The present application claims priority to Korean Application No. 10-2007-0083646, filed in Korea on Aug. 20, 2007, which is herein expressly incorporated by reference in its entirety.
1. Field
The present application discloses an ice maker and a refrigerator having the same.
2. Background
Currently available large-sized refrigerators have ice makers which are capable of making a certain shape of ice pieces. In such ice makers, cool air is supplied to a certain amount of water having been supplied to an ice making container. Once the water has been converted into ice, the ice pieces in the ice making container are transferred to an ice storage container by an ice separating apparatus so as to be stored therein.
In such ice makers, the ice making container is installed in a location within the refrigerator where the temperature is maintained at or below 0° C., which is the freezing point of water (hereafter, abbreviated as the freezing point). The water in the container is frozen by cool air. The water is usually first frozen from at an area that is directly in contact with the cool air supplied into the ice maker. The ice formation then progresses toward a central area of the ice container More specifically, the water in the container is first cooled by coming in contact with the peripheral cool air, which usually means at an inner circumferential surface of the ice making container. The water then continues to be frozen toward the center of the ice making container
In most existing ice makers, the water supplied to the ice making container contains a certain amount of air. Some of the air is separated from the water while the water in the ice making container is frozen. However, some of the air is trapped in the ice in the form of bubbles in the ice. Ideally, one would like all of the air to be removed from the water before it turns to ice so that no bubbles are formed in the ice. But during the ice making procedure in existing ice makers, the water surface is first frozen, as discussed above, and accordingly all of the air in the water cannot be removed. This is the reason that air bubbles remain trapped in the ice, and this is why the ice is formed as as opaque ice pieces.
The embodiments will be described in detail with reference to the following drawings, in which like reference numerals refer to like elements, and wherein:
As shown in
The ice making container 110 is provided with at least one ice making space 111 for receiving water supplied from a water supply apparatus (not shown). The ice making container is, configured to have a temperature of a peripheral portion lower than the freezing point so that the water in the ice making space 111 can be frozen.
The ice making container 110 is also provided with a heater 140 that can heat a surface of the ice making container 110 or an inside thereof above the freexing point so as to maintain an inner circumferential surface of the ice making space 111 at the temperature higher than the freezing point. The heater 140 may be implemented as a plate type heater, as shown in
In the case of the plate type heater, an electrical heating coil 142 could be installed in a plate-shaped body 141 which is adhered to an outer circumferential surface of the ice making container 110. In the case of the rod type heater, a heater rod 144 is mounted at an inner side of a heater cover 143 that is coupled to a bottom of the ice making container 110.
Further, as shown in
Even though it is not shown in the drawing, the ice making container may be provided with only one ice making space, plus a plurality of ice core rods. Alternatively, a plurality of ice making spaces may be formed in the ice making container.
As shown in
As shown in
Because the water in the ice making container 110 is first at room temperature, while the temperature in the surrounding freezing chamber is below the freezing point, typically approximately −18° C., each ice core rod 122 may have a higher temperature portion H which is immersed in the water of the ice making container 110, and a lower temperature portion L which is exposed to the freezing chamber of the refrigerator.
Further, as shown in
Further, even though it is not shown in the drawing, the ice core rods 122 may have one side onto which a thermoelectric module is attached so as to perform a cooling operation by using a potential difference.
As shown in
The transfer unit 130 may be provided with one or more driving motors or electric members properly arranged so as to move the ice core unit 120 upwardly and downwardly, and so as to rotate the same at the same time. Preferably, a heat emitting body (not shown) for separating ice pieces by applying heat to the surface of the ice core rods 122 may be connected to one side of the ice core rods 122 so that the ice pieces can be automatically disposed in an ice storage container after the ice has been formed.
A transferring guide 131 for guiding movements of the various parts may also be included in the ice maker.
An ice making procedure will be described with reference to the drawing figures.
After water has been supplied to the ice making space 111 of the ice making container 110 by a water supply apparatus (not shown), an electric current is applied to the heater 140 adjacent to the ice making container 110 so that an exterior surface of the ice making container 110 is maintained at a temperature higher than the freezing point. The upper ends of each ice making rod 122, i.e., the portion that is not immersed in the ice making space 111, is maintained at a temperature lower than the freezing point by the heat radiating fins 123. In some embodiments, an operation fluid within the ice making rods, or a refrigerant flowing through the rods, or a cool temperature generated by electrical means will be used to help keep the upper ends of the rods below the freezing point.
