This disclosure relates generally to an ice making and harvesting apparatus and method, wherein the ice may be used in a variety of settings, including beverage dispensers, e.g., for cafeterias, restaurants (including fast food restaurants), theatres, convenience stores, gas stations, and other entertainment and/or food service venues, with reduced overall dimensions of apparatus and decreased freezing time for ice.
Ice making machines described in the art typically form clear crystalline ice by freezing water that flows over a cooled surface.
Existing ice making machines have several shortcomings. For example, they form ice cubes relatively slowly, which leads to a low ice production rates at a given number of ice forming cells. For example, conventional ice making machines typically have ice production cycles of about 10-15 minutes. In order to provide required ice consumption during peak hours, conventional machines are typically equipped with a large size hopper. During storage, ice in the hopper requires mechanical agitation to avoid freezing of ice cubes together. This noticeably increases complexity and overall dimension of the ice making machine. Very often, a large hopper for ice storage is required, which in turn may require the hopper to be located remotely from the point of dispense. Transportation of ice from a remote location to the point of dispensing may add to complexity and operation of ice making. In addition, ice stored for a significant period of time may become contaminated. Conventional machines are not equipped to provide for harvesting of ice that is commensurate with ice production cycles of less than about 10-15 minutes.
Transparent or clear crystalline ice is produced from deaerated and purified water. In conventional ice making machines, deaeration and purification of water is achieved by slow layer-by-layer ice growth. This conventional process, in addition to being slow to allow layer-by-layer ice growth and adversely affecting ice production cycle, also results in water being wasted due to water evaporation during the slow layer-by-layer growth. During multiple ice production cycles using conventional ice making machines, residual water accumulates salts and impurities, and thus should be periodically drained. This draining of water is another contribution to water waste using conventional ice making machines.
Therefore, there is a need for a new ice making machine, which would provide faster ice cube freezing with less waste of water, and enable close to “ice-on-demand” production and harvesting rates, which in turn translates to a smaller overall machine footprint.
In an aspect of the disclosure an ice making and harvesting apparatus is provided. The ice making and harvesting apparatus comprises a mold, a bottom plate, and a top plate. The mold comprises a plurality of cells. Each cell comprises four side walls, and each cell defines a bottom opening and a top opening. The bottom plate is configured to move relative to a bottom surface of the mold. An upper surface of the bottom plate faces the mold. The upper surface of the bottom plate comprises a first sealing component. A bottom side of the mold comprises a second sealing component. The second sealing component is configured to form a seal with the first sealing component of the bottom plate. The bottom plate comprises an inlet and a plurality of channels. Each channel is configured to supply water from the bottom plate to a corresponding cell of the plurality of cells of the mold. The top plate comprises a plurality of pushing rods, each pushing rod configured to move relative to the top opening of a corresponding cell.
The above and other aspects, features and advantages of the present disclosure will be apparent from the following detailed description of the illustrated embodiments thereof which are to be read in connection with the accompanying drawings.
In an aspect of the disclosure, an ice making and harvesting apparatus may be provided with reduced overall dimensions and decreased freezing time of an ice cube to provide “ice-on-demand” production.
In an aspect of the disclosure, an ice making and harvesting apparatus is provided. As shown in
Mold 1 may be made of any suitable material. For example, mold 1 may comprise metal. Mold 1 may be located at a counter, for example, a counter where beverages are dispensed. Mold 1 may comprise a plurality of cells 4 and a plurality of passageways 5. Passageways 5 may be configured to receive a cooling agent (not shown). The cooling agent may be moving continuously through passageways 5 to cool mold 1. The cooling agent may move from passageways 5 to a cooling apparatus (not shown). At the cooling apparatus, the cooling agent may be sufficiently cooled so that when the cooling agent is returned to passageways 5, the cooling agent cools mold 1 and water in mold 1 freezes. Those skilled in the art will recognize that any suitable cooling agent may be used in accordance with aspects of the disclosure. Those skilled in the art will recognize that in accordance with aspects of the disclosure, the cooling agent may be a main refrigerant or first cooling agent that flows through a cooling apparatus (not shown), and may be cooled in a heat exchanger by a secondary refrigerant or second cooling agent. Those skilled in the art will recognize that in accordance with aspects of the disclosure the first and second cooling agents may be food-grade refrigerants. By way of example, but not limitation, the first cooling agent may be a hydrofluorocarbon (HFC), e.g., R-404, and the second cooling agent may be potassium acetate based, high-performance secondary coolant, e.g., Tyfoxit® F.
