The present application claims priority under 35 U.S.C. § 119 to Japanese Application No. 2018-176782 filed Sep. 21, 2018, and the entire content of which is incorporated herein by reference.
At least an embodiment of the present invention relates to an ice maker for storing water supplied from a water supply pipe in an ice making tray to make ice.
An ice maker installed in a refrigerator is described in Japanese Unexamined Patent Application Publication No. 2012-207824 (hereinafter, referred to as Patent Literature 1). The ice maker described in Patent Literature 1 includes: an ice making tray including water storage concave units; a driving unit configured to flip the ice making tray around an axis passing through the ice making tray; and a frame configured to support the ice making tray and the driving unit. In the ice maker, water supplied from a water supply pipe is filled into water storage concave units to make ice. Further, when the ice making is completed, the ice maker uses the driving unit to flip the ice making tray and causes a portion of the ice making tray to abut against the frame to twist the ice making tray. As a result, the ice is removed from the ice making tray and dropped into an ice storage container arranged below the ice making tray. In Patent Literature 1, a water supply port of the water supply pipe is located above the ice making tray and the water is directly poured into the ice making tray.
To prevent interference between an ice making tray and a water supply pipe when the ice making tray is flipped (rotated) to remove ice from the ice making tray, an ice maker has been proposed which supplies water to the ice making tray via a water channel provided in a frame supporting the ice making tray, without supplying the water of the water supply pipe directly to the ice making tray. This type of ice maker has a configuration in which the frame is provided with a water flow port communicating with the water channel, and the water flowing through the water channel is poured from the water flow port into a water receiving unit of the ice making tray. However, if the water flow port opens toward a direction intersecting the direction from an upstream side to a downstream side of the water channel, there is a problem in that water scatters from the water flow port not only downward of the water flow port but also outward of the water receiving unit.
In view of the problems described above, an object of at least an embodiment of the present invention is to suppress water supplied to the ice making tray from the water channel provided in the frame, from spilling out of the ice making tray.
To solve the problems described above, an ice maker according to at least an embodiment of the present invention is characterized in that the ice maker includes: an ice making tray including a water storage concave unit configured to store water supplied from a water supply pipe; a driving unit configured to make the ice making tray rotate around an axis passing through the ice making tray, so as to flip between a water storage position where the water storage concave unit faces upward and an ice removal position where the water storage concave unit faces downward; and a frame configured to support the ice making tray and the driving unit. The ice making tray includes a water receiving unit protruding outward from a portion of the ice making tray that moves downward when the ice making tray starts to rotate in a first rotation direction from the water storage position toward the ice removal position, the water receiving unit communicates with the water storage concave unit, the frame includes a frame portion located above the water receiving unit, the frame portion includes: a water channel extending in a direction intersecting the axis at an upper surface of the frame portion; a water flow port, wherein at least a part of the water flow port is provided on a side surface of the water channel; and a water blocking unit provided at a position on an upstream side of the water channel with respect to the water flow port and along the side surface, the water flow port is disposed at a position overlapping with the water receiving unit to cause the water to flow when the ice making tray in the water storage position is viewed from an up-down direction, and the water from the water supply pipe is poured into the water receiving unit through the water flow port, and flows into the water storage concave unit.
In at least an embodiment of the present invention, water from the water supply pipe is poured into the water channel provided in the frame, passes through the water flow port provided on the side surface of the water channel, is poured into the water receiving unit protruding outward from the ice making tray, and flows into the water storage concave unit. Therefore, a water supply port of the water supply pipe can be located outside the ice making tray, and interference between the ice making tray and the water supply pipe can be prevented. Further, the water flow port is provided on the side surface of the water channel, and a water blocking unit is provided in the frame at a position on the upstream side of the water flow port and along the side surface on which the water flow port is provided. In this way, on the upstream side of the water flow port, the direction of the flow in the direction (direction along the side surface) intersecting the opening direction of the water flow port can be changed by the water blocking unit. As a result, it is possible to reduce the flow amount of water flowing from the water flow port in a direction different from the opening direction of the water flow port, and thus, the water is not likely to spill out of the water receiving unit provided below the water flow port.
In at least an embodiment of the present invention, it is preferable that the water blocking unit is a convex unit protruding from the side surface toward the inside of the water channel. In this way, if the water blocking unit is formed integrally with the side surface of the water channel, the structure of the water blocking unit can be simplified. Further, when the water blocking unit is formed integrally with the side surface of the water channel, the flow toward the water flow port along the side surface can be effectively blocked.
