This application claims priority under 35 U.S.C. §119 to Korean Application No. 10-2012-0052368 filed on May 17, 2012, whose entire disclosure is hereby incorporated by reference.
1. Field
This relates to an ice maker for a refrigerator, and, in particular, to an ice maker that accurately supplies a predetermined amount of water to an ice tray.
2. Background
A refrigerator may include a freezing chamber and a cold-storage chamber, and an ice maker for generating ice installed in the in the freezing chamber.
Such an ice maker may include an ice tray for receiving water to generate ice, with a plurality of grooves formed in the ice tray for freezing the water into separate ice pieces. To release the frozen ice pieces from the ice tray, the ice tray may be twisted, and then the ice tray may be rotated by rotating a handle that protrudes from an end of the ice tray, to drop the ice pieces into an ice box installed below the ice tray.
The embodiments will be described in detail with reference to the following drawings in which like reference numerals refer to like elements wherein:
In supplying water to an ice tray of an ice maker, providing an excessive amount of water to the ice tray may cause water to overflow into the inside of an ice storage container, causing ice pieces stored in the ice storage container to be frozen together. When less than a predetermined amount of water is filled in the ice tray, a total amount of ice produced decreases, thus degrading efficiency of the ice maker.
As shown in
The user may turn the handle 22 to rotate the ice tray 20 by a predetermined angle, an upper surface thereof may face downward, while one end of the ice tray 20 remains fixed to a corresponding structure of the inside of the case C and does not rotate, twisting the ice tray 20 and separating ice pieces from the ice tray 20 for storage in the storage container 30. When the handle 22 is returned to its original position, the ice tray 20 is returned to its original position, for example, a position in which the upper surface of the ice tray 20 faces upward, by operation of a spring installed in the rotation shaft 24.
The feeding apparatus 10 may be housed in a case Ca coupled to an upper portion of the case C and covered by a cover 12 to open and close a water container 16. The water container 16 may be formed at the inside of the feeding apparatus 10 and may be sized to hold an amount of water appropriate to fill the ice tray 20. The water container 16 may have an opened upper part and a concave shape that extends downward, and a display 17 may display an amount of water in the water container 16. Accordingly, when water is filled up to the display 17, an amount of water received therein corresponds to the amount of water required to fill the ice tray 20 one time.
A valve 18 may control flow through a supply hole 16a at a lower end portion of the water container 16. The valve 18 may receive an elastic force from a spring S in a direction that causes the supply hole 16a to be blocked. The valve 18 may include a switch valve portion 18a for opening or closing the supply hole 16a, and a support portion 18c extending from the switch valve portion 18a to a flange portion 18b extending radially outward from an upper end of the support portion 18c. The spring S may push up on the flange portion 18b so that the supply hole 16a is always blocked by the switch valve portion 18a in absence of an external force.
A pressing protrusion 14 may be formed on a bottom surface of the cover 12. To supply water to the water container 16, the cover 12 is opened, moving the pressing protrusion 14 away from the valve 18 so that the valve 18 blocks the water supply hole 16a. Water is poured into the container 16 and the cover 12 is closed, causing the pressing protrusion 14 to press the valve 18 and open the supply hole 16a.
That is, because the spring S is compressed, the switch valve portion 18a is separated from the supply hole 16a, and thus water may flow downward through a gap between the support portion 18c and the supply hole 16a, whereby a predetermined amount of water may be accurately supplied to the ice tray 20.
However, this flat cartridge-shaped water container may still allow water poured into the water container to splash or overflow to the outside. Further, if some water were to remain in the water container 16 and be frozen, the valve 18 may remain open even when the cover 12 is opened to release the protrusion 14 from the valve 18, and water may leak downward as the frozen water near the valve 18 melts. Additionally, when twisting the ice tray 20 as described above, there may be some interference between the switch valve portion 18a and the ice tray 20, possibly damaging the switch valve portion 18a.
An ice maker for a refrigerator according to an exemplary embodiment may be installed as an ice maker assembly at an inside shelf of a freezing chamber, or may be mounted in an inside door of a freezing chamber, and particularly, in a two door type refrigerator, the ice maker for a refrigerator may be mounted in an inside door of the left side or the right side of the freezing chamber.
As shown in
As shown in
As shown in
As shown in
As shown in
When the water container 50 is inverted and received in the housing 60, clearance space is formed so that the plurality of holes 54 formed in the lid 52 do not contact a bottom surface of the inside of the housing 60, and a central vertical axis of the water outlet 61 is separated by a predetermined gap (d2 of
Accordingly, water vertically flowing from the water container 50 may be collected and injected into the ice tray 70, and the housing 60 very closely contacts one side surface of the cover case 60c, and thus the remaining area of the cover case 60c may accommodate other components.
Further, because the air inlet 62 formed in the housing 60 is formed at a higher vertical position than the water impact point of the funnel-shaped channel and the water outlet 61, water may be prevented from leaking to the outside through the air inlet 62.