Each cell 4 of mold 1 comprises four side walls 12 extending from a bottom surface 20 and a top surface 24 of mold 1. Each cell 4 defines a bottom opening 14 and a top opening 16 at edges 18 of side walls 12. As shown in
Bottom plate 2 may comprise an upper surface 22. In an embodiment, upper surface 22 of bottom plate 2 faces bottom surface 20 of mold 1. Bottom plate 2 may be configured to move relative to a bottom surface 20 of mold 1. Movement of bottom plate 2 may be provided by any suitable driving mechanism (not shown). Those of skill in the art will recognize that such suitable driving mechanism may comprise an electro-mechanical or hydraulic or pneumatic driving mechanism. Bottom plate 2 may be configured to move so that its upper surface 22 abuts bottom surface 20 of mold 1. Upper surface 22 of bottom plate 2 may comprise a first sealing component 6. First sealing component 6 may comprise any suitable sealing material. For example, first sealing component 6 may comprise a rubber or elastic material. First sealing component 6 may be attached to bottom plate 2 along the perimeter of upper surface 22 of bottom plate 2. As shown in
Bottom surface 20 of mold 1 may comprise a second sealing component 7. Second sealing component 7 may comprise any suitable sealing material. For example, second sealing component 7 may comprise a rubber or elastic material. Second sealing component 7 may be attached to mold 1 along the perimeter of bottom surface 20 of mold 1. As shown in
In an embodiment, bottom plate 2 may have an inlet 8 and a least one channel 9 configured to supply water to mold cells 4. Channel 9 may comprise channels 36. Channels 36 may be vertical channels. Inlet 8 may be configured to receive water from a water supply source 54. Water supply source 54 may comprise a deaeration and purification device that may be configured to deaerate and purify water prior to being received by inlet 8. Channel 9 may be configured to receive water from inlet 8 and distribute the water to each cell 4 of mold 1.
Top plate 3 may comprise a plurality of pushing rods 10. Each pushing rod 10 may comprise a bottom surface 34. Bottom surface 34 may face top surface 24 of mold 1. As shown in
During operation of apparatus 100, a cooling agent may be continuously pumped with a cooling agent to cool mold 1 so that side walls 4 of the cell have an operation temperature in the range of about −50 degrees C. to about −5 degrees C. In the initial or first stage, as shown in
As shown in
Apparatus 100 may comprise a water filling system 38. As shown in
In
In
The removal of remaining water 40 from cells 4 occurs in a fifth stage, which is shown in
At the same moment or a moment after bottom plate 2 may be moved away from mold 1, top plate 3 may begin to move down to mold 1 by the driving mechanism corresponding to top plate 3.
As shown in
In accordance with aspects of the disclosure, the amount of water needed to make ice cubes may be reduced by using inserts.
Purified water 86 may flow from filter 84 to storage tank 88. Purified water 86 may flow from storage tank 88 to membrane deaeration contactor 90. In membrane deaeration contactor 90, air in purified water 86 may be removed. To facilitate removal of air from purified water 86, a vacuum pump 92 may be used to pull air out of purified water 86. The water 94 exiting membrane deaeration contactor 90 has, in addition to solids being less than about 10 mg/l, has gases that are less than about 1 mg/l. Water 94 exiting membrane deaeration contactor 90 may be characterized as purified deaerated water 94. Purified deaerated water 94 may be used as water for supplying water for forming beverages, and/or used as water 40 for supplying water to the cells 4 are previously described for the making and harvesting of ice cubes in accordance with aspects of the disclosure. In the latter case, water treatment system 80 is the water supply source 54 shown in
As shown in
Each mold 1 of apparatuses 202 and 204 may comprise water supply inlets (not shown). Water supply inlets may be configured to be in fluid communication with water supply source 54 and/or water treatment system 80. Water supply inlets may also be configured to be in fluid communication with inlet 8 and/or channel 9 and/or channels 36 in accordance with aspects of the disclosure.
