The invention is in the field of ice making modules for appliances, and specifically heatless removal of ice from ice modules for appliances.
In one aspect, an ice making module for a refrigerator includes a conductive ice tray including at least one ice piece forming cavity that is defined by at least four side walls, at least one bottom surface, wherein the conductive ice tray has an outward surface and an inward surface. A barrier coating is disposed on at least a portion of the inward surface of the conductive ice tray. An electrical circuit is in electrical communication with the conductive ice tray, wherein the electrical circuit includes a power source and a capacitor, wherein the capacitor is in selective electrical communication with the conductive ice tray and selective electrical communication with the power source. A switch is in electrical communication with the power source, the capacitor, and the conductive ice tray, wherein the switch is configured to move between a charging position, wherein the capacitor is configured to selectively receive and store an electrical charge from the power source, and a pulse position, wherein the capacitor is configured to selectively release the electrical charge through the conductive ice tray in the form of an electromagnetic pulse. A conductive material is disposed proximate the inward surface of the conductive ice tray, wherein the conductive material is configured to be in selective electromagnetic communication with the conductive ice tray, and wherein the electromagnetic pulse selectively released by the capacitor through the conductive ice tray generates an induced electrical current through the conductive material and a repelling electromagnetic force between the conductive ice tray and the conductive material, wherein the repelling force biases the conductive material away from the at least one bottom surface of the conductive ice tray, thereby ejecting at least one ice piece from the at least one ice piece forming cavity. A water dispensing mechanism is configured to selectively dispose water into the at least one ice piece forming cavity of the conductive ice tray, wherein the barrier coating substantially provides a membrane between the water and the conductive ice tray, and wherein the ice tray is in communication with the water selectively disposed within the ice tray. A cooling apparatus is configured to selectively decrease the temperature of the water in the at least one ice piece forming cavity to a predetermined temperature, wherein the water is substantially solidified.
In another aspect, a refrigerator includes an ice making module and includes a conductive ice tray including at least four side walls, a bottom surface, and an inward surface, wherein the inward surface of the conductive ice tray defines a plurality of ice piece forming cavities. A barrier coating is disposed proximate at least a portion of the inward surface of the conductive ice tray. An electrical circuit is in electrical communication with the conductive ice tray, wherein the electrical circuit includes a power source and a capacitor, wherein the capacitor is in selective electrical communication with the conductive ice tray and selective electrical communication with the power source. A switch is in electrical communication with the power source, the capacitor, and the conductive ice tray, wherein the switch is configured to move between a charging position, wherein the capacitor is configured to selectively receive and store an electrical charge from the power source, a pulse position, wherein the capacitor is configured to selectively release the electrical charge through the conductive ice tray in the form of an electromagnetic pulse, and an idle position, wherein the capacitor is not in electrical communication with the power source or the conductive ice tray. A first magnetic field is selectively generated about the conductive ice tray when the switch is disposed in the pulse position. A conductive material is disposed proximate the inward surface of the conductive ice tray, wherein the conductive material is configured to be in selective electromagnetic communication with the conductive ice tray, and wherein the first magnetic field selectively generates an induced electrical current within, and a second magnetic field about, the conductive material, and wherein the first magnetic field opposes the second magnetic field, and wherein the opposing first and second magnetic fields bias the conductive material away from the bottom surface of the conductive ice tray, thereby ejecting at least one ice piece from the at least one ice piece forming cavity. A water dispensing mechanism is configured to selectively dispose water into the plurality of ice piece forming cavities of the conductive ice tray, wherein the barrier coating substantially provides a membrane between the water and the conductive ice tray, and wherein the ice tray is in communication with the water selectively disposed within the ice tray. A cooling apparatus is configured to decrease the temperature of the water in the plurality of ice piece forming cavities to a predetermined temperature, wherein the water is substantially solidified.
In yet another aspect, a method for heatless removal of ice pieces from a conductive ice tray includes the steps of providing a conductive ice tray including at least one ice piece forming cavity that is defined by at least four side walls, at least one bottom surface, wherein the conductive ice tray has an outward surface and an inward surface, wherein a barrier coating is disposed on at least a portion of the inward surface, adding liquid to the at least one ice piece forming cavity, forming at least one ice piece within the at least one ice piece forming cavity using a cooling capacity supplying system, disposing a conductive material proximate the inward surface of the conductive ice tray, wherein the conductive material is configured to be in selective electromagnetic communication with the conductive ice tray, charging a capacitor configured to selectively receive an electrical charge from a power source, wherein the capacitor is in selective electrical communication with the power source and selective electrical communication with the conductive ice tray and releasing an electromagnetic pulse using a switch to deliver an electromagnetic pulse from the capacitor through the conductive ice tray, thereby generating an induced electrical current through the conductive material and a repelling electromagnetic force between the conductive ice tray and the conductive material, thereby biasing the conductive material away from the at least one bottom surface of the conductive ice tray, and repelling the at least one ice piece from the at least one ice piece forming cavity.