As shown in
In certain embodiments, the lid 52 may include one hole 54. In alternative embodiments, the lid 52 may include a plurality of holes 54. A discharge area provided by the one or more holes 54 formed in the lid 52 may be matched to the discharge area provided by the water outlet 61 to provide the desired flow rate of water into the ice tray 70 to prevent splashing and/or misdirection of water. In certain embodiments, the discharge area provided by the one or more holes 54 may be set to be a predetermined percentage of the discharge area of the water outlet 61 based on the capacity of the container 50 and the like to provide the desired flow rate. Similarly, the offset distance d2 between the central axis of the water container 50 and the water outlet 61 may be set to provide the desired flow rate of water through the channel and into the ice tray 70. In certain embodiments, the offset distance d2 may be set to be a predetermined percentage of the diameter of the water container 50 to provide the desired flow rate. Numerous combinations of discharge areas of the one or more holes 54 and the water outlet 61, and offset distances d2, may be appropriate, based on a size of the ice maker and specific installation in a refrigerator.
When the ice maker for the refrigerator is installed on a door at the inside of the freezing chamber of a refrigerator, the housing 60 and the handle 71 of the ice tray 70 may be positioned at, for example, the right side of the ice maker when the door is open. For example, as shown in
Alternatively, the housing 60 and the handle 71 of the ice tray 70 may be provided on the left side in either of the exemplary installations shown in
After the water container 50 is removed from the housing 60 and the lid 52 is separated from the body 51, water may be filled in the body 51 while viewing the display 56 formed as a ring-shaped protrusion or displayed as a mark at an outer circumferential surface of the body 51 to fill a predetermined amount of water in the body 51. When the display 56 is not provided, a predetermined amount of water may be filled in the body 51 based on a position the latch jaw 53 formed at an outer circumferential surface of the body 51. Thereafter, the lid 52 of the water container 50 may be re-attached, the water container 50 may be inverted, and then housed within the housing 60, and the latch jaw 53 formed at an outer circumferential surface of the body may ensure that the water container 50 and the housing 60 are securely attached and the container 50 is housed at an appropriate depth. Water received in the water container 50 may be naturally discharged downward through the plurality of holes 54 formed in the lid 52, and air may be injected through the air inlet 55 formed in the lid to promote smooth drainage. Accordingly, because water may be naturally discharged from the water container 50 and supplied into a groove of the ice tray 70 through the water outlet 61 of the housing 60, a predetermined amount of water may be accurately supplied without using a complicated valve structure.
Further, as water is poured into the water container, splashing or overflowing to the outside may be prevented, and even if some water remaining within the cylindrical water container is frozen, when water is again poured into the water container, water may be prevented from leaking.
Further, because a valve and other related structure does not protrude downward for water supply, collision between this type of structure and the ice maker may be prevented as the ice tray is rotated.
An ice maker for a refrigerator is provided that can accurately and simply supply a predetermined amount of water to an ice tray using a water container having a simple structure such as a cylindrical water container including a body for receiving water and a lid having a hole for discharging water in order to supply water into the ice tray.
In accordance with an aspect of the present invention, there is provided an ice maker for a refrigerator, as embodied and broadly described herein, may include an ice tray for putting water for generating ice; a water container including a body for putting water and a lid having a hole for discharging water in order to supply a predetermined amount of water into the ice tray; and a housing for housing the water container in a case of the ice maker.
In one embodiment, the water container may be a cylindrical water bottle and is invertedly housed in the housing. In the lid, an air inlet and a plurality of holes for naturally discharging water may be formed. In the body, a display unit for accurately putting a predetermined amount of water may be formed in a protrusion shape or be displayed in a mark shape.
In one embodiment, a bottom surface of the inside of the lid may be formed in a curved surface to completely discharge water through the hole. At an outer circumferential surface of the body, a latch jaw for fastening to the housing may be formed.
In one embodiment, the housing may close contact with one side surface of a cover case that covers an entire upper part of the ice tray. The housing may be installed in an upper portion of a handle for twisting the ice tray by rotating in a length direction.
In one embodiment, the housing may be installed at the right side of a user, when a door of a freezing chamber in which the ice maker is installed is opened. The housing may be a funnel-shaped holder having a water outlet and a channel for collecting water vertically flowing through the hole formed in the lid of the water container and for supplying the water to the ice tray.
In one embodiment, in the housing, an air inlet for promoting discharge of water may be formed at a higher position in a vertical direction than that of the channel and the water outlet. A central vertical axis of the water outlet may be separated by a predetermined gap from that of the water container.
In one embodiment, clearance space may be formed at a bottom surface of the inside of the housing so that the hole formed in the lid of the water container does not contact with the housing, when the water container is housed in the housing. The water outlet may be separated by a predetermined gap in a vertical direction of the ice tray to prevent from colliding with the ice tray, when the ice tray is twisted by 90° in a length direction.
An ice maker for a refrigerator as embodied and broadly described herein uses a water container having a simple structure such as a cylindrical water bottle including a body for receiving water and a lid having holes for discharging water. Thus, a complicated structure such as a valve is not necessary, and water may be prevented from splashing or overflowing to the outside when filling the water container.
Further, if residual water in a water container such as a cylindrical water bottle is frozen, an ice maker for a refrigerator as embodied and broadly described herein may prevent water from leaking when water is supplied to the water container.
Additionally, because an ice maker for a refrigerator as embodied and broadly described herein does not include a valve protruded downward for supplying water, collision between the ice maker and such a valve may be prevented as the ice tray rotates.
Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to effect such feature, structure, or characteristic in connection with other ones of the embodiments.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2012-0052368 | May 2012 | KR | national |