ICE MAKING ASSEMBLY FOR A REFRIGERATOR APPLIANCE

Information

  • Patent Application
  • 20240384914
  • Publication Number
    20240384914
  • Date Filed
    May 16, 2023
    a year ago
  • Date Published
    November 21, 2024
    a month ago
Abstract
An ice making assembly for a refrigerator appliance includes a resilient mold defining a mold cavity for receiving water, a heat exchanger in thermal communication with the resilient mold to freeze the water and form one or more ice cubes, a fixed ejector positioned below the resilient mold, wherein the resilient mold is movable relative to the fixed ejector, and a drive mechanism for moving the resilient mold to engage the fixed ejector and deform the resilient mold to raise the one or more ice cubes.
Description
FIELD OF THE INVENTION

The present subject matter relates generally to refrigerator appliances, and more particularly to ice making assemblies for refrigerator appliances.


BACKGROUND OF THE INVENTION

Refrigerator appliances generally include a cabinet that defines one or more chilled chambers for receipt of food articles for storage. Typically, one or more doors are rotatably hinged to the cabinet to permit selective access to food items stored in the chilled chamber. Further, refrigerator appliances commonly include ice making assemblies mounted within an icebox on one of the doors or in a freezer compartment. The ice is stored in a storage bin and is accessible from within the freezer chamber or may be discharged through a dispenser recess defined on a front of the refrigerator door.


However, conventional ice making assemblies are large, inefficient, and experience a variety of performance related issues. For example, conventional twist tray icemakers include a partitioned plastic mold that is physically deformed to break the bond formed between ice and the tray. However, these icemakers require additional room to fully rotate and twist the tray. In addition, the ice cubes are frequently fractured during the twisting process. When this occurs, a portion of the cubes may remain in the tray, thus resulting in overfilling during the next fill process.


Conventional crescent cube icemakers use a sweep arm to pass through the ice mold and eject the ice cubes. However, water may freeze in locations that cause the sweep arm to jam, resulting in an ejection failure and a stall in the ice making process. Certain conventional icemakers include a harvest heater that helps to release ice cubes from the mold, but the use of a heating element increases energy consumption and requires additional costly components. Moreover, both twist tray and crescent cube icemakers typically have large footprints and eject ice from a bottom of the icemaker, thus requiring a shorter ice storage bin with less storage capacity and lost space within the chamber or icebox.


Accordingly, a refrigerator appliance with features for improved ice dispensing would be desirable. More particularly, an ice making assembly for a refrigerator appliance that is compact, efficient, reliable, and resistant to clogging or jamming would be particularly beneficial.


BRIEF DESCRIPTION OF THE INVENTION

Aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.


In one exemplary embodiment, an ice making assembly for a refrigerator appliance is provided. The ice making assembly defines a vertical direction and includes a resilient mold defining a mold cavity for receiving water, a heat exchanger in thermal communication with the resilient mold to freeze the water and form one or more ice cubes, a fixed ejector positioned below the resilient mold, wherein the resilient mold is movable relative to the fixed ejector, and a drive mechanism for moving the resilient mold to engage the fixed ejector and deform the resilient mold to raise the one or more ice cubes.


In another exemplary embodiment, a refrigerator appliance is provided defining a vertical direction, a lateral direction, and a transverse direction. The refrigerator appliance includes a cabinet defining a chilled chamber, a door being rotatably mounted to the cabinet to provide selective access to the chilled chamber, an icebox mounted to the door and defining an ice making chamber, and an ice making assembly positioned within the ice making chamber. The ice making assembly includes a resilient mold defining a mold cavity for receiving water, a heat exchanger in thermal communication with the resilient mold to freeze the water and form one or more ice cubes, a fixed ejector positioned below the resilient mold, wherein the resilient mold is movable relative to the fixed ejector, and a drive mechanism for moving the resilient mold to engage the fixed ejector and deform the resilient mold to raise the one or more ice cubes.