Apparatus 300 may comprise an ice hopper 400. Hopper 400 may be configured to receive ice cubes from mold 1 of apparatuses 202 and 204, respectively. Hooper 400 may comprise an outlet pipe 402. Outlet pipe 402 may be configured to receive ice from hopper 400 and direct the ice to an ice dispenser (not shown).
Apparatus 300 may be located at a counter, for example, a counter where beverages may be dispensed. Apparatus 300 may be located above a counter so that ice may be dropped from hopper 400 to an ice dispenser and into a container, e.g., a cup, placed under the ice dispenser. Alternatively, apparatus 300 may be located at a standalone beverage dispenser.
As will be recognized by those skilled in the art, the above described embodiments may be configured to be compatible with fountain system requirements, and can accommodate a wide variety of fountain offerings, including but not limited beverages known under any PepsiCo branded name, such as Pepsi-Cola®, and custom beverage offerings. The embodiments described herein offer speed of service at least and fast or faster than conventional systems. The embodiments described herein may be configured to be monitored, including monitored remotely, with respect to operation and supply levels. The embodiments described herein are economically viable and can be constructed with off-the-shelf components, which may be modified in accordance with the disclosures herein.
Those of skill in the art will recognize that in accordance with the disclosure any of the features and/or options in one embodiment or example can be combined with any of the features and/or options of another embodiment or example.
The disclosure herein has been described and illustrated with reference to the embodiments of the figures, but it should be understood that the features of the disclosure are susceptible to modification, alteration, changes or substitution without departing significantly from the spirit of the disclosure. For example, the dimensions, number, size and shape of the various components may be altered to fit specific applications. Accordingly, the specific embodiments illustrated and described herein are for illustrative purposes only and the disclosure is not limited except by the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3024117 | Barlow | Mar 1962 | A |
3043117 | Bollefer | Jul 1962 | A |
4100760 | Cheney | Jul 1978 | A |
4748817 | Oura et al. | Jun 1988 | A |
5618463 | Rindler et al. | Apr 1997 | A |
6000229 | Jones et al. | Dec 1999 | A |
6574981 | Schroeder | Jun 2003 | B2 |
6588219 | Zevlakis | Jul 2003 | B2 |
6688117 | Ophir | Feb 2004 | B1 |
6761036 | Teague et al. | Jul 2004 | B2 |
7213411 | Maier-Laxhuber et al. | May 2007 | B2 |
7415833 | Leaver et al. | Aug 2008 | B2 |
7591140 | Franck et al. | Sep 2009 | B2 |
7596964 | Lim et al. | Oct 2009 | B2 |
7861551 | Hortin | Jan 2011 | B2 |
7870749 | Franck et al. | Jan 2011 | B2 |
7908871 | Baxter et al. | Mar 2011 | B2 |
20030056524 | Schroeder | Mar 2003 | A1 |
20030101735 | Teague et al. | Jun 2003 | A1 |
20030106327 | Zevlakis | Jun 2003 | A1 |
20040099004 | Somura | May 2004 | A1 |
20040206250 | Kondou et al. | Oct 2004 | A1 |
20050061022 | Maier-Laxhuber et al. | Mar 2005 | A1 |
20070107447 | Langlotz | May 2007 | A1 |
20070163286 | Lim et al. | Jul 2007 | A1 |
20070210105 | Malachowsky et al. | Sep 2007 | A1 |
20090025399 | Kamen et al. | Jan 2009 | A1 |
20090301106 | Franck et al. | Dec 2009 | A1 |
20110041543 | Tachibana et al. | Feb 2011 | A1 |
20130081412 | Son et al. | Apr 2013 | A1 |
20130186113 | Chung et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
929370 | Jun 1955 | DE |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2014/063136, dated Feb. 19, 2015 (7 pages). |
Number | Date | Country | |
---|---|---|---|
20150114012 A1 | Apr 2015 | US |