Ice-making assemblies are commonly disposed within refrigerated appliances. It is therefore desired to develop ice-making appliances and assemblies for creating equalized airflow within the ice-making appliance for ensuring even ice formation.
In at least one aspect, an icemaker for a refrigerated appliance is provided herein. The icemaker includes an ice tray having a plurality of ice-forming compartments. A duct system has upper and lower baffles. The upper baffle directs chilled air above the ice tray and the lower baffle directs chilled air below the ice tray. A deflector is operably coupled with the upper baffle. The deflector has a transition portion offset from a body portion. A diverter is disposed between the deflector and the ice tray. The diverter defines a plurality of variously sized slots therein.
In at least another aspect, an icemaker for a refrigerated appliance is provided herein. The icemaker includes an ice tray having a plurality of ice-forming compartments. A duct system has upper and lower baffles. The upper baffle directs chilled air above the ice tray and the lower baffle directs chilled air below the ice tray. A deflector is operably coupled with the upper baffle. The deflector has a transition portion offset from a body portion. A diverter is disposed between the deflector and the ice tray.
In yet another aspect, an icemaker for a refrigerated appliance is provided herein. The icemaker includes an ice tray having a plurality of ice-forming compartments. A duct system has upper and lower baffles. The upper baffle directs chilled air above the ice tray and the lower baffle directs chilled air below the ice tray. A diverter defines a plurality of variously sized slots therein disposed above the ice tray.
These and other features, advantages, and objects of the present device will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in
As required, detailed examples of the present invention are disclosed herein. However, it is to be understood that the disclosed examples are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to a detailed design and some schematics may be exaggerated or minimized to show function overview. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
In this document, relational terms, such as first and second, top and bottom, and the like, are used solely to distinguish one entity or action from another entity or action, without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element preceded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
As used herein, the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
With reference to
Referring to
As shown in
In some instances, the refrigerated appliance 12 has a cabinet 40 and a liner within the cabinet 40 to define the refrigerated compartment 36 and the freezer compartment 38. A mullion 42 may separate the refrigerated compartment 36 and the freezer compartment 38.
The refrigerated appliance 12 may have one or more doors 44, 46 that provide selective access to the interior volume of the refrigerated appliance 12 where consumables may be stored. As shown, the refrigerated compartment doors are designated 44, and the freezer door is designated 46. It is appreciated that the refrigerated compartment 36 may only have one door 44.
The icemaker 10 may be positioned within the door 44 and in an icemaker receiving space 48 of the appliance to allow for delivery of ice through the door 44 in a dispensing area 50 on the exterior of the appliance. The dispensing area 50 may be at a location on the exterior below the level of an ice storage bin 54 to allow gravity to force the ice down an ice dispensing chute in the refrigerated appliance door 44. The chute extends from the storage bin 54 to the dispenser area 50 and ice may be pushed into the chute using an electrically power-driven auger 58.
The refrigerated appliance 12 may also have a water inlet that is fastened to and in fluid communication with a household supply of potable water. The water inlet may be fluidly engaged with one or more of a water filter, a water reservoir, and a refrigerated appliance water supply line. The water supply line may include one or more nozzles and one or more valves. The water supply line may supply water to one or more water outlets 56. For example, a first outlet may dispense water in the dispensing area and a second outlet 56 may dispense water into the ice tray 14. The refrigerated appliance 12 may also have a control board or controller that sends electrical signals to the one or more valves when prompted by a user through a user interface 86, which may be on the front face of a door 44, that water is desired or if an ice-making cycle is to begin.
The icemaker 10 may be located at an upper portion of the icemaker receiving space 48. The ice storage bin 54 may be located below the icemaker 10 such that as ice is harvested, the icemaker 10 uses gravity to transfer the ice from the icemaker 10 to the ice storage bin 54.
As shown in
In some examples, the supply duct 60 includes the upper baffle 20 and the lower baffle 22. The upper baffle 20 is disposed above the ice tray 14 and may direct the chilled air 24 in a downward and/or horizontal direction. The lower baffle 22 may include an upwardly directed rim section 66 that is configured to direct the chilled air 24 at a bottom side of the ice tray 14. Accordingly, chilled air 24 may be directed at two opposing sides of the ice tray 14, which may decrease the amount of time needed to freeze water in the trays during the ice-making process. In some examples, the rim section 66 may be an additional component that is operably coupled to the lower baffle 22. Alternatively, the rim section 66 may be integrally formed with the lower baffle 22 and/or the supply duct 60. Moreover, in some instances, the rim section 66 is configured to direct the chilled air 24 at the bottom side of the ice tray 14 with no obstacles between the rim section 66 and the ice tray 14.
