The present disclosure relates to a technical field of refrigeration equipment, and more particularly, to an ice maker.
In the related art, when an ice maker performs ice making, water is directly injected into a water box for ice making, and excess water overflows from an edge of the water box. In such a way, transparent ice cubes can be produced, but white bubbles may appear in the ice cubes due to an inconstant water flow direction, affecting the transparency, and the shape of the ice cubes may be irregular due to the inconstant water flow direction. Overall, the quality of the ice cubes produced by this technology is flawed.
Embodiments of the present application aim to solve at least one of the technical problems existing in the related art. Accordingly, the present application is to propose an ice maker, such that ice cubes produced by the ice maker have an advantage of being transparent, flawless, regular and uniform.
The ice maker according to embodiments of the present application includes: an ice-making water tank, a water storage tank, a pipe assembly, a reversing member, and a driving member. The pipe assembly includes three branch pipes, a first branch pipe of the three branch pipes is connected with the water storage tank, and the second branch pipe and the third branch pipe of the three branch pipes are connected to the ice-making water tank separately. The reversing member is connected with each of the three branch pipes to control communication between two of the branch pipes and disconnection of the rest one of the branch pipes. The driving member is connected to the third branch pipe in series. When the ice maker produces ice, the reversing member controls the second branch pipe to be communicated with the third branch pipe and controls the first branch pipe to be disconnected, and the driving member operates to drive water to circulate among the ice-making water tank, the second branch pipe, and the third branch pipe.
For the ice maker according to embodiments of the present application, by providing the pipe assembly, in the ice making process of the ice maker, the reversing member controls the first branch pipe to be disconnected and controls the second branch pipe to be communicated with the third branch pipe, such that the water in the ice-making water tank realizes self-circulation flow of the ice making water in the ice-making water tank through the second branch pipe and the third branch pipe, and hence the ice making water flows evenly in a constant direction. Therefore, ice cubes produced by the ice maker have the advantage of being transparent, flawless, regular and uniform, the quality of ice making is improved, and the overall performance of the ice maker is upgraded.
According to an embodiment of the present application, after the ice maker finishes making ice, the reversing member controls the third branch pipe to be communicated with the first branch pipe and controls the second branch pipe to be disconnected, and the driving member stops operation to allow water in the ice-making water tank to flow towards the water storage tank through the third branch pipe and the first branch pipe.
According to an embodiment of the present application, the ice-making water tank is provided with a water input port, a water return port, and a drain port in a tank wall thereof, the second branch pipe being connected with the water return port, the third branch pipe being connected with the water input port, and at least one of the second branch pipe and the third branch pipe being connected with the drain port.
According to an embodiment of the present application, the water input port and the water return port are provided in opposite side walls of the ice-making water tank and at the same height.
According to an embodiment of the present application, the water input port and the water return port are arranged adjacent to an ice-making grid in the ice-making water tank.
According to an embodiment of the present application, the third branch pipe is connected with the drain port, and the drain port is arranged in a bottom wall of the ice-making water tank and/or a bottom of a side wall of the ice-making water tank.
According to an embodiment of the present application, the ice-making water tank is located above the water storage tank.
According to an embodiment of the present application, a water output pipe connected with the water storage tank, and a water output pump connected to the water output pipe in series.
According to an embodiment of the present application, the reversing member is configured as a three-way valve configured to control the third branch pipe to be communicated with the first branch pipe or the second branch pipe.
According to an embodiment of the present application, the driving member is configured as a water pump.
Additional aspects and advantages of embodiments of present disclosure will be given in part in the following descriptions, become apparent in part from the following descriptions, or be learned from the practice of the embodiments of the present application.
These and/or other aspects and advantages of embodiments of the present application will become apparent and more readily appreciated from the following descriptions made with reference to the drawings, in which:
Embodiments of the present application will be described in detail, and examples of the embodiments will be illustrated in the drawings, in which the same or similar reference numerals indicate the same or similar elements or the elements having the same or similar functions. The embodiments described below with reference to drawings are illustrative, and used to generally understand the present application. The embodiments shall not be construed to limit the present application.
In the specification, it is to be understood that terms such as “upper,” “lower,” “front,” “rear,” “left,” “right,” “bottom,” “inner,” “outer,” and the like should be construed to refer to the orientation or position relationship as shown in the drawings under discussion. These relative terms are only for convenience and simplicity of description, and do not indicate or imply that the referred device or element must have a particular orientation or be constructed or operated in a particular orientation. Thus, these terms shall not be construed to limit the present application.