According to another exemplary embodiment, an ice making assembly for a refrigerator appliance is provided. The ice making assembly includes a resilient mold defining a mold cavity for receiving water, a heat exchanger in thermal communication with the resilient mold to freeze the water and form one or more ice cubes, a mold lifter positioned below the resilient mold, wherein the resilient mold and the mold lifter are movable relative to each other, and a drive mechanism for moving at least one of the resilient mold or the mold lifter to deform the resilient mold and raise the one or more ice cubes.


These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.



FIG. 1 provides a perspective view of a refrigerator appliance according to an exemplary embodiment of the present subject matter.



FIG. 2 provides a perspective view of the exemplary refrigerator appliance of FIG. 1, with the doors of the fresh food chamber shown in an open position.



FIG. 3 provides a perspective view of an icebox and ice making assembly for use with the exemplary refrigerator appliance of FIG. 1 according to an exemplary embodiment of the present subject matter.



FIG. 4 provides a perspective view of the exemplary ice making assembly of FIG. 3 according to an exemplary embodiment of the present subject matter.



FIG. 5 provides a partial side view of a drive mechanism, a lifter assembly, and a sweep assembly of the exemplary ice making assembly of FIG. 3, with the lifter assembly in a lowered position and the sweep assembly in the retracted position.



FIG. 6 provides a partial side view of the drive mechanism, the lifter assembly, and the sweep assembly of FIG. 5, with the lifter mechanism in the raised position.



FIG. 7 provides a rear view of the exemplary ice making assembly of FIG. 3 according to an exemplary embodiment with a retention bracket removed for clarity.



FIG. 8 provides a schematic view of an ice ejection assembly that may be used with the exemplary ice making assembly of FIG. 3, where the resilient mold is in a raised position (i.e., a fill position) according to an example embodiment of the present subject matter.



FIG. 9 provides a schematic view of the exemplary ice ejection assembly of FIG. 8, where the resilient mold is in a lowered position (i.e., an ejection position) according to an example embodiment of the present subject matter.



FIG. 10 provides a schematic view of an ice ejection assembly that may be used with the exemplary ice making assembly of FIG. 3, where the resilient mold is in a raised position (i.e., a fill position) according to an example embodiment of the present subject matter.



FIG. 11 provides a schematic view of the exemplary ice ejection assembly of FIG. 10, where the resilient mold is in a lowered position (i.e., an ejection position) according to an example embodiment of the present subject matter.



FIG. 12 provides a schematic view of an ice ejection assembly that may be used with the exemplary ice making assembly of FIG. 3, where the resilient mold is in a raised position (i.e., a fill position) according to an example embodiment of the present subject matter.



FIG. 13 provides a schematic view of the exemplary ice ejection assembly of FIG. 12, where the resilient mold is in a lowered position (i.e., an ejection position) according to an example embodiment of the present subject matter.





Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present invention.


DETAILED DESCRIPTION

Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.



FIG. 1 provides a perspective view of a refrigerator appliance 100 according to an exemplary embodiment of the present subject matter. Refrigerator appliance 100 includes a cabinet or housing 102 that extends between a top 104 and a bottom 106 along a vertical direction V, between a first side 108 and a second side 110 along a lateral direction L, and between a front side 112 and a rear side 114 along a transverse direction T. Each of the vertical direction V, lateral direction L, and transverse direction T are mutually perpendicular to one another.


Housing 102 defines chilled chambers for receipt of food items for storage. In particular, housing 102 defines fresh food chamber 122 positioned at or adjacent top 104 of housing 102 and a freezer chamber 124 arranged at or adjacent bottom 106 of housing 102. As such, refrigerator appliance 100 is generally referred to as a bottom mount refrigerator. It is recognized, however, that the benefits of the present disclosure apply to other types and styles of refrigerator appliances such as, e.g., a top mount refrigerator appliance, a side-by-side style refrigerator appliance, or a single door refrigerator appliance. Consequently, the description set forth herein is for illustrative purposes only and is not intended to be limiting in any aspect to any particular refrigerator chamber configuration.