In at least an embodiment of the present invention, it is preferable that the convex unit is provided at an opening edge of the water flow port. In this way, it is possible to block, immediately before the water flow port, the flow in a direction (direction along the side surface) intersecting with the opening direction of the water flow port. Therefore, the flow amount of water flowing from the water flow port in a direction different from the opening direction of the water flow port can be effectively reduced.
In at least an embodiment of the present invention, it is preferable that the convex unit includes: a first surface facing a side where the water flow port is located; and a second surface facing a side opposite to the side where the water flow port is located, wherein the first surface is connected to the opening edge of the water flow port and is substantially perpendicular to the side surface, and the second surface is an inclined surface that forms an obtuse angle with the side surface. In this way, when the second surface is an inclined surface, the water can be prevented from splashing due to the flow from the upstream side colliding with the second surface, and the water can be prevented or suppressed from spilling from the water channel. Further, it is possible to prevent or suppress water from remaining between the side surface and the second surface and freezing. Moreover, the water can be guided by the first surface to flow in the opening direction of the water flow port immediately before the water flow port. Therefore, the flow amount of water flowing from the water flow port in a direction different from the opening direction of the water flow port can be reduced.
In at least an embodiment of the present invention, it is preferable that the water channel includes a buffer region extending to the opposite side of the water blocking unit with respect to the water flow port. In this way, it is possible to suppress the occurrence of water splash on the opposite side of the water blocking unit with respect to the water flow port, and the water can be prevented or suppressed from spilling from the water channel.
In at least an embodiment of the present invention, it is preferable that a bottom surface of the water channel includes an inclined surface descending toward the water flow port. In this way, the water in the water channel can be collected toward the water flow port. Therefore, it is possible to prevent or suppress water from remaining in the water channel and freezing.
In at least an embodiment of the present invention, it is preferable that the frame portion includes a guide plate protruding from the opening edge of the water flow port to the outside of the water channel. In this way, the water passing through the water flow port can be guided to not spread in a direction different from the opening direction of the water flow port. Therefore, the water does not easily spill out of the water receiving unit.
In at least an embodiment of the present invention, it is preferable that the guide plate is located on an opposite side of the water blocking unit with respect to the water flow port. In this way, the guide plate can be provided on a side where water easily flows from the water flow port in a direction different from the opening direction of the water flow port. Therefore, the water does not easily spill out of the water receiving unit.
In at least an embodiment of the present invention, it is preferable that the guide plate includes: a first guide plate located on the opposite side of the water blocking unit with respect to the water flow port; and a second guide plate located on the same side as the water blocking unit with respect to the water flow port. A protruding dimension of the first guide plate protruding from the opening edge is larger than a protruding dimension of the second guide plate protruding from the opening edge. In this way, the water passing through the water flow port can be guided on both sides of the water flow port. Therefore, the water does not easily spill out of the water receiving unit. Further, when the protruding dimension of the guide plate (first guide plate) on the side where water easily flows in the direction different from the opening direction of the water flow port is increased, it is possible to effectively suppress water from spilling out of the water receiving unit. Further, when the protruding dimension of the other guide plate (second guide plate) is reduced, an interference between the guide plate and the ice making tray can be avoided.
In at least an embodiment of the present invention, it is preferable that the water flow port includes: a first water flow port portion provided on a bottom surface of the water channel; and a second water flow port portion provided on the side surface and connected to the first water flow port portion, wherein the guide plate extends in an up-down direction along an opening edge of the second water flow port portion and is connected to a guiding board protruding downward from an opening edge of the first water flow port portion, the guiding board configured to guide the water passing through the water flow port into the water receiving unit. In this way, the water passing through the water flow port can be guided below the water flow port, and thus, it is possible to suppress water from spilling out of the water receiving unit.
In at least an embodiment of the present invention, it is desirable that the ice making tray includes: a peripheral wall unit surrounding an opening of the water storage concave unit and extending upward when the ice making tray is arranged in the water storage position; and a notch unit provided in a part of the peripheral wall unit in a circumferential direction, wherein the water receiving unit includes: a bottom unit protruding outward from an edge portion on a lower side of the notch unit in the peripheral wall unit and facing the frame portion when the ice making tray is arranged in the water storage position; a pair of side plate units with lower ends connected to the bottom unit wherein the pair of side plate units protrude outward respectively from an edge portion on one side and an edge portion on the other side of the notch unit in the circumferential direction of the peripheral wall unit; and an end plate unit connecting a tip end portion of the bottom unit and tip end portions of the pair of side plate units, wherein a lower end of the guiding board is located lower than an upper end of the pair of side plate units when the ice making tray is arranged in the water storage position. In this way, it is possible to prevent or suppress the water poured into the water receiving unit after passing through the water flow port, from scattering out from the water receiving unit.