In addition, terms such as “first” and “second” are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features. Thus, the feature defined with “first” and “second” may comprise one or more of this feature. In the description of the present application, the term “a plurality of” means two or more than two, unless specified otherwise.
In the present application, unless specified or limited otherwise, the terms “mounted,” “connected,” “coupled,” “fixed” and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications or mutual interaction of two elements, which can be understood by those skilled in the art according to specific situations. An ice maker 100 according to embodiments of the present application will be described with reference to
As illustrated in
Specifically, as illustrated in
In an ice making process of the ice maker 100, the reversing member 40 controls the second branch pipe 320 to be communicated with the third branch pipe 330 and controls the first branch pipe 310 to be disconnected, and the driving member 50 operates to drive the water to circulate among the ice-making water tank 10, the second branch pipe 320, and the third branch pipe 330.
Thus, when the second branch pipe 320 acts as a water return pipe, the third branch pipe 330 for water inflow can cooperate with the second branch pipe 320 and the water tank 10 to form a self-circulation path, and the circulating return water does not need to flow through the water storage tank 20. The driving member 50 configured to provide a driving force for water inflow can also provide self-circulation power, such that each of the third branch pipe 330 and the driving member 50 can be used for more than one purpose, which makes the internal structure of the ice maker 100 more compact.
For the ice maker 100 according to embodiments of the present application, by providing the pipe assembly, in the ice making process of the ice maker 100, the reversing member 40 controls the first branch pipe 310 to be disconnected and controls the second branch pipe 320 to be communicated with the third branch pipe 330, such that the water in the ice-making water tank 10 realizes self-circulation flow of the ice making water in the ice-making water tank 10 through the second branch pipe 320 and the third branch pipe 330, and hence the ice making water flows evenly in a constant direction. Therefore, ice cubes produced by the ice maker 100 have an advantage of being transparent, flawless, regular and uniform, the quality of ice making is improved, and the overall performance of the ice maker 100 is upgraded. Additionally, since the third branch pipe 330 for water inflow and the driving member 50 accomplish the return water circulation, internal components of the ice maker 100 become more compact, resulting in a simple structure, simple water paths, and fewer components.
According to an embodiment of the present application, as illustrated in
Further, as illustrated in
Preferably, as illustrated in
Further, the water input port 110 and the water return port 120 are arranged adjacent to an ice-making grid 140 in the ice-making water tank 10. It needs to be noted that since the ice maker requires water in the ice making process, an ice-making evaporation assembly 150 is immersed in the water in the ice-making water tank 10, especially the ice-making grid 140 has to be immersed in the water. Thus, the water input port 110 and the water return port 120 are arranged as close as possible to the ice-making grid 140, so that the water can flow evenly through the ice cubes, and the water flow rate around the ice cubes can be increased, thereby further ensuring the transparency, uniformity and quality of the obtained ice cubes. It should be noted that, in order to prepare uniform and transparent ice cubes, in the ice making process, the water flow direction in the ice-making water tank 10 needs to keep constant, the water flow rate needs to be even, the water input port 110 and the water return port 120 are arranged at the height of the ice-making water tank 10, and the water input port 110 and the water return port 120 are arranged adjacent to the ice-making grid 140, whereby the transparency and uniformity of the obtained ice cubes can be guaranteed, and the quality of the ice cubes can be improved.
According to an embodiment of the present application, as illustrated in
Preferably, as illustrated in
Further, as illustrated in
According to some embodiments of the present application, the reversing member 40 is configured as a three-way valve configured to control the third branch pipe 330 to be communicated with the first branch pipe 310 or the second branch pipe 320. By selecting the three-way valve as the reversing member 40, the reversing member 40 is convenient to install and is simple to operate, and the production cost of the reversing member 40 can be reduced.
In some embodiments of the present application, the driving member 50 may be a water pump. Thus, during water injection into the ice-making water tank 10, the water in the water storage tank 20 can be pumped into the ice-making water tank 10 through the water pump, and under the drive of the water pump, the water in the ice-making water tank 10 can be self-circulated among the ice-making water tank 10, the second branch pipe 320 and the third branch pipe 330 in the ice making process, so that the ice making water flows evenly in the constant direction, and the ice cubes produced are transparent and uniform.