Refrigerator doors 128 are rotatably hinged to an edge of housing 102 for selectively accessing fresh food chamber 122. In addition, a freezer door 130 is arranged below refrigerator doors 128 for selectively accessing freezer chamber 124. Freezer door 130 is coupled to a freezer drawer (not shown) slidably mounted within freezer chamber 124. Refrigerator doors 128 and freezer door 130 are shown in the closed configuration in FIG. 1. One skilled in the art will appreciate that other chamber and door configurations are possible and within the scope of the present invention.



FIG. 2 provides a perspective view of refrigerator appliance 100 shown with refrigerator doors 128 in the open position. As shown in FIG. 2, various storage components are mounted within fresh food chamber 122 to facilitate storage of food items therein as will be understood by those skilled in the art. In particular, the storage components may include bins 134 and shelves 136. Each of these storage components are configured for receipt of food items (e.g., beverages and/or solid food items) and may assist with organizing such food items. As illustrated, bins 134 may be mounted on refrigerator doors 128 or may slide into a receiving space in fresh food chamber 122. It should be appreciated that the illustrated storage components are used only for the purpose of explanation and that other storage components may be used and may have different sizes, shapes, and configurations.


Referring now generally to FIG. 1, a dispensing assembly 140 will be described according to exemplary embodiments of the present subject matter. Dispensing assembly 140 is generally configured for dispensing liquid water and/or ice. Although an exemplary dispensing assembly 140 is illustrated and described herein, it should be appreciated that variations and modifications may be made to dispensing assembly 140 while remaining within the present subject matter.


Dispensing assembly 140 and its various components may be positioned at least in part within a dispenser recess 142 defined on one of refrigerator doors 128. In this regard, dispenser recess 142 is defined on a front side 112 of refrigerator appliance 100 such that a user may operate dispensing assembly 140 without opening refrigerator door 128. In addition, dispenser recess 142 is positioned at a predetermined elevation convenient for a user to access ice and enabling the user to access ice without the need to bend-over. In the exemplary embodiment, dispenser recess 142 is positioned at a level that approximates the chest level of a user.


Dispensing assembly 140 includes an ice dispenser 144 including a discharging outlet 146 for discharging ice from dispensing assembly 140. An actuating mechanism 148, shown as a paddle, is mounted below discharging outlet 146 for operating ice or water dispenser 144. In alternative exemplary embodiments, any suitable actuating mechanism may be used to operate ice dispenser 144. For example, ice dispenser 144 can include a sensor (such as an ultrasonic sensor) or a button rather than the paddle. Discharging outlet 146 and actuating mechanism 148 are an external part of ice dispenser 144 and are mounted in dispenser recess 142.


By contrast, inside refrigerator appliance 100, refrigerator door 128 may define an icebox 150 (FIGS. 2 and 3) housing an icemaker and an ice storage bin 152 that are configured to supply ice to dispenser recess 142. In this regard, for example, icebox 150 may define an ice making chamber 154 for housing an ice making assembly, a storage mechanism, and a dispensing mechanism.


A control panel 160 is provided for controlling the mode of operation. For example, control panel 160 includes one or more selector inputs 162, such as knobs, buttons, touchscreen interfaces, etc., such as a water dispensing button and an ice-dispensing button, for selecting a desired mode of operation such as crushed or non-crushed ice. In addition, inputs 162 may be used to specify a fill volume or method of operating dispensing assembly 140. In this regard, inputs 162 may be in communication with a processing device or controller 164. Signals generated in controller 164 operate refrigerator appliance 100 and dispensing assembly 140 in response to selector inputs 162. Additionally, a display 166, such as an indicator light or a screen, may be provided on control panel 160. Display 166 may be in communication with controller 164, and may display information in response to signals from controller 164.