In at least an embodiment of the present invention, it is desirable that the driving unit is coupled to one side of the ice making tray in a direction of the axis, and the water receiving unit protrudes outward from a portion near the other side of the ice making tray in the direction of the axis. In this way, even if the water poured into the water receiving unit is scattered, it is possible to present or suppress water from reaching the driving unit.
In at least an embodiment of the present invention, it is desirable that the ice making tray is made of a flexible material, and the frame includes an abutment unit abutting the water receiving unit from a front side in the first rotation direction when the ice making tray rotates in the first rotation direction and reaches the ice removal position, so as to block a rotation of the ice making tray that is driven in the first rotation direction. In this way, when the water receiving unit and the abutment unit abut against each other and the rotation of the ice making tray is blocked, the ice making tray is twisted. Therefore, the ice is easily removed from the ice making tray when the ice making tray reaches the ice removal position.
According to at least an embodiment of the present invention, the water from the water supply pipe is poured into the water channel provided in the frame, passes through the water flow port provided on the side surface of the water channel, is poured into the water receiving unit protruding outward from the ice making tray, and flows from the water receiving unit into the water storage concave unit. Therefore, the water supply port of the water supply pipe can be located outside the ice making tray, and the water supply pipe can be prevented from interfering with the ice making tray. Further, the water flow port is provided on the side surface of the water channel, and the water blocking unit is provided in the frame at a position on the upstream side of the water flow port and along the side surface on which the water flow port is provided. In this way, on the upstream side of the water flow port, the direction of the flow in the direction (direction along the side surface) intersecting the opening direction of the water flow port can be changed by the water blocking unit. As a result, it is possible to reduce the flow amount of water flowing from the water flow port in a direction different from the opening direction of the water flow port, and thus, the water is not likely to spill out of the water receiving unit provided below the water flow port.
Embodiments will now be described, by way of example only, with reference to the accompanying drawings which are meant to be exemplary, not limiting, and wherein like elements are numbered alike in several Figures, in which:
Below, an ice maker according to at least an embodiment of the present invention will be described with reference to the drawings.
(Overall Configuration)
An ice maker 1 is installed in a refrigerator. As illustrated in
As illustrated in
In the following description, three directions perpendicular to one another are referred to as an X direction, a Y direction, and a Z direction. The X direction is the direction of the axis L. The Z direction is an up-down direction in the installation posture of the ice maker 1 (the posture illustrated in
(Ice Making Tray)
Further, the ice making tray 5 includes a frame-shaped peripheral wall unit 20 extending upward and surrounding the openings of the plurality of water storage concave units 9 when the ice making tray 5 is arranged in the water storage position 5A. The peripheral wall unit 20 includes: a first peripheral wall portion 21 extending in the X direction on the side of the Y1 direction of the plurality of water storage concave units 9; a second peripheral wall portion 22 extending in the X direction on the side of the Y2 direction of the plurality of water storage concave units 9; a third peripheral wall portion 23 extending in the Y direction and connecting end portions of the first peripheral wall portion 21 and the second peripheral wall portion 22 in the X1 direction; and a fourth peripheral wall portion 24 extending in the Y direction and connecting end portions of the first peripheral wall portion 21 and the second peripheral wall portion 22 in the X2 direction. The first peripheral wall portion 21 and the second peripheral wall portion 22 face each other in the Y direction, and the third peripheral wall portion 23 and the fourth peripheral wall portion 24 face each other in the X direction. Further, the fourth peripheral wall portion 24 includes a notch unit 25 on the side further in the Y1 direction relative to the shaft unit 18. The notch unit 25 is rectangular and extends from the upper end edge of the fourth peripheral wall portion 24 toward the Z2 direction (downward).
Further, the ice making tray 5 includes a water receiving unit 26 protruding from the fourth peripheral wall portion 24 in the X2 direction of the X direction (the direction of the axis L). The water receiving unit 26 is located further in the Y1 direction relative to the shaft unit 18. The water receiving unit 26 includes: a bottom unit 28 protruding outward from an edge portion in the Z2 direction (lower edge portion) of the notch unit 25 in the fourth peripheral wall portion 24; a pair of side plate units 29 and 30 with lower ends connected to the bottom unit 28, wherein the pair of side plate units 29 and 30 protrude outward respectively from an edge portion in the Y1 direction and an edge portion in the Y2 direction of the notch unit 25 in the fourth peripheral wall portion 24; and an end plate unit 31 connecting a tip end portion of the bottom unit 28 and tip end portions of the pair of side plate units 29 and 30. The bottom unit 28 includes an upper surface 28a inclining downward from the side of the end plate unit 31 toward the side of the peripheral wall unit 20 (the side of the notch unit 25). Further, the end plate unit 31 is inclined to the side of the peripheral wall unit 20 (the side of the notch unit 25) toward the bottom unit 28. Via the notch unit 25, the water receiving unit 26 is in communication with the plurality of water storage concave units 9 located inside the peripheral wall unit 20.