When the ice making container 110 is formed of an insulating material, or a heat insulator 112 is attached onto the outer circumferential surface thereof, the temperature of the water in contact with the peripheral surfaces of the ice making container will be maintained at a temperature higher than the freezing point without the need to supply additional heat to the ice making container 110. However, so as to actively cope with changes of external conditions that can be generated in practical use, a heater 140 or the like may be provided to apply heat to the external surfaces of the ice making container 110 as needed.
As a result of this configuration ice begins to form at the center of the ice making container, where the ice core rods 122 are immersed in the water of the ice making container 110. Water at the periphery of the ice making container 110 is not initially frozen into ice because it is being maintained at a temperature higher than the freezing point.
Because the external surfaces of the water are not frozen, air within the water is allowed to separate out from the water as the water freezes. Because air bubbles are discharged out of the water during the freezing processno air bubbles are frozen into ice. As a result, the ice maker can create excellent transparent ice pieces.
In some embodiments, the ice making container 110 may be implemented as an electrically conductive body formed of a material that allows the ice making container 110 to generate heat by itself, thereby maintaining the peripheral surfaces of the water at a temperature higher than the freezing point by the application of an electric current applied to electrodes connected to both ends thereof. A thermally and electrically conductive composite material such as E5101 manufactured by the CoolPolymers. Inc., or an electrically conductive composite material such a LUCON based material manufactured by the LG Chem, Ltd. may be used for this purpose.
In aforementioned embodiments, the ice core rods maintained at the temperature lower than the freezing point are inserted into the water of the ice making container while the ice making container is maintained at the temperature higher than the freezing point. But, in alternate embodiments, the thawing rods maintained at the temperature higher than the freezing point can be inserted into the water of the ice making container while the ice making container itself is maintained at the temperature lower than the freezing point.
For example, as shown in
The ice making container 210 may be formed of a metal having an excellent thermal conductivity, or a nonmetallic material, or a plastic or synthetic material.
The thawing unit 220 includes a thawing body 221 having one lateral surface coupled to the transfer unit 230. A plurality of thawing rods 222 are inserted into the thawing body 221 so as to maintain the water in the center portion of the ice container at a temperature above freezing. The thawing rods 222 are preferably formed of a material having an excellent thermal conductivity. A heater (not shown) generates heat and may be installed at the surface or the inside thereof.
The transfer unit 230 may be provided with the plurality of driving motors or electric members properly arranged, which allows the thawing unit 220 to be moved upwardly/downwardly, and at the same time, to rotate.
A procedure for making ice using this alternate embodiment is essentially the same as for the previous embodiments, and will therefore be omitted. But, in this embodiment, as shown in
The ice core rods 122 or the thawing rods 222 are rotatably installed, and are therefore capable of serving as an ejector for transfer the ice made in the ice making containers 110, 210. In this case, the ice making containers 110, 210 should be provided with some form of heater for separating the frozen ice therefrom, so as to facilitatingly perform the separating operation of the ice pieces.
The ice makers 100, 200 can be applied to home refrigerators. For example, as shown in
In the first embodiment of an ice maker and a refrigerator having the same as described above, the ice making container is maintained at the temperature higher than the freezing point, and ice core rods maintained at a temperature lower than the freezing point are inserted thereinto. Accordingly, even though ice is made starting at the periphery of the ice core rods, the water surface of the periphery of the ice making container is not frozen into ice, and bubbles generated when the ice is made may be rapidly discharged out, thereby allowing excellent transparent ice pieces without bubbles to be formed in the ice making container. Further, in the alternate embodiments, where the ice making container is maintained at a temperature lower than the freezing point, and where thawing rods maintained at a temperature higher than the freezing point are inserted thereinto, air bubbles may be rapidly discharged, and transparent ice pieces can be formed.
The ice maker can be used in home refrigerators or the ice maker could be also applied to water purifiers or other refrigerating machines in the same manner as aforementioned. Also, the ice maker can be installed with an ice taking-out apparatus or a dispenser, but can be also installed alone.
Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to effect such feature, structure, or characteristic in connection with other ones of the embodiments.
Although a number of illustrative embodiments have been described, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combinations which would fall within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2007-0083646 | Aug 2007 | KR | national |