As used herein, “processing device” or “controller” may refer to one or more microprocessors or semiconductor devices and is not restricted necessarily to a single element. The processing device can be programmed to operate refrigerator appliance 100 and dispensing assembly 140. The processing device may include, or be associated with, one or more memory elements (e.g., non-transitory storage media). In some such embodiments, the memory elements include electrically erasable, programmable read only memory (EEPROM). Generally, the memory elements can store information accessible processing device, including instructions that can be executed by processing device. Optionally, the instructions can be software or any set of instructions and/or data that when executed by the processing device, cause the processing device to perform operations.


Referring now generally to FIGS. 3 through 7, an ice making assembly 200 that may be used with refrigerator appliance 100 will be described according to exemplary embodiments of the present subject matter. As illustrated, ice making assembly 200 is mounted on icebox 150 within ice making chamber 154 and is configured for receiving a flow of water from a water supply spout 202 (see, e.g., FIG. 3). More specifically, as described in more detail below, water supply spout 202 may discharge a flow of water into a fill cup that disperses or directs the water into one or more mold cavities.


In this manner, ice making assembly 200 is generally configured for freezing the water to form ice cubes 204 (see FIGS. 5 and 6) which may be stored in storage bin 152 and dispensed through discharging outlet 146 by dispensing assembly 140. However, it should be appreciated that ice making assembly 200 is described herein only for the purpose of explaining aspects of the present subject matter. Variations and modifications may be made to ice making assembly 200 while remaining within the scope of the present subject matter. For example, ice making assembly 200 could instead be positioned within freezer chamber 124 of refrigerator appliance 100 and may have any other suitable configuration.


According to the illustrated embodiment, ice making assembly 200 includes a resilient mold 210 that defines a mold cavity 212. In general, as described in more detail below, resilient mold 210 is positioned for receiving the gravity-assisted flow of water from water supply spout 202 and containing that water until ice cubes 204 are formed. Resilient mold 210 may be constructed from any suitably resilient material that may be deformed to release ice cubes 204 after formation. For example, according to the illustrated embodiment, resilient mold 210 is formed from silicone or another suitable hydrophobic, food-grade, and resilient material.


According to the illustrated embodiment, resilient mold 210 defines two mold cavities 212, each being shaped and oriented for forming a separate ice cube 204. In this regard, for example, water supply spout 202 is configured for refilling resilient mold 210 to a level above a divider wall (not shown) within resilient mold 210 such that the water overflows into the two mold cavities 212 evenly. According to still other embodiments, water supply spout 202 could have a dedicated discharge nozzle positioned over each mold cavity 212. Furthermore, it should be appreciated that according to alternative embodiments, ice making assembly 200 may be scaled to form any suitable number of ice cubes 204, e.g., by increasing the number of mold cavities 212 defined by resilient mold 210.


As shown, ice making assembly further includes a fill cup 214 that is positioned above resilient mold 210 for selectively filling mold cavity 212 with water. More specifically, fill cup 214 may be positioned below water supply spout 202 for receiving a flow of water 216. The fill cup 214 may define a small reservoir for collecting and/or directing the flow of water 216 into mold cavity 212 without excessive splashing or spilling. In addition, fill cup 214 may define a discharge spout 218 that funnels water toward the bottom of the fill cup 214 where it may be dispensed into mold cavity 212.


In general, fill cup 214 and discharge spout 218 may have any suitable size, shape, and configuration suitable for dispensing the flow of water 216 into resilient mold 210. For example, according to the illustrated embodiment, fill cup 214 is positioned over one of the two mold cavities 212 and generally defines sloped surfaces for directing the flow of water 216 to discharge spout 218 immediately above a fill level (not labeled) of the resilient mold 210. According to alternative embodiments, fill cup 214 may extend across a width of the entire resilient mold 210 and may have multiple discharge spouts 218. Fill cup 214 may have still other configurations while remaining within the scope of the present subject matter.