These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings, certain embodiment(s) which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. Drawings are not necessary to scale. Certain features of the invention may be exaggerated in scale or shown in schematic form in the interest of clarity and conciseness.
For purposes of description herein the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the device as oriented in
With respect to
A first aspect, as illustrated in
Referring now to
As illustrated in
As illustrated in the embodiment of
In the various embodiments, the conductive ice tray 30 forms at least a part of the electrical circuit 60, wherein the conductive ice tray 30 can be made of highly electrically conductive materials 90 that can include, but are not limited to, aluminum and aluminum alloys, steel alloys, copper and copper alloys, and other highly electrically conductive materials 90. In addition, the conductive ice tray 30 can be configured in varying shapes that can include, but are not limited to, arcuate shapes, polygonal shapes, or irregular shapes.
Referring again to the illustrated embodiment as shown in
As illustrated in
As illustrated in the embodiment of
In various embodiments, the conductive biasing ice pad 140 can be made of a highly electrically conductive material 90 that can include, but is not limited to, aluminum and aluminum alloys, steel, copper and copper alloys, or other highly electrically conductive material 90.
As illustrated in
As illustrated in
In the various embodiments, to assist the control 160 in monitoring the charge within the capacitor 64 and the temperature of the water within the ice piece forming cavities 32, the ice making module 14 can include one or more sensors configured to monitor the charge within the capacitor 64 and to monitor the temperature of the water within the at least one ice piece forming cavity 32. These sensors can be configured to be in communication with the control 160. In alternate embodiments, the temperature of the water within the at least one ice piece forming cavity 32 can be monitored by the lapsed time that the cooling system 16 has applied cooling to the water within the at least one ice piece forming cavity 32. In such an embodiment, the control 160 will not move the switch 66 to the pulse position 70 until a substantially sufficient time has passed to allow the cooling system 16 to sufficiently decrease the temperature of the water within the ice piece forming cavities 32 such that the water solidifies and forms the ice pieces 20.
In some embodiments, the temperature will not be monitored in all of the ice piece forming cavities 32. For example, it may be preferable to only measure the temperature in one ice piece forming cavity 32. This may be done by directly measuring the temperature in the ice piece forming cavity 32, or indirectly, by measuring a temperature proximate or in thermal connectivity with the ice piece forming cavity 32. Additionally, it may be advantageous to ensure that the ice piece forming cavity or cavities 32 measured for freeze is/are either the last to freeze or freeze close to the same time as the rest of the ice piece forming cavities 32 freeze. In such an embodiment, the measured ice piece forming cavity or cavities 32 have more water, or at least the same amount of water, as the others. Other methods for measuring temperature include, but are not limited to, making the measured ice piece forming cavities 32 slightly larger than the others, filling the measured ice piece forming cavity or cavities 32 before the non-measured ice piece forming cavity or cavities 32, or making the measured ice piece forming cavity or cavities 32 lower and/or deeper than the non-measured ice piece forming cavity or cavities 32, or combinations thereof.
As illustrated in the embodiment of
As illustrated in
In various embodiments, the ice making module 14 can include different types of cooling systems 16 for decreasing the temperature of the water within the ice piece forming cavity or cavities 32. The types of cooling systems 16 that can be implemented include, but are not limited to, systems that provide thermoelectric cooling, magnetic cooling, vortex cooling, evaporative cooling, and other types of cooling methods.
In another aspect of the ice making module, as illustrated in
The method 200 also includes a step 204 of providing the electrical circuit 60 in electrical communication with the conductive ice tray 30. The electrical circuit 60 includes the capacitor 64, the power source 62, and the switch 66 wherein the switch 66 is in electrical communication with the conductive ice tray 30, the capacitor 64 and the power source 62. The switch 66 is operable between the charging position 68, wherein the power source 62 is in electrical communication with the capacitor 64, the pulse position 70, wherein the capacitor 64 is in electrical communication with the conductive ice tray 30, and the idle position 170, wherein the capacitor 64 is not in electrical communication with the power source 62 or the conductive ice tray 30. As will be more fully described below, this step 204 can also include providing a control 160 to operate the switch 66 of the electrical circuit 60.
Another step 206 in the method 200 includes disposing a liquid to the at least one ice piece forming cavity 32 and forming at least one ice piece 20 within the at least one ice piece forming cavity 32 using the cooling system 16.
The method 200 also includes a step 208 of disposing the conductive material 90 proximate the inward surface 40 of the conductive ice tray 30, wherein the conductive material 90 is configured to be in selective electromagnetic communication with the conductive ice tray 30. As discussed above, the conductive material 90 can include a conductive liquid that includes, but is not limited to, water, juice, alcohol, or other conductive liquids, and can also include a conductive solid that can include, but is not limited to, aluminum, steel, copper, or other conductive material.
