other configurations different from that shown in the figures.
A non-rotating shaft 224 extends into cylinder 208 along vertical direction V. Shaft 224 has a bottom end 226 that is fixed into base 214. More particularly, as best seen in
Shaft 224 also extends through guide holes 222 in rotatable blades 218, which can freely rotate with cylinder 208 since shaft 224 and rotatable blades 218 are not connected. The top end 258 of shaft 224 is received into a guide hole 256 in the central portion 254 of bridge 248. The diameter of guide hole 256 is slightly larger than the diameter of the top end 258 of shaft 224. As such, bridge 248 can freely rotate with cylinder 208 about fixed shaft 224 to stir the ice. At the same time, bridge 248 helps support shaft 224 and orient top end 258.
As best shown in
Referring to
The amount of ice delivered into cylinder 208 from container 200 is controlled by a metering plate 240. As best shown in
As previously indicated, motor 234 is used to rotate cylinder along either direction C or direction NC. As shown in
Referring to
Additionally, container 200 also includes a skirt 260 with flange 262 that each extend around container 200 as shown in
During rotation of cylinder 208 as described, considerable torque may be provided by motor 234. In order to maintain the alignment of cylinder 208, base 214 is provided with a circumferentially-extending groove 246. The bottom end 230 of cylinder 208 is received into groove 246 as shown in
By way of example of the operation of ice dispensing assembly 110, ice is dropped into container 200 from the ice maker through opening 162 in insulated housing 142. The slope of bottom 202 directs ice toward first opening 204 (arrow S in
Depending upon whether the user has selected crushed or whole ice using interface panel 136, the controller can determine the direction of rotation of cylinder 208 by powering motor 234 as required. Such rotation could be activated based upon e.g., the depressing of paddle 134 by a user such that a request for ice is received by the controller. The controller could then activate motor 234 in the proper direction for crushed or whole ice.
If the user has selected crushed ice, cylinder 208 is rotated so that the movement of rotatable blades 218 relative to the non-rotating blades 268 will pinch and then crush ice between teeth 270 and 272 (arrow C in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
This application is a continuation-in-part application of and claims priority to U.S. patent application Ser. No. 13/285,122 filed on Oct. 31, 2011, which is incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 13285122 | Oct 2011 | US |
Child | 13474889 | US |