Ice making assembly 200 may further include a heat exchanger 220 which is in thermal communication with resilient mold 210 for freezing the water within mold cavities 212 to form one or more ice cubes 204. In general, heat exchanger 220 may be formed from any suitable thermally conductive material and may be positioned in direct contact with resilient mold 210. Specifically, according to the illustrated embodiment, heat exchanger 220 is formed from aluminum and is positioned directly below resilient mold 210. Furthermore, heat exchanger 220 may define a cube recess 222 which is configured to receive resilient mold 210 and shape or define the bottom of ice cubes 204. In this manner, heat exchanger 220 is in direct contact with resilient mold 210 over a large portion of the surface area of ice cubes 204, e.g., to facilitate quick freezing of the water stored within mold cavities 212. For example, heat exchanger 220 may contact resilient mold 210 over greater than approximately half of the surface area of ice cubes 204. It should be appreciated that as used herein, terms of approximation, such as “approximately,” “substantially,” or “about,” refer to being within a ten percent margin of error.


In addition, ice making assembly 200 may comprise an inlet air duct 224 that is positioned adjacent heat exchanger 220 and is fluidly coupled with a cool air supply (e.g., illustrated as a flow of cooling air 226). According to the illustrated embodiment, inlet air duct 224 provides the flow of cooling air 226 from a rear end 228 of ice making assembly 200 (e.g., from the right along the lateral direction L as shown in FIGS. 5 and 6) through heat exchanger 220 toward a front end 230 of ice making assembly 200 (e.g., to the left along the lateral direction L as shown in FIGS. 5 and 6, i.e., the side where ice cubes 204 are discharged into storage bin 152).


As shown, inlet air duct 224 generally receives the flow of cooling air 226 from a sealed system of refrigerator appliance 100 and directs it over and/through heat exchanger 220 to cool heat exchanger 220. More specifically, according to the illustrated embodiment, heat exchanger 220 defines a plurality of heat exchange fins 232 that extend substantially parallel to the flow of cooling air 226. In this regard, heat exchange fins 232 extend down from a top of heat exchanger 220 along a plane defined by the vertical direction V in the lateral direction L (e.g., when ice making assembly 200 is installed in refrigerator appliance 100).


As best shown in FIGS. 5 and 6, ice making assembly 200 further includes a lifter mechanism 240 that is positioned below resilient mold 210 and is generally configured for facilitating the ejection of ice cubes 204 from mold cavities 212. In this regard, lifter mechanism 240 is movable between a lowered position (e.g., as shown in FIG. 5) and a raised position (e.g., as shown in FIG. 6). Specifically, lifter mechanism 240 includes a lifter arm 242 that extends substantially along the vertical direction V and passes through a lifter channel 244 defined within heat exchanger 220. In this manner, lifter channel 244 may guide lifter mechanism 240 as it slides along the vertical direction V.


In addition, lifter mechanism 240 comprises a lifter projection 246 that extends from a top of lifter arm 242 towards a rear end 228 of ice making assembly 200 and towards a front end 230 of ice making assembly 200. As illustrated, lifter projection 246 generally defines the profile of the bottom of ice cubes 204 and is positioned flush within a lifter recess 248 defined by heat exchanger 220 when lifter mechanism 240 is in the lowered position. In this manner, heat exchanger 220 and lifter projection 246 define a smooth bottom surface of ice cubes 204. More specifically, according to the illustrated embodiment, lifter projection 246 generally curves down and away from lifter arm 242 to define a smooth divot on a bottom of ice cubes 204.


Referring now specifically to FIG. 7, heat exchanger 220 may further define a hole for receiving a temperature sensor 250 which is used to determine when ice cubes 204 have been formed such that an ejection process may be performed. In this regard, for example, temperature sensor 250 may be in operative communication with controller 164 which may monitor the temperature of heat exchanger 220 and the time water has been in mold cavities 212 to predict when ice cubes 204 have been fully frozen. As used herein, “temperature sensor” may refer to any suitable type of temperature sensor. For example, the temperature sensors may be thermocouples, thermistors, or resistance temperature detectors. In addition, although exemplary positioning of a single temperature sensor 250 is illustrated herein, it should be appreciated that ice making assembly 200 may include any other suitable number, type, and position of temperature sensors according to alternative embodiments.