Here, the water receiving unit 26 is provided in a portion of the ice making tray 5 located further in the Y1 direction relative to the shaft unit 18. The portion located further in the Y1 direction relative to the shaft unit 18 is a portion of the ice making tray 5 that moves in the Z2 direction (downward), when the ice making tray 5 starts to rotate in the CCW direction from the water storage position 5A toward the ice removal position 5B.
As illustrated in
(Driving Unit)
As illustrated in
An ice detecting lever 8 is arranged at a position adjacent to the ice making tray 5 in the Y1 direction. It is noted that an ice detecting mechanism configured to operate the ice detecting lever 8 to rotate around the axis L in conjunction with the cam gear 33 according to a rotation angle of the cam gear 33, a switching mechanism configured to operate based on a signal from the thermistor, and the like, are configured in the casing 41 of the driving unit 6.
(Frame)
As illustrated in
Further, as illustrated in
Further, the frame 7 includes a first upper plate unit 51 protruding from the upper end of the first side plate unit 45 toward the second side plate unit 46. The first upper plate unit 51 connects an end portion of the support unit 50 on the side of the Y1 direction and an end portion on the side of the Y1 direction of the upper end of the wall unit 48. In the first upper plate unit 51, an opening unit 51a is formed inside which an upper end unit of the ice detecting lever 8 is located. Further, the frame 7 includes a second upper plate unit 52 protruding from the upper end of the second side plate unit 46 toward the first side plate unit 45. The second upper plate unit 52 connects an end portion of the support unit 50 on the side of the Y2 direction and an end portion on the side of the Y2 direction of the upper end of the wall unit 48. Further, the frame 7 includes a water channel component 55 on the upper side (on the side of the Z1 direction) of the wall unit 48. The water channel component 55 includes an overhanging portion 55a protruding in the X1 direction from the wall unit 48 and extending in the Y direction, and a protruding portion 55b protruding in the X2 direction from the wall unit 48 substantially in the center of the overhanging portion 55a in the Y direction.
Here, as illustrated in
(Water Channel)
In the frame 7, a water channel 60 for circulating the water supplied from the water supply pipe 2, is provided on an upper surface of the water channel component 55. The water channel 60 is a concave groove that is open at the top. The water channel 60 includes a first water channel portion 61 extending in the Y direction (the direction intersecting the axis L) along the wall unit 48, and a second water channel portion 62 extending in the X2 direction along the protruding portion 55b substantially from the center of the first water channel portion 61 in the Y direction. The first water channel portion 61 overlaps with the overhanging portion 55a and the wall unit 48 when viewed from the Z direction. Therefore, the water channel 60 is provided on the upper surface of the overhanging portion 55a.
As illustrated in
A bottom surface 612a of the first upstream region 612 is inclined downward toward the end edge of the concave unit 611 in the Y2 direction. Further, a bottom surface 613a of the second upstream region 613 is inclined downward toward the end edge of the concave unit 611 in the X2 direction, and a bottom surface 614a of the buffer region 614 is inclined downward toward the end edge of the concave unit 611 in the Y1 direction. The water flowing from the second water channel portion 62 into the first water channel portion 61 mainly flows in the Y1 direction in the first upstream region 612, and mainly flows in the X1 direction in the second upstream region 613, to flow into the concave unit 611. Further, a part of the water flowing into the concave unit 611 and the second water channel portion 62 is diverted to the buffer region 614. The water that is diverted to the buffer region 614 returns in the Y2 direction and flows into the concave unit 611. In this way, the water in the first water channel portion 61 flows from each of the first upstream region 612, the second upstream region 613, and the buffer region 614 toward the concave unit 611 and collects in the water flow port 64.