Another step 210 of the method 200 includes charging a capacitor 64 that is configured to selectively receive an electric charge from a power source 62.
The next step 212 of the method 200 includes releasing the stored charge within the capacitor 64 in the form of an electromagnetic pulse 72 using a switch 66 to deliver the electromagnetic pulse 72 from the capacitor 64 through the conductive ice tray 30. As discussed above, when switch 66 is moved to the pulse position 70 and the electromagnetic pulse 72 is released, the electromagnetic pulse 72 flowing through the conductive ice tray 30 generates a rapidly changing magnetic field 120 around the conductive ice tray 30 that in turn generates an induced electrical current 92 through the conductive material 90 and resulting induced magnetic field 122 around the conductive material 90. The rapidly changing magnetic field 120 around the conductive ice tray 30 and the induced magnetic field 122 around the conductive material 90 are opposing magnetic fields that result in the repelling electromagnetic force 94 between the conductive ice tray 30 and the conductive material 90, thereby biasing the conductive material 90 away from the bottom surface 36 of the conductive ice tray 30 and repelling the at least one ice piece 20 from the at least one ice piece forming cavity 32.
Another step 214 in the method 200 includes selectively conveying the at least one ice piece 20 that has been repelled from the conductive ice tray 30 to the ice piece storing container 182 using an ice conveyor 180 as discussed above. The ice piece storing container 182 is configured to receive the ice pieces 20 from the conductive ice tray 30 and to selectively dispense the ice pieces 20 from the ice making module 14 through the access aperture 184 of the ice making module 14.
As illustrated in
Before the subject invention is described further, it is to be understood that the invention is not limited to the particular embodiments of the invention described below, as variations of the particular embodiments may be made and still fall within the scope of the appended claims. It is also to be understood that the terminology employed is for the purpose of describing particular embodiments, and is not intended to be limiting. Instead, the scope of the present invention will be established by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range, and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
In this specification and the appended claims, the singular forms “a,” “an” and “the” include plural reference unless the context clearly dictates otherwise.
It will be understood by one having ordinary skill in the art that construction of the described device and other components is not limited to any specific material. Other exemplary embodiments of the device disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the device as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present device. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.
This application is a continuation of U.S. patent application Ser. No. 13/802,863, filed on Mar. 14, 2013, entitled “ICE MAKER WITH HEATLESS ICE REMOVAL AND METHOD FOR HEATLESS REMOVAL OF ICE,” now U.S. Pat. No. 9,016,073, the entire disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1932731 | Hathorne | Oct 1933 | A |
1952729 | Rawlings | Mar 1934 | A |
2191263 | Waring | Feb 1940 | A |
2227700 | Buchanan | Jan 1941 | A |
2512759 | Allen et al. | Jun 1950 | A |
2572328 | Field | Oct 1951 | A |
3018636 | Waag et al. | Jan 1962 | A |
3033008 | Davis | May 1962 | A |
3263443 | Frei, Sr. | Aug 1966 | A |
3545717 | Pietrzak | Dec 1970 | A |
4739233 | Marcade | Apr 1988 | A |
5177980 | Kawamoto et al. | Jan 1993 | A |
5297394 | Frohbieter et al. | Mar 1994 | A |
5411121 | LaForte et al. | May 1995 | A |
5582754 | Smith et al. | Dec 1996 | A |
5818131 | Zhang | Oct 1998 | A |
6041607 | Kim | Mar 2000 | A |
6092374 | Kang et al. | Jul 2000 | A |
6207939 | Allaire et al. | Mar 2001 | B1 |
6852171 | Downs | Feb 2005 | B2 |
7185508 | Voglewede et al. | Mar 2007 | B2 |
7703300 | Petrenko | Apr 2010 | B2 |
7905466 | Lee et al. | Mar 2011 | B2 |
8109114 | Lee et al. | Feb 2012 | B2 |
8405002 | Petrenko et al. | Mar 2013 | B2 |
8539780 | Herrera et al. | Sep 2013 | B2 |
20010035342 | Morse et al. | Nov 2001 | A1 |
20080184720 | Morgan et al. | Aug 2008 | A1 |
20090165467 | Kim | Jul 2009 | A1 |
20090199569 | Petrenko | Aug 2009 | A1 |
20090235682 | Petrenko et al. | Sep 2009 | A1 |
20100011786 | Shin et al. | Jan 2010 | A1 |
20100083687 | Handa et al. | Apr 2010 | A1 |
20100206990 | Petrenko | Aug 2010 | A1 |
20100243767 | Mori et al. | Sep 2010 | A1 |
20110314842 | Herrera et al. | Dec 2011 | A1 |
20130074527 | Joung | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
201116809 | Sep 2008 | CN |
101377371 | Mar 2009 | CN |
1139979 | Jun 1989 | JP |
719256 | May 2007 | KR |
Number | Date | Country | |
---|---|---|---|
20150184914 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13802863 | Mar 2013 | US |
Child | 14637582 | US |