The deflector 26 is operably coupled with the upper baffle 20 and is configured to redirect air from the upper baffle 20 towards various portions of the ice tray 14. Accordingly, the deflector 26 includes an entry portion 68 that is proximate the upper baffle 20. The deflector 26 further includes a top surface 70 and a peripheral portion 72 extending therefrom. As the chilled air 24 is directed outwardly from the upper baffle 20, the chilled air 24 is substantially maintained below the deflector 26. Moreover, the deflector 26 is configured to direct the chilled air 24 downwardly and towards the ice tray 14.
In some examples, the deflector 26 may be disposed over a portion of the ice tray 14. Or, in other words, the second water supply outlet 56 is disposed over the ice tray 14 on an opposing side of the deflector 26 from the upper baffle 20. A heater 74 is installed on the second water supply outlet 56. The heater 74 heats the outlet to prevent blockages thereof. The heater 74 may include an electric heating medium that generates heat upon receiving electric power or the like. The heater 74 heats the bottom portion of the outlet 56 before the water supply is operated so that the water can be easily disposed within the ice tray 14.
Referring to
Referring to
In some instances, the fifth pair of slots 34e has a smaller opening area such that the chilled air 24 is directed therethrough at a higher pressure and/or velocity than the first pair of slots 34a. For example, the airflow velocity can be calculated by the following formula: air velocity=air flow/area of the duct. Accordingly, as the size of the slot is decreased, the airflow velocity is increased. The airflow may be increased to reach portions of the tray that extend beyond the diverter 32. Additionally, and/or alternatively, the airflow may be increased to decrease the amount of time before the chilled air 24 reaches the ice tray 14 to increase the efficiency of the water freezing process.
As illustrated in
In some examples, the ice tray 14 may incorporate a temperature sensor 80, for example, a thermistor or other temperature-sensing element positioned beneath the ice tray 14 in close proximity to the compartments 16 so as to sense a temperature of that volume. Temperatures above the freezing point generally indicate incomplete freezing of the cubes, whereas temperatures below freezing indicate that the cube has frozen and no additional phase change is occurring. As provided herein, the first end portion of the ice tray 14 may be proximate the duct system 18 while the second end portion of the ice tray 14 may be disposed further from the duct system 18. The temperature sensor 80 may be disposed outwardly of a portion of the ice tray 14 that is directly contacted by the chilled air as a temperature of the non-directly contacted portions of the ice tray. It will be appreciated, however, that the temperature sensor may be disposed in any practicable location without departing from the scope of the present disclosure.
In operation, the icemaker 10 may begin an ice-making cycle when a controller in electrical communication with an ice level sensor 82 (
After the ice tray 14 is filled, or if the controller determines that the previous harvest was incomplete, the freeze timer may be started, and the chilled air 24 at a temperature below the freezing point of water is forced through the supply duct 60 of the duct system 18 of the icemaker. The air may be forced by one or more fan or any other method of moving air known in the art. As provided herein, the duct system 18 includes an upper baffle 20 that directs air from the duct system 18 above the ice tray 14 and a lower baffle 22 that directs air at a bottom side of the ice tray 14.
During the freezing process, the controller may determine if a refrigerated appliance door 44 has been opened. If the door 44 is determined to be open at any time, the freeze timer is paused until the door 44 is closed. After some time, substantially all or all of the water will be frozen into ice. The controller may detect this by using the thermistor or another sensor. During the freezing process, the controller also may determine if the temperature of the ice tray 14 or the temperature within the ice compartment 16 is above a certain temperature for a certain amount of time. This temperature may be between 20° F. and 30° F., and more typically from about 22° F. to about 28° F. If the controller determines that the temperature was above the specified temperature for longer than the specified time, the freeze timer may reset.