The water channel component 55 includes a peripheral wall 56 extending along the outer peripheral edge of the overhanging portion 55a and the protruding portion 55b, and an inner side of the peripheral wall 56 is the water channel 60 that is open on the top. A side surface 61b of the first water channel portion 61 in the X1 direction includes a peripheral wall portion extending in the Y direction along the edge of the overhanging portion 55a in the X1 direction. As illustrated in
(Water Blocking Unit)
As described above, in the first upstream region 612 of the first water channel portion 61, the water flowing in from the second water channel portion 62 flows toward the side where the water flow port 64 is located (Y1 direction). That is, the side where the water flow port 64 is located (Y1 direction) is the downstream side of the first upstream region 612, and the side (Y2 direction) opposite to the side where the water flow port 64 is located is the upstream side of the first upstream region 612. In the water channel component 55, a water blocking unit is provided that blocks the water flow toward the water flow port 64 along the side surface 61b of the first water channel portion 61 at the upstream side (in the Y2 direction) of the water flow port 64. The water blocking unit is provided at a position upstream (in the Y2 direction) with respect to the water flow port 64 and along the side surface 61b. The water flow along the side surface 61b is a water flow in a direction intersecting the opening direction (X1 direction) of the water flow port 64. Therefore, the water blocking unit is provided to reduce the flow amount of water flowing from the water flow port 64 in a direction different from the opening direction (X1 direction) of the water flow port 64. Therefore, the water does not easily spill out of the water receiving unit 26.
In the present embodiment, a convex unit 58 that protrudes from the side surface 61b of the first water channel portion 61 in the X1 direction toward the inner side (X2 direction) of the first water channel portion 61 is provided as the water blocking unit. The convex unit 58 is provided at an opening edge of the second water flow port portion 64b in the Y2 direction. The convex unit 58 includes a first surface 58a facing the side (Y1 direction) where the water flow port 64 is located, and a second surface 58b facing the side (Y2 direction) opposite to the side where the water flow port 64 is located. Viewed from the Z direction, the planar shape of the convex unit 58 is a substantially right-angled triangle and the first surface 58a is connected to the opening edge of the second water flow port portion 64b and is substantially perpendicular to the side surface 61b. On the other hand, the second surface 58b is an inclined surface that forms an obtuse angle with the side surface 61b. The second surface 58b inclines in a direction toward the side where the water flow port 64 is located in accordance with the distance from the side surface 61b. As illustrated in
As illustrated in
Further, a first guide plate 68 and a second guide plate 69 configured to guide the water passing through the water flow port 64 are provided at the opening edge of the second water flow port portion 64b at the side surface of the overhanging portion 55a of the water channel component 55 in the X1 direction. The first guide plate 68 protrudes in the X1 direction from the end edge of the second water flow port portion 64b in the Y1 direction, extends more downward than the second water flow port portion 64b and is connected to the edge of the second guiding board 66 in the X1 direction. Further, the second guide plate 69 protrudes in the X1 direction from the end edge of the second water flow port portion 64b in the Y2 direction, extends more downward than the second water flow port portion 64b and is connected to the edge of the third guiding board 67 in the X1 direction. The upper ends of the first guide plate 68 and the second guide plate 69 extend more upward than the second water flow port portion 64b.
The first guide plate 68 that is located in the Y1 direction (that is, on the opposite side of the convex unit 58 that is the water blocking unit) with respect to the second water flow port portion 64b protrudes more in the X1 direction than the second guide plate 69 that is located in the Y2 direction (that is, on the same side as the convex unit 58 that is the water blocking unit) with respect to the second water flow port portion 64b. As illustrated in
If the driving unit 6 is supported by the support unit 50 of the frame 7 and the shaft unit 18 of the ice making tray 5 is inserted into the shaft hole 49 in a state where the coupling unit 17 of the ice making tray 5 is coupled to the output shaft 10 of the driving unit 6, the driving unit 6 and the ice making tray 5 are supported by the frame 7, as illustrated in
Further, if the driving unit 6 and the ice making tray 5 are supported by the frame 7 and the ice making tray 5 is arranged in the water storage position 5A, the overhanging portion 55a (frame portion) of the water channel component 55 is located in the Z1 direction of the water receiving unit 26 of the ice making tray 5, as illustrated in
Here, as illustrated in
(Ice Making Operation)
In an initial state at the start of the ice making operation, the ice making tray 5 is arranged in the water storage position 5A, as illustrated in
Next, the water poured from the water flow port 64 into the water receiving unit 26 flows via the notch unit 25 of the peripheral wall unit 20 of the ice making tray 5 into the water storage concave units 9 and is stored in the water storage concave units 9. Here, the bottom unit 28 facing the water flow port 64 in the water receiving unit 26 includes the upper surface 28a that is inclined downward (in the Z2 direction) toward the notch unit 25. Therefore, the water poured from the water flow port 64 into the water receiving unit 26 flows without stagnation and is stored in the water storage concave units 9. Further, the ice making tray 5 includes the peripheral wall unit 20 that extends upward and surrounds the openings of the water storage concave units 9, and thus, the water flowing from the water receiving unit 26 via the notch unit 25 into the water storage concave units 9 is prevented from scattering from the ice making tray 5 to the outside.