Referring now specifically to FIGS. 4 through 7, ice making assembly 200 further includes a sweep assembly 260 which is positioned over resilient mold 210 and is generally configured for pushing ice cubes 204 out of mold cavities 212 and into storage bin 152 after they are formed. Specifically, according to the illustrated embodiment, sweep assembly 260 is movable along the horizontal direction (i.e., as defined by the lateral direction L and the transverse direction T) between a retracted position (e.g., as shown in FIG. 5) and an extended position (e.g., as shown in FIG. 6). According to the illustrated embodiment, sweep assembly 260 and fill cup 214 may be integrally formed as a single piece, with fill cup 214 being positioned on top of sweep assembly 260. In this manner, sweep assembly 260 and fill cup 214 may move in unison along the lateral direction L during the ice discharge process.


As described in detail below, sweep assembly 260 remains in the retracted position while water is added to resilient mold 210, i.e., through fill cup 214. Throughout the entire freezing process, and as lifter mechanism 240 is moved towards the raised position. After ice cubes 204 are in the raised position, sweep assembly 260 moves horizontally from the retracted to the extended position, i.e., toward front end 230 of ice making assembly 200. In this manner, sweep assembly pushes ice cubes 204 off of lifter mechanism 240, out of resilient mold 210, and over a top of heat exchanger 220 where they may fall into storage bin 152.


Notably, dispensing ice cubes 204 from the top of ice making assembly 200 permits a taller storage bin 152, and thus a larger ice storage capacity relative to ice making machines that dispense ice from a bottom of the icemaker. According to the illustrated embodiment, water supply spout 202 is positioned above fill cup 214 (in the retracted position) such that the flow of water may be directed into resilient mold 210. In addition, water supply spout 202 is positioned such that sweep assembly 260 may move between the retracted position and an extended position without contacting water supply spout 202. According to alternative embodiments, water supply spout 202 may be coupled to mechanical actuator which lowers water supply spout 202 close to resilient mold 210 while sweep assembly 260 is in the retracted position. In this manner, the overall height or profile of ice making assembly 200 may be further reduced, thereby maximizing ice storage capacity and minimizing wasted space.


According to the illustrated embodiment, sweep assembly 260 generally includes vertically extending side arms 262 that are used to drive a raised frame 264 that is positioned over top of resilient mold 210. Specifically, raised frame 264 extends around resilient mold 210 prevents splashing of water within resilient mold 210. This is particularly important when ice making assembly 200 is mounted on refrigerator door 128 because movement of refrigerator door 128 may cause sloshing of water within mold cavities 212.


In addition, as best shown in FIGS. 5 and 6, sweep assembly 260 may further define an angled pushing surface 268 proximate rear end 228 of ice making assembly 200. In general, angled pushing surface 268 is configured for engaging ice cubes 204 while they are pivoted upward and as sweep assembly 260 is moving toward the extended position to rotate ice cubes 204 over and out of ice making assembly 200. Specifically, angled pushing surface may extend at an angle 270 relative to the vertical direction V. According to the illustrated embodiment, angle 270 is less than about 10 degrees, though any other suitable angle for urging ice cubes to rotate 180 degrees may be used according to alternative embodiments.


Referring again generally to FIGS. 4 through 7, ice making assembly 200 may include a drive mechanism 276 which is operably coupled to both lifter mechanism 240 and sweep assembly 260 to selectively raise lifter mechanism 240 and slide sweep assembly 260 to discharge ice cubes 204 during operation. Specifically, according to the illustrated embodiment, drive mechanism 276 comprises a drive motor 278. As used herein, “motor” may refer to any suitable drive motor and/or transmission assembly for rotating a system component. For example, motor 178 may be a brushless DC electric motor, a stepper motor, or any other suitable type or configuration of motor. Alternatively, for example, motor 178 may be an AC motor, an induction motor, a permanent magnet synchronous motor, or any other suitable type of AC motor. In addition, motor 178 may include any suitable transmission assemblies, clutch mechanisms, or other components.