When the freeze timer reaches a predetermined time and/or when the thermistor sends an electrical signal to the controller that a predetermined temperature of the ice tray 14 is met, the controller may read this as the water is frozen, and it may begin the harvesting process. Consequently, the controller will send a signal to the motor 84 to begin rotating. As the motor 84 begins rotating, the ice tray 14, which is rotationally engaged with the motor 84 at the second end portion, rotates with it. The ice tray 14 may begin at a substantially horizontal position. The motor 84 rotates the ice tray 14 to a predetermined angle. When the motor 84 and tray reach the predetermined angle, the first end portion of the ice tray 14 may be prevented from rotating any further by a bracket stop. With the first end portion held in place by the bracket stop, the motor 84 continues to rotate the ice tray 14 to a second predetermined angle. By continuing to rotate the second end portion, a twist is induced in the ice tray 14. The twist in the ice tray 14 induces an internal stress between the ice and the ice tray 14, which separates the ice from the ice tray 14. The twist angle may be any angle sufficient to break the ice loose from the ice tray 14. After the rotation is complete, the motor 84 returns to its home position. If the controller determines that the ice tray 14 reached the harvest position and back to home position, the cycle may begin again.
Referring to
With further reference to
A variety of advantages may be derived from the use of the present disclosure. For example, use of the icemaker provided herein may decrease the freezing time for making ice within a refrigerated appliance. The use of the deflector provided herein may assist in directing chilled air towards the ice tray to further assist in the ice-making process. Furthermore, a diverter may be used in conjunction with the deflector for directing air in desired locations at various pressures based on the slot sizing disposed within the diverter. The ice-making assembly provided herein may be more efficient and/or cheaper to manufacture than ice-making systems currently available.
It will be understood by one having ordinary skill in the art that construction of the described invention and other components is not limited to any specific material. Other exemplary examples of the invention disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
Furthermore, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected” or “operably coupled” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably coupleable” to each other to achieve the desired functionality. Some examples of operably coupleable include, but are not limited to, physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components. Furthermore, it will be understood that a component preceding the term “of the” may be disposed at any practicable location (e.g., on, within, and/or externally disposed from the appliance) such that the component may function in any manner described herein.