When the filling of the water into the water storage concave units 9 is completed, the water supply is stopped. Afterwards, the water filled into the ice making tray 5 is cooled. Whether or not the ice making is completed is determined by a thermistor attached to the ice making tray 5 depending on whether the temperature of the ice making tray 5 is equal to or lower than a predetermined temperature.
If the ice making is completed, the ice detecting lever 8 detects the amount of ice in the ice storage container installed below the ice making tray 5. Specifically, the ice detecting lever 8 is driven by the driving unit 6 to descend. At this time, if the ice detecting lever 8 descends to a predetermined position, it is determined that the inside of the ice storage container is not full of ice. On the other hand, if the ice detecting lever 8 comes in contact with the ice in the ice storage container before descending to the predetermined position, it is determined that the ice storage container is full of ice. If the ice storage container is full of ice, after waiting for a predetermined time, the ice detecting lever 8 detects again the amount of ice in the ice storage container.
If the inside of the ice storage container is not full of ice, the ice is removed from the ice making tray 5 and dropped into the ice storage container. Specifically, the output shaft 10 is rotated in the CCW direction by the drive of the driving unit 6, and the ice making tray 5 is rotated in the CCW direction around the axis L.
Here, the water receiving unit 26 provided to protrude outward from the ice making tray 5 moves downward when the ice making tray 5 starts to rotate in the CCW direction from the water storage position 5A toward the ice removal position 5B. That is, when the ice making tray 5 rotates in the CCW direction, the water receiving unit 26 moves away from the overhanging portion 55a of the water channel component 55 located above the water receiving unit 26. Therefore, even if the water receiving unit 26 arranged in the ice making tray 5 is provided, the water receiving unit 26 does not interfere with a portion of the frame 7.
The ice making tray 5 rotates by a predetermined rotation angle of 90° or more (for example, 120°) from the water storage position 5A where the ice making tray 5 is arranged horizontally, and reaches the ice removal position 5B. As illustrated in
As illustrated in
After that, the driving unit 6 rotates the ice making tray 5 in the CW direction to return the ice making tray 5 to the water storage position 5A where the water storage concave units 9 face upward. Afterwards, the above-described ice making operation is repeated.
(Main Operation and Effect of Present Embodiment)
In the ice maker 1 according to the present embodiment, the water from the water supply pipe 2 passes through the water flow port 64 arranged in the frame 7, is poured into the water receiving unit 26 protruding outward from the ice making tray 5, and flows from the water receiving unit 26 into the water storage concave units 9. Therefore, the water supply port 2a of the water supply pipe 2 can be positioned outside the ice making tray 5. As a result, it is not necessary to arrange the water supply port 2a of the water supply pipe 2 above the ice making tray 5 at a position separated from the rotation area of the ice making tray 5, and thus, the installation space of the ice maker 1 including the water supply pipe 2 can be reduced in the up-down direction.
Further, if the water supply port 2a of the water supply pipe 2 is arranged above the ice making tray 5, it is necessary that the position of the water supply port 2a is above the rotation area when the ice making tray 5 is flipped, and thus, the distance between the water supply port 2a and the water storage concave units 9 easily separate. Therefore, when the water from the water supply port 2a of the water supply pipe 2 is poured into the water storage concave units 9, the water is easily scattered, and thus, it is necessary to increase the height of the peripheral wall unit 20 that extends upward and surrounds the openings of the plurality of water storage concave units 9 in the ice making tray 5. On the other hand, as described in the present embodiment, if the water from the water supply pipe 2 passes through the water flow port 64 arranged in the frame 7, is poured into the water receiving unit 26 protruding outward from the ice making tray 5, and flows into the water storage concave units 9, scattering of the water occurring when the water is poured into the water storage concave units 9 can be prevented or suppressed. Therefore, the height of the peripheral wall unit 20 can be reduced. As a result, if the ice making tray 5 is in the water storage position 5A, the ice making tray 5 can be made smaller in the up-down direction Z.
In the present embodiment, the frame 7 is provided with the first water channel portion 61 intersecting the direction of the axis L. A part of the water flow port 64 (the second water flow port portion 64b) is provided on the side surface 61b on the side of the ice making tray 5 (X1 direction) of the first water channel portion 61. Further, the frame 7 includes the convex unit 58 that functions as the water blocking unit and is arranged in a position on the upstream side (Y2 direction) of the water flow port 64 and along the side surface 61b in which the water flow port 64 is provided. Therefore, on the upstream side of the water flow port 64, the flow in a direction (direction along the side surface 61b) intersecting the opening direction (X1 direction) of the water flow port 64 can be blocked by the convex unit 58, and it is possible to prevent or suppress water flowing in a direction different from the opening direction of the water flow port 64, from reaching the water flow port 64. As a result, it is possible to reduce the flow amount of water flowing from the water flow port 64 in a direction different from the opening direction (X1 direction) of the water flow port 64, and thus, the water is not likely to spill out of the water receiving unit 26 provided below the water flow port 64.
In the present embodiment, the convex unit 58 that protrudes from the side surface 61b toward the inside of the first water channel portion 61 is provided as the water blocking unit. As a result, the water blocking unit can be integrally formed with the side surface 61b, so that a simple structure can be chosen for the water blocking unit. Further, the water blocking unit is formed integrally with the side surface 61b to effectively block the flow toward the water flow port 64 along the side surface 61b.
In the present embodiment, the convex unit 58 is provided at the opening edge of the water flow port 64, and thus, the flow in a direction (direction along the side surface 61b) intersecting the opening direction of the water flow port 64 can be blocked immediately before the water flow port 64. Therefore, the flow in the direction different from the opening direction of the water flow port 64 can be effectively reduced.
The convex unit 58 according to the present embodiment includes the first surface 58a facing the side where the water flow port 64 is located, and the second surface 58b facing the side opposite to the side where the water flow port 64 is located and the first surface 58a is connected to the opening edge of the water flow port 64 and is substantially perpendicular to the side surface 61b of the first water channel portion 61. Further, the second surface 58b is an inclined surface that forms an obtuse angle with the side surface 61b. When the second surface 58b is an inclined surface, the water can be prevented from splashing due to the flow from the upstream side colliding with the second surface 58b, and the water can be prevented or suppressed from spilling from the water channel 60. Further, it is possible to prevent or suppress water from remaining between the side surface 61b and the second surface 58b and freezing. Moreover, the water can be guided by the first surface 58a to flow in the opening direction of the water flow port 64 immediately before the water flow port 64. Therefore, the flow amount of water flowing from the water flow port 64 in a direction different from the opening direction of the water flow port 64 can be reduced.
In the present embodiment, in the water channel 60 of the frame 7, there is provided the buffer region 614 extending to the opposite side (side of the Y1 direction) of the convex unit 58 with respect to the water flow port 64, and thus, it is possible to suppress the occurrence of water splash on the opposite side of the convex unit 58 with respect to the water flow port 64. Therefore, it is possible to prevent or suppress water from spilling from the water channel 60.
In the present embodiment, the bottom surface 62a of the second water channel portion 62 is inclined downward toward the side of the first water channel portion 61. Further, the bottom surface 61a of the first water channel portion 61 is inclined downward toward the water flow port 64. That is, each of the bottom surface 612a of the first upstream region 612, the bottom surface 613a of the second upstream region 613, and the bottom surface 614a of the buffer region 614 are inclined surfaces that are inclined downward toward the concave unit 611, and the bottom surface 611a of the concave unit 611 is inclined downward toward the side of the water flow port 64 (X1 direction). Therefore, the water supplied from the water supply pipe 2 flows to the water flow port 64 without stagnation. Further, when the water supply is stopped, the water in the water channel 60 can be collected toward the water flow port 64. Therefore, it is possible to prevent or suppress water from remaining in the water channel 60 and freezing.
In the present embodiment, in the overhanging portion 55a of the water channel component 55, there are provided the first guide plate 68 and the second guide plate 69 protruding outward (toward the X1 direction) along the opening edge of the second water flow port portion 64b. Therefore, the water flowing from the water flow port 64 can be guided on the outer side of the water channel 60, and thus, the water does not easily spill out of the water receiving unit 26. Further, the first guide plate 68 is located on the opposite side of the convex unit 58 (water blocking unit) with respect to the water flow port 64 and is provided on a side where the water easily flows from the water flow port 64 in a direction different from the opening direction of the water flow port 64. In addition, a protruding dimension of the first guide plate 68 that is provided on the side where the water easily flows is larger than a protruding dimension of the second guide plate 69. As a result, the effect of preventing water from spilling out of the water receiving unit 26 is enhanced. Further, the notch unit 68a is provided on the upper end portion of the first guide plate 68, and thus, interference between the ice making tray 5 and the first guide plate 68 can be avoided.
Further, in the present embodiment, in the overhanging portion 55a of the water channel component 55, there are provided the first guiding board 65, the second guiding board 66, and the third guiding board 67 protruding in the Z2 direction (downward) from the opening edge of the water flow port 64. Therefore, when the water passing through the water flow port 64 is poured into the water receiving unit 26, the water is guided by the first guiding board 65 toward the notch unit 25. Further, the water passing through the water flow port 64 is guided by the second guiding board 66 and the first guide plate 68, as well as the third guiding board 67 and the second guide plate 69, and thus, water is prevented or suppressed from scattering in the Y direction after passing the water flow port 64. Further, as illustrated in
In the present embodiment, the water receiving unit 26 protrudes from the ice making tray 5 in the direction along the axis L. Therefore, compared with a case where the water receiving unit 26 protrudes from the ice making tray 5 in the direction orthogonal to the axis L, the rotation area when the ice making tray 5 is flipped can be made smaller. Therefore, it is possible to prevent the size of the ice maker 1 from increasing in the direction orthogonal to the axis L.
In the present embodiment, the driving unit 6 is coupled to one side of the ice making tray 5 in the direction of the axis L, and the water receiving unit 26 protrudes outward from a portion on the other side of the ice making tray 5 in the direction of the axis L. Therefore, even if the water poured into the water receiving unit 26 is scattered, it is possible to prevent or suppress the water from reaching the driving unit 6.
In the present embodiment, the ice making tray 5 is made of a flexible material, and the frame 7 includes the abutment unit 70 that abuts against the water receiving unit 26 from the front in the CCW direction in which the ice making tray 5 moves from the water storage position 5A to the ice removal position 5B. As a result, the ice making tray 5 can be twisted by utilizing the water receiving unit 26, and thus, the ice is easily removed from the ice making tray 5 when the ice making tray 5 reaches the ice removal position 5B.
(Modifications)
(1) In the embodiment described above, the convex unit 58 that functions as the water blocking unit is formed integrally with the side surface 61b, however, the water blocking unit may not be formed integrally with the side surface 61b and may be provided at a position along the side surface 61b. For example, another member may be attached to the frame 7 and the other member or the convex unit 58 may be shaped to protrude upward from the bottom surface 61a.
(2) In the embodiment described above, the water supply pipe 2 is arranged so that the water supply port 2a of the water supply pipe 2 is located above the second water channel portion 62 of the water channel 60, however, the water supply pipe 2 may be arranged so that the water supply port 2a of the water supply pipe 2 is located above the first water channel portion 61. In this case, the second water channel portion 62 can be omitted. Further, the degree of freedom in the installation of the water supply pipe 2 is increased.
(3) The water receiving unit 26 can also be provided to protrude from the first peripheral wall portion 21 of the peripheral wall unit 20 of the ice making tray 5 in a direction orthogonal to the axis L. In this case, the notch unit 25 is provided on the first peripheral wall portion 21 of the peripheral wall unit 20 and the water receiving unit 26 and the water storage concave units 9 are in communication via the notch unit 25. Further, when the ice making tray 5 is arranged in the water storage position 5A, the water flow port 64 is provided in the first upper plate unit 51 at a position overlapping with the water receiving unit 26 when viewed from the Z direction, and the water channel 60 extends in the X direction along the first upper plate unit 51 until a position where the water flow port 64 is provided
Number | Date | Country | Kind |
---|---|---|---|
JP2018-176782 | Sep 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
1793446 | Stone | Feb 1931 | A |
3252293 | Frei, Sr. | May 1966 | A |
3563050 | Fox | Feb 1971 | A |
4265089 | Webb | May 1981 | A |
8820108 | Oh | Sep 2014 | B2 |
9074804 | Yoon | Jul 2015 | B2 |
9234689 | Son et al. | Jan 2016 | B2 |
9335081 | Son et al. | May 2016 | B2 |
20130291583 | Bauman | Nov 2013 | A1 |
20150241102 | Lee | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
102455094 | May 2012 | CN |
102878744 | Jan 2013 | CN |
103033011 | Apr 2013 | CN |
103185447 | Jul 2013 | CN |
08258895 | Oct 1996 | JP |
2003106717 | Apr 2003 | JP |
2006258311 | Sep 2006 | JP |
2012207824 | Oct 2012 | JP |
Entry |
---|
Office Action of China Counterpart Application, with English translation thereof, dated Jan. 29, 2021, pp. 1-14. |
Number | Date | Country | |
---|---|---|---|
20200124331 A1 | Apr 2020 | US |