The ice maker 100 according to the present application will be described in detail by way of a specific embodiment with reference to
As illustrated in
Specifically, as illustrated in
As illustrated in
When it is required to inject water into the ice-making water tank 10, the reversing member 40 breaks a water path between the first branch pipe 310 and the second branch pipe 320, and communicates a water path between the first branch pipe 310 and the third branch pipe 330, and the driving member 50 is activated, whereby the water in the water storage tank 20 can be injected into the ice-making water tank 10.
In an ice making process of the ice maker 100, the reversing member 40 controls the second branch pipe 320 to be communicated with the third branch pipe 330 and controls the first branch pipe 310 to be disconnected, and the driving member 50 operates to drive the water to circulate among the ice-making water tank 10, the second branch pipe 320, and the third branch pipe 330.
When the ice making is completed, the reversing member 40 breaks the water path between the first branch pipe 310 and the second branch pipe 320 and communicates the water path between the first branch pipe 310 and the third branch pipe 330, and the driving member 50 is brought into a state of being stopped, such that the water in the ice-making water tank 10 can automatically flow into the water storage tank 20 because the ice-making water tank 10 is located above the water storage tank 20, thereby realizing the drainage of the ice-making water tank 10.
Additionally, as illustrated in
An ice-making evaporation assembly 150 is further provided above an ice-making grid 140. When the ice making is completed, the water in the ice-making water tank 10 is first drained through the drain port 130, and the ice-making evaporation assembly 150 heats the ice-making grid 140, such that a wall surface of the ice-making grid 140 in contact with the ice cubes is heated. Since the ice-making grid 140 is opened downwards, the obtained ice cubes can separate from the ice-making grid 140 by gravity after being heated. The ice maker 100 is internally provided with an ice pushing device and an ice storing device (not illustrated), such that the ice pushing device can push the ice cubes into the ice storing device for storage after the ice cubes falling off the ice-making grid 140.
As illustrated in
The water storage tank 20 is further provided with a water output pipe 210 and a water output pump 2101. When the user needs to use the water from the water storage tank 20, the water in the water storage tank 20 can be pumped out for use by means of the water output pump 2101. The bottom of the water storage tank 20 is provided with a drain pipe 240 and a drain pump 2401. The water in the water storage tank 20 can be pumped and drained out if the ice maker 100 is not used for a long time.
Therefore, by providing the pipe assembly, in the ice making process of the ice maker 100, the reversing member 40 controls the first branch pipe 310 to be disconnected and controls the second branch pipe 320 to be communicated with the third branch pipe 330, such that the water in the ice-making water tank 10 realizes self-circulation flow of the ice making water in the ice-making water tank 10 through the second branch pipe 320 and the third branch pipe 330, and hence the ice making water can flow evenly in a constant direction. Hence, the ice cubes produced by the ice maker 100 have an advantage of being transparent, flawless, regular and uniform, the quality of ice making is improved, and the overall performance of the ice maker 100 is upgraded.
Reference throughout this specification to “an embodiment,” “an example,” or the like means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present application. Thus, the appearances of the phrases throughout this specification are not necessarily referring to the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Although embodiments of the present application have been shown and described, it would be appreciated by those skilled in the art that various changes, modifications, alternatives and variations can be made to the above embodiments of the present application without departing from the principle of the present application. The scope of the present application is defined by the claims and the like.
This application is a continuation of PCT/CN2016/100380, filed on Sep. 27, 2016, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
20130133343 | Cur | May 2013 | A1 |
20140165620 | Culley | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
201041443 | Mar 2008 | CN |
102331126 | Jan 2012 | CN |
202119179 | Jan 2012 | CN |
202371952 | Aug 2012 | CN |
10336830 | Mar 2005 | DE |
2007139398 | Jun 2007 | JP |
4211025 | Jan 2009 | JP |
Entry |
---|
Hefei Hualing Co., Ltd., First Office Action, CN201610856672.1, dated Nov. 10, 2017, 6 pgs. |
Hefei Hualing Co., Ltd., Second Office Action, CN201610856672.1, dated May 29, 2018, 4 pgs. |
Hefei Hualing Co., Ltd., Third Office Action, CN201610856672.1, dated Nov. 23, 2018, 4 pgs. |
Hefei Hualing Co. Ltd., International Search Report and Written Opinion, PCTCN2016100380, dated Jul. 6, 2017, 23 pgs. |
Number | Date | Country | |
---|---|---|---|
20190212047 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2016/100380 | Sep 2016 | US |
Child | 16357087 | US |