It is also important to note that the construction and arrangement of the elements of the invention as shown in the exemplary examples is illustrative only. Although only a few examples of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connectors or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system might be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary examples without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present invention. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
Number | Name | Date | Kind |
---|---|---|---|
275192 | Goodell | Apr 1883 | A |
286604 | Goodell | Oct 1883 | A |
301539 | Vezin | Jul 1884 | A |
1407614 | Wicks | Feb 1922 | A |
1616492 | Lado | Feb 1927 | A |
1889481 | Kennedy, Jr. | Nov 1932 | A |
1932731 | Hathome | Oct 1933 | A |
2027754 | Smith | Jan 1936 | A |
2244081 | Reeves | Mar 1938 | A |
2617269 | Smith-Johannsen | Jun 1949 | A |
2481525 | Mott | Sep 1949 | A |
2757519 | Sampson | Feb 1954 | A |
2846854 | Galin | Feb 1954 | A |
2683356 | Green, Jr. | Jul 1954 | A |
2878659 | Prance et al. | Jul 1955 | A |
2942432 | Muffiy | Jun 1960 | A |
2969654 | Harte | Jan 1961 | A |
2996895 | Lippincott | Aug 1961 | A |
3009336 | Bayston et al. | Nov 1961 | A |
3016719 | Reindl | Jan 1962 | A |
3033008 | Davis | May 1962 | A |
3046753 | Carapico, Jr. | Jul 1962 | A |
3071933 | Shoemaker | Jan 1963 | A |
3075360 | Elfving et al. | Jan 1963 | A |
3075364 | Kniffin | Jan 1963 | A |
3084678 | Lindsay | Apr 1963 | A |
3084878 | Helming et al. | Apr 1963 | A |
3093980 | Frei | Jun 1963 | A |
3144755 | Kattis | Aug 1964 | A |
3159985 | Keighley | Dec 1964 | A |
3172269 | Cole | Mar 1965 | A |
3192726 | Newton | Jul 1965 | A |
3200600 | Elfving | Aug 1965 | A |
3214128 | Beck et al. | Oct 1965 | A |
3217508 | Beck et al. | Nov 1965 | A |
3217510 | Kniffin et al. | Nov 1965 | A |
3217511 | Keighley | Nov 1965 | A |
3222902 | Brejcha et al. | Dec 1965 | A |
3228222 | Maier | Jan 1966 | A |
3255603 | Johnson et al. | Jun 1966 | A |
3306064 | Poolos | Feb 1967 | A |
3308631 | Kniffin | Mar 1967 | A |
3318105 | Burroughs et al. | May 1967 | A |
3321932 | Orphey, Jr. | May 1967 | A |
3383876 | Frohbieter | May 1968 | A |
3412572 | Kesling | Nov 1968 | A |
3426564 | Jansen et al. | Feb 1969 | A |
3451237 | Baringer et al. | Jun 1969 | A |
3638451 | Brandt | Feb 1972 | A |
3646792 | Hertel et al. | Mar 1972 | A |
3648964 | Fox | Mar 1972 | A |
3667249 | Brown | Jun 1972 | A |
3677030 | Nicholas | Jul 1972 | A |
3684235 | Schupbach | Aug 1972 | A |
3775992 | Bright | Dec 1973 | A |
3788089 | Graves | Jan 1974 | A |
3806077 | Pietrzak et al. | Apr 1974 | A |
3864933 | Bright | Feb 1975 | A |
3892105 | Bernard | Jul 1975 | A |
3908395 | Hobbs | Sep 1975 | A |
3952539 | Hanson et al. | Apr 1976 | A |
4006605 | Dickson et al. | Feb 1977 | A |
D244275 | Gurbin | May 1977 | S |
4024744 | Trakhtenberg et al. | May 1977 | A |
4059970 | Loeb | Nov 1977 | A |
4062201 | Schumacher et al. | Dec 1977 | A |
4078450 | Vallejos | Mar 1978 | A |
D249269 | Pitts | Sep 1978 | S |
4142378 | Bright et al. | Mar 1979 | A |
4148457 | Gurbin | Apr 1979 | A |
4184339 | Wessa | Jan 1980 | A |
4222547 | Lalonde | Sep 1980 | A |
4261182 | Elliott | Apr 1981 | A |
4288497 | Tanaka et al. | Sep 1981 | A |
4402185 | Perchak | Sep 1983 | A |
4402194 | Kuwako et al. | Sep 1983 | A |
4412429 | Kohl | Nov 1983 | A |
4462345 | Routery | Jul 1984 | A |
4483153 | Wallace | Nov 1984 | A |
4487024 | Fletcher et al. | Dec 1984 | A |
4550575 | DeGaynor | Nov 1985 | A |
4562991 | Wu | Jan 1986 | A |
4587810 | Fletcher | May 1986 | A |
4627946 | Crabtree | Dec 1986 | A |
4669271 | Noel | Jun 1987 | A |
4680943 | Mawby et al. | Jul 1987 | A |
4685304 | Essig | Aug 1987 | A |
4688386 | Lane et al. | Aug 1987 | A |
4727720 | Wernicki | Mar 1988 | A |
4843827 | Peppers | Jul 1989 | A |
4852359 | Manzotti | Aug 1989 | A |
4856463 | Johnston | Aug 1989 | A |
4910974 | Hara | Mar 1990 | A |
4942742 | Burruel | Jul 1990 | A |
4970877 | Dimijian | Nov 1990 | A |
4971737 | Infanti | Nov 1990 | A |
5025756 | Nyc | Jun 1991 | A |
D318281 | McKinlay | Jul 1991 | S |
5044600 | Shannon | Sep 1991 | A |
5129237 | Day et al. | Jul 1992 | A |
5157929 | Hotaling | Oct 1992 | A |
5177980 | Kawamoto et al. | Jan 1993 | A |
5196127 | Solell | Mar 1993 | A |
5253487 | Oike | Oct 1993 | A |
5257601 | Coffin | Nov 1993 | A |
5272888 | Fisher et al. | Dec 1993 | A |
5372492 | Yamauchi | Dec 1994 | A |
5378521 | Ogawa et al. | Jan 1995 | A |
5400605 | Jeong | Mar 1995 | A |
5408844 | Stokes | Apr 1995 | A |
5425243 | Sanuki et al. | Jun 1995 | A |
5483929 | Kuhn et al. | Jan 1996 | A |
5586439 | Schlosser et al. | Dec 1996 | A |
5617728 | Kim et al. | Apr 1997 | A |
5632936 | Su et al. | May 1997 | A |
5618463 | Rindler et al. | Aug 1997 | A |
5675975 | Lee | Oct 1997 | A |
5761920 | Wilson et al. | Jun 1998 | A |
5768900 | Lee | Jun 1998 | A |
5826320 | Rathke et al. | Oct 1998 | A |
5884487 | Davis et al. | Mar 1999 | A |
5884490 | Whidden | Mar 1999 | A |
D415505 | Myers | Oct 1999 | S |
5970725 | Lee | Oct 1999 | A |
5970735 | Hobelsberger | Oct 1999 | A |
6058720 | Ryu | May 2000 | A |
6062036 | Hobelsberger | May 2000 | A |
6101817 | Watt | Aug 2000 | A |
6145320 | Kim | Nov 2000 | A |
6148620 | Kumagai et al. | Nov 2000 | A |
6148621 | Byczynski et al. | Nov 2000 | A |
6161390 | Kim | Dec 2000 | A |
6179045 | Lilleaas | Jan 2001 | B1 |
6209849 | Dickmeyer | Apr 2001 | B1 |
6282909 | Newman et al. | Sep 2001 | B1 |
6289683 | Daukas et al. | Sep 2001 | B1 |
6357720 | Shapiro et al. | Mar 2002 | B1 |
6427463 | James | Aug 2002 | B1 |
6438988 | Paskey | Aug 2002 | B1 |
6467146 | Herman | Oct 2002 | B1 |
6481235 | Kwon | Nov 2002 | B2 |
6647739 | Kim et al. | Nov 2003 | B1 |
6688130 | Kim | Feb 2004 | B1 |
6688131 | Kim et al. | Feb 2004 | B1 |
6735959 | Najewicz | May 2004 | B1 |
6742351 | Kim et al. | Jun 2004 | B2 |
6763787 | Hallenstvedt et al. | Jul 2004 | B2 |
6782706 | Holmes et al. | Aug 2004 | B2 |
D496374 | Zimmerman | Sep 2004 | S |
6817200 | Willamor et al. | Nov 2004 | B2 |
6820433 | Hwang | Nov 2004 | B2 |
6857277 | Somura | Feb 2005 | B2 |
6935124 | Takahashi et al. | Aug 2005 | B2 |
6951113 | Adamski | Oct 2005 | B1 |
D513019 | Lion et al. | Dec 2005 | S |
7010934 | Choi et al. | Mar 2006 | B2 |
7010937 | Wilkinson et al. | Mar 2006 | B2 |
7013654 | Tremblay et al. | Mar 2006 | B2 |
7051541 | Chung et al. | May 2006 | B2 |
7059140 | Zevlakis | Jun 2006 | B2 |
7062925 | Tsuchikawa et al. | Jun 2006 | B2 |
7062936 | Rand et al. | Jun 2006 | B2 |
7082782 | Schlosser et al. | Aug 2006 | B2 |
7131280 | Voglewede et al. | Nov 2006 | B2 |
7185508 | Voglewede et al. | Mar 2007 | B2 |
7188479 | Anselmino et al. | Mar 2007 | B2 |
7201014 | Hornung | Apr 2007 | B2 |
7204092 | Castrellón et al. | Apr 2007 | B2 |
7210298 | Lin | May 2007 | B2 |
7216490 | Joshi | May 2007 | B2 |
7216491 | Cole et al. | May 2007 | B2 |
7234423 | Lindsay | Jun 2007 | B2 |
7266973 | Anderson et al. | Sep 2007 | B2 |
7297516 | Chapman et al. | Nov 2007 | B2 |
7318323 | Tatsui et al. | Jan 2008 | B2 |
7386993 | Castellón et al. | Jun 2008 | B2 |
7415833 | Leaver et al. | Aug 2008 | B2 |
7448863 | Yang | Nov 2008 | B2 |
7469553 | Wu et al. | Dec 2008 | B2 |
7487645 | Sasaki et al. | Feb 2009 | B2 |
7568359 | Wetekamp et al. | Aug 2009 | B2 |
7587905 | Kopf | Sep 2009 | B2 |
7614244 | Venkatakrishnan et al. | Nov 2009 | B2 |
7669435 | Joshi | Mar 2010 | B2 |
7681406 | Cushman et al. | Mar 2010 | B2 |
7703292 | Cook et al. | Apr 2010 | B2 |
7707847 | Davis et al. | May 2010 | B2 |
7752859 | Lee et al. | Jul 2010 | B2 |
7762092 | Tikhonov et al. | Jul 2010 | B2 |
7802457 | Golovashchenko et al. | Sep 2010 | B2 |
7832227 | Wu et al. | Nov 2010 | B2 |
7866167 | Kopf | Jan 2011 | B2 |
7918105 | Kim | Apr 2011 | B2 |
8015849 | Jones et al. | Sep 2011 | B2 |
8037697 | LeClear et al. | Oct 2011 | B2 |
8074464 | Venkatakrishnan et al. | Dec 2011 | B2 |
8099989 | Bradley et al. | Jan 2012 | B2 |
8117863 | Van Meter et al. | Feb 2012 | B2 |
8171744 | Watson et al. | May 2012 | B2 |
8196427 | Bae et al. | Jun 2012 | B2 |
8281613 | An et al. | Oct 2012 | B2 |
8322148 | Kim et al. | Dec 2012 | B2 |
8336327 | Cole et al. | Dec 2012 | B2 |
8371133 | Kim et al. | Feb 2013 | B2 |
8371136 | Venkatakrishnan et al. | Feb 2013 | B2 |
8375919 | Cook et al. | Feb 2013 | B2 |
8408023 | Shin et al. | Apr 2013 | B2 |
8413619 | Cleeves | Apr 2013 | B2 |
8424334 | Kang et al. | Apr 2013 | B2 |
8429926 | Shaha et al. | Apr 2013 | B2 |
8474279 | Besore et al. | Jul 2013 | B2 |
8516835 | Holter | Aug 2013 | B2 |
8516846 | Lee et al. | Aug 2013 | B2 |
8555658 | Kim et al. | Oct 2013 | B2 |
8616018 | Jeong et al. | Dec 2013 | B2 |
8646283 | Kuratani et al. | Feb 2014 | B2 |
8677774 | Yamaguchi et al. | Mar 2014 | B2 |
8746204 | Hofbauer | Jun 2014 | B2 |
8756952 | Adamski et al. | Jun 2014 | B2 |
8769981 | Hong et al. | Jul 2014 | B2 |
8820108 | Oh et al. | Sep 2014 | B2 |
8925335 | Gooden et al. | Jan 2015 | B2 |
8943852 | Lee et al. | Feb 2015 | B2 |
9010145 | Lim et al. | Apr 2015 | B2 |
9127873 | Tarr et al. | Sep 2015 | B2 |
9140472 | Shin et al. | Sep 2015 | B2 |
9217595 | Kim et al. | Dec 2015 | B2 |
9217596 | Hall | Dec 2015 | B2 |
9476631 | Park et al. | Oct 2016 | B2 |
20020014087 | Kwon | Feb 2002 | A1 |
20030111028 | Hallenstvedt | Jun 2003 | A1 |
20040099004 | Somura | May 2004 | A1 |
20040144100 | Hwang | Jul 2004 | A1 |
20040206250 | Kondou et al. | Oct 2004 | A1 |
20040237566 | Hwang | Dec 2004 | A1 |
20040261427 | Tsuchikawa et al. | Dec 2004 | A1 |
20050067406 | Rajarajan et al. | Mar 2005 | A1 |
20050126185 | Joshi | Jun 2005 | A1 |
20050126202 | Shoukyuu et al. | Jun 2005 | A1 |
20050151050 | Godfrey | Jul 2005 | A1 |
20050160741 | Park | Jul 2005 | A1 |
20050160757 | Choi et al. | Jul 2005 | A1 |
20060016209 | Cole et al. | Jan 2006 | A1 |
20060032262 | Seo et al. | Feb 2006 | A1 |
20060053805 | Flinner et al. | Mar 2006 | A1 |
20060086107 | Voglewede et al. | Apr 2006 | A1 |
20060086134 | Voglewede et al. | Apr 2006 | A1 |
20060150645 | Leaver | Jul 2006 | A1 |
20060168983 | Tatsui et al. | Aug 2006 | A1 |
20060207282 | Visin et al. | Sep 2006 | A1 |
20060225457 | Hallin | Oct 2006 | A1 |
20060233925 | Kawamura | Oct 2006 | A1 |
20060242971 | Cole et al. | Nov 2006 | A1 |
20060288726 | Mod et al. | Dec 2006 | A1 |
20070028866 | Lindsay | Feb 2007 | A1 |
20070107447 | Langlotz | May 2007 | A1 |
20070119202 | Kadowaki et al. | May 2007 | A1 |
20070130983 | Broadbent et al. | Jun 2007 | A1 |
20070137241 | Lee et al. | Jun 2007 | A1 |
20070193278 | Polacek et al. | Aug 2007 | A1 |
20070227162 | Wang | Oct 2007 | A1 |
20070227164 | Ito et al. | Oct 2007 | A1 |
20070262230 | McDermott | Nov 2007 | A1 |
20080034780 | Lim | Feb 2008 | A1 |
20080104991 | Hoehne et al. | May 2008 | A1 |
20080145631 | Bhate et al. | Jun 2008 | A1 |
20080236187 | Kim | Oct 2008 | A1 |
20080264082 | Tikhonov et al. | Oct 2008 | A1 |
20080289355 | Kang et al. | Nov 2008 | A1 |
20090049858 | Lee et al. | Feb 2009 | A1 |
20090120306 | DeCarlo et al. | May 2009 | A1 |
20090165492 | Wilson et al. | Jul 2009 | A1 |
20090173089 | LeClear et al. | Jul 2009 | A1 |
20090178430 | Jendrusch et al. | Jul 2009 | A1 |
20090187280 | Hsu et al. | Jul 2009 | A1 |
20090199569 | Petrenko | Aug 2009 | A1 |
20090211266 | Kim et al. | Aug 2009 | A1 |
20090211271 | Kim et al. | Aug 2009 | A1 |
20090223230 | Kim et al. | Sep 2009 | A1 |
20090235674 | Kern et al. | Sep 2009 | A1 |
20090272259 | Cook et al. | Nov 2009 | A1 |
20090308085 | DeVos | Dec 2009 | A1 |
20100011827 | Stoeger et al. | Jan 2010 | A1 |
20100018226 | Kim et al. | Jan 2010 | A1 |
20100031675 | Kim et al. | Feb 2010 | A1 |
20100043455 | Kuehl et al. | Feb 2010 | A1 |
20100050663 | Venkatakrishnan et al. | Mar 2010 | A1 |
20100050680 | Venkatakrishnan et al. | Mar 2010 | A1 |
20100055223 | Kondou et al. | Mar 2010 | A1 |
20100095692 | Jendrusch et al. | Apr 2010 | A1 |
20100101254 | Besore et al. | Apr 2010 | A1 |
20100126185 | Cho et al. | May 2010 | A1 |
20100139295 | Zuccolo et al. | Jun 2010 | A1 |
20100163707 | Kim | Jul 2010 | A1 |
20100180608 | Shaha et al. | Jul 2010 | A1 |
20100197849 | Momose et al. | Aug 2010 | A1 |
20100218518 | Ducharme et al. | Sep 2010 | A1 |
20100218540 | McCollough et al. | Sep 2010 | A1 |
20100218542 | McCollough et al. | Sep 2010 | A1 |
20100251730 | Whillock, Sr. | Oct 2010 | A1 |
20100257888 | Kang et al. | Oct 2010 | A1 |
20100293969 | Braithwaite et al. | Nov 2010 | A1 |
20100313594 | Lee et al. | Dec 2010 | A1 |
20100319367 | Kim et al. | Dec 2010 | A1 |
20100326093 | Watson et al. | Dec 2010 | A1 |
20110005263 | Yamaguchi et al. | Jan 2011 | A1 |
20110023502 | Ito et al. | Feb 2011 | A1 |
20110062308 | Hammond et al. | Mar 2011 | A1 |
20110146312 | Hong et al. | Jun 2011 | A1 |
20110192175 | Kuratani et al. | Aug 2011 | A1 |
20110214447 | Bortoletto et al. | Sep 2011 | A1 |
20110239686 | Zhang et al. | Oct 2011 | A1 |
20110265498 | Hall | Nov 2011 | A1 |
20120007264 | Kondou et al. | Jan 2012 | A1 |
20120011868 | Kim et al. | Jan 2012 | A1 |
20120023996 | Herrera et al. | Feb 2012 | A1 |
20120047918 | Herrera et al. | Mar 2012 | A1 |
20120073538 | Hofbauer | Mar 2012 | A1 |
20120085302 | Cleeves | Apr 2012 | A1 |
20120174613 | Park et al. | Jul 2012 | A1 |
20120240613 | Saito et al. | Sep 2012 | A1 |
20120291473 | Krause et al. | Nov 2012 | A1 |
20160370078 | Koo | Dec 2016 | A1 |
20170074527 | Visin | Mar 2017 | A1 |
20170191722 | Bertolini et al. | Jul 2017 | A1 |
20170241694 | Ji et al. | Aug 2017 | A1 |
20170307281 | Morgan et al. | Oct 2017 | A1 |
20170314841 | Koo | Nov 2017 | A1 |
20180017306 | Miller | Jan 2018 | A1 |
20180100681 | Laible | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
2006201786 | Nov 2007 | AU |
1989379 | Jun 2007 | CN |
102353193 | Sep 2011 | CN |
202006012499 | Oct 2006 | DE |
102008042910 | Apr 2010 | DE |
102009046030 | Apr 2011 | DE |
1653171 | May 2006 | EP |
1821051 | Aug 2007 | EP |
2078907 | Jul 2009 | EP |
2375200 | Oct 2011 | EP |
2444761 | Apr 2012 | EP |
2660541 | Nov 2013 | EP |
2743608 | Jun 2014 | EP |
3106795 | Dec 2016 | EP |
3239629 | Nov 2017 | EP |
2771159 | May 1999 | FR |
657353 | Sep 1951 | GB |
2139337 | Nov 1984 | GB |
S49111267 | Sep 1974 | JP |
S49111268 | Sep 1974 | JP |
S5490747 | Jun 1979 | JP |
S5640368 | Apr 1981 | JP |
S60141239 | Jul 1985 | JP |
S6171877 | May 1986 | JP |
6435375 | Mar 1989 | JP |
H01196478 | Aug 1989 | JP |
H01210778 | Aug 1989 | JP |
H01310277 | Dec 1989 | JP |
H024185 | Jan 1990 | JP |
H0231649 | Feb 1990 | JP |
H02143070 | Jun 1990 | JP |
H0370965 | Mar 1991 | JP |
H03158670 | Jul 1991 | JP |
H03158673 | Jul 1991 | JP |
H0415069 | Jan 1992 | JP |
H04161774 | Jun 1992 | JP |
H4260764 | Sep 1992 | JP |
H051870 | Jan 1993 | JP |
H05248746 | Sep 1993 | JP |
H05332562 | Dec 1993 | JP |
H063005 | Jan 1994 | JP |
H0611219 | Jan 1994 | JP |
H06323704 | Nov 1994 | JP |
H10227547 | Aug 1998 | JP |
H10253212 | Sep 1998 | JP |
H11223434 | Aug 1999 | JP |
2000039240 | Feb 2000 | JP |
2000346506 | Dec 2000 | JP |
2001041620 | Feb 2001 | JP |
2001041624 | Feb 2001 | JP |
2001221545 | Aug 2001 | JP |
2001355946 | Dec 2001 | JP |
2002139268 | May 2002 | JP |
2002295934 | Oct 2002 | JP |
2002350019 | Dec 2002 | JP |
2003042612 | Feb 2003 | JP |
2003042621 | Feb 2003 | JP |
2003172564 | Jun 2003 | JP |
2003232587 | Aug 2003 | JP |
2003269830 | Sep 2003 | JP |
2003279214 | Oct 2003 | JP |
2003336947 | Nov 2003 | JP |
2004053036 | Feb 2004 | JP |
2004278894 | Oct 2004 | JP |
2004278990 | Oct 2004 | JP |
2005164145 | Jun 2005 | JP |
2005180825 | Jul 2005 | JP |
2005195315 | Jul 2005 | JP |
2006022980 | Jan 2006 | JP |
2006071247 | Mar 2006 | JP |
2006323704 | Nov 2006 | JP |
2007232336 | Sep 2007 | JP |
4333202 | Sep 2009 | JP |
20010109256 | Dec 2001 | KR |
20060013721 | Feb 2006 | KR |
20060126156 | Dec 2006 | KR |
100845860 | Jul 2008 | KR |
20100123089 | Nov 2010 | KR |
20110037609 | Apr 2011 | KR |
2365832 | Aug 2009 | RU |
1747821 | Jul 1992 | SU |
424878 | Mar 2001 | TW |
8808946 | Nov 1988 | WO |
2008052736 | May 2008 | WO |
2008056957 | May 2008 | WO |
2008061179 | May 2008 | WO |
2008143451 | Nov 2008 | WO |
2012025369 | Mar 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20190145683 A1 | May 2019 | US |