According to an exemplary embodiment, motor 178 may be mechanically coupled to a rotating cam 280. Lifter mechanism 240, or more specifically lifter arm 242, may ride against rotating cam 280 such that the profile of rotating cam 280 causes lifter mechanism 240 move between the lowered position and the raised position as motor 278 rotates rotating cam 280. In addition, according to exemplary embodiment, lifter mechanism 240 may include a roller 282 mounted to the lower end of lifter arm 242 for providing a low friction interface between lifter mechanism 240 and rotating cam 280.


Ice making assembly 200 may include a plurality of lifter mechanisms 240, each of the lifter mechanisms 240 being positioned below one of the ice cubes 204 within resilient mold 210 or being configured to raise a separate portion of resilient mold 210. In such an embodiment, rotating cams 280 are mounted on a cam shaft 284 which is mechanically coupled with motor 278. As motor 278 rotates cam shaft 284, rotating cams 280 may simultaneously move lifter arms 242 along the vertical direction V. In this manner, each of the plurality of rotating cams 280 may be configured for driving a respective one lifter mechanism 240. In addition, a roller axle (not shown) may extend between rollers 282 of adjacent lifter mechanisms 240 to maintain a proper distance between adjacent rollers 282 and to keep them engaged on top of rotating cams 280.


Referring still generally to FIGS. 4 through 7, drive mechanism 276 may further include a yoke wheel 290 which is mechanically coupled to motor 278 for driving sweep assembly 260. Specifically, yoke wheel 290 may rotate along with cam shaft 284 and may include a drive pin 292 positioned at a radially outer portion of yoke wheel 290 and extending substantially parallel to an axis of rotation of motor 278. In addition, side arms 262 of sweep assembly 260 may define a drive slot 294 which is configured to receive drive pin 292 during operation. Although a single yoke wheel 290 is described and illustrated herein, it should be appreciated that both side arms 262 may include yoke wheel 290 and drive slot 294 mechanisms.


Notably, the geometry of each drive slot 294 is defined such that drive pin 292 moves sweep assembly 260 along the horizontal direction when drive pin 292 reaches an end 296 of drive slot 294. Notably, according to an exemplary embodiment, this occurs when lifter mechanism 240 is in the raised position. In order to provide controller 164 with knowledge of the position of yoke wheel 290 (and drive mechanism 276 more generally), ice making assembly 200 may include a position sensor (not shown) for determining a zero position of yoke wheel 290.


According to an exemplary embodiment, the position sensor includes a magnet (not shown) positioned on yoke wheel 290 and a hall-effect sensor (not shown) mounted at a fixed position on ice making assembly 200. As yoke wheel 290 is rotated toward a predetermined position, the hall-effect sensor can detect the proximity of the magnet and controller 164 may determine that yoke wheel 290 is in the zero position (or some other known position). Alternatively, any other suitable sensors or methods of detecting the position of yoke wheel 290 or drive mechanism 276 may be used. For example, motion sensors, camera systems, optical sensors, acoustic sensors, or simple mechanical contact switches may be used according to alternative embodiments.


According to an exemplary embodiment of the present subject matter, motor 278 may begin to rotate after ice cubes 204 are completely frozen and ready for harvest. In this regard, motor 278 rotates rotating cam 280 (and/or cam shaft 284) approximately 90 degrees to move lifter mechanism 240 from the lowered position to the raised position. In this manner, lifter projection 246 pushes resilient mold 210 upward, thereby deforming resilient mold 210 and releasing ice cubes 204. Ice cubes 204 continue to be pushed upward until they pass into storage bin 152.


Notably, yoke wheel 290 rotates with cam shaft 284 such that drive pin 292 rotates within drive slot 294 without moving sweep assembly 260 until yoke wheel 290 reaches the 900 position. Thus, as motor 278 rotates past 90 degrees, lifter mechanism 240 remains in the raised position while sweep assembly 260 moves towards the extended position. In this manner, angled pushing surface 268 engages the raised end of ice cubes 204 to push them out of resilient mold 210 and rotates ice cubes 204 approximately 180 degrees before dropping them into storage bin 152.


When motor 278 reaches 180 degrees rotation, sweep assembly 260 is in the fully extended position and ice cubes 204 will fall into storage bin 152 under the force of gravity. As motor 278 rotates past 180 degrees, drive pin 292 begins to pull sweep assembly 260 back toward the retracted position, e.g., via engagement with drive slot 294. Simultaneously, the profile of rotating cam 280 is configured to begin lowering lifter mechanism 240. When motor 278 is rotated back to the zero position, as indicated for example by position sensor 298, sweep assembly 260 may be fully retracted, lifter mechanism 240 may be fully lowered, and resilient mold 210 may be ready for a supply fresh water. At this time, water supply spout 202 may provide a flow of fresh water into mold cavities 212 and the process may be repeated.


As explained above, ice making assembly 200 may generally include features for facilitating the discharge of ice cubes 204 that are formed within resilient mold 210. In this regard, these ice ejecting mechanisms have been described as including lifter mechanism 240 which includes lifter arm 242 that is driven by drive mechanism 276 to push the bottom of the stationary resilient mold 210 upward to facilitate the ice ejection process. However, it should be appreciated that according to alternative embodiments, ice may be ejected from icemaking assembly 200 using alternative mechanisms and ejection features. Although exemplary ice ejection assemblies are described below according to example embodiments, it should be appreciated that variations and modifications to such assemblies may be made while remaining within the scope of the present subject matter. Moreover, it should be appreciated that these ice ejection assemblies may be used with icemaking assembly 200 or in any other icemakers. Due to the similarity between embodiments, similar reference numerals may be used to refer to the same or similar features among embodiments.


Specifically, referring now generally to FIGS. 8 through 13, ice ejection assemblies 300 will be described according to example embodiments of the present subject matter. Although the focus of such discussion is limited specifically to the deformation of resilient mold 210 and the mechanisms for achieving such deformation, it should be appreciated that other features of ice making assembly 200 are not illustrated and discussion of such features will not be repeated while discussing these figures. For example, the discussion of sweep assemblies, heat exchangers, and other features of icemaking assembly 200 will be omitted for brevity.


Referring now specifically to FIGS. 8 and 9, ice ejection assembly 300 is shown moving between a raised position (e.g., as shown in FIG. 8) and a lowered position (e.g., as shown in FIG. 9). More specifically, in the raised position, also referred to herein as the fill position or the undeformed position, resilient mold 210 may be in a relaxed, undeformed state and may be ready for receipt of the flow of water 216 which is formed into ice cubes 204. After ice cubes 204 are formed, ice ejection assembly 300 is moved into the lowered position, also referred to herein as the discharge/ejection position or the deformed position, resilient mold 210 may be deflected to free ice cube 204 from resilient mold 210 prior to being ejected into a storage bin 152, e.g., via sweep assembly 260. The mechanism for achieving such movement will be described below according to an example embodiment of the present subject matter.


As shown, ice ejection assembly 300 may generally include a stationary frame 302 that is generally fixed relative to icemaking assembly 200 and/or refrigerator appliance 100. In other words, stationary frame 302 may be any structure within icemaking assembly 200 that does not move, such as a portion of heat exchanger 220, a motor frame, or any other suitable structure. In addition, a fixed ejector 304 may be positioned below resilient mold 210. Specifically, according to the illustrated embodiment, fixed ejector 304 is fixed to stationary frame 302. More specifically, fixed ejector 304 may have a bottom end 306 that is attached to stationary frame 302 and a top end 308 that defines a contact surface for engaging resilient mold 210. More specifically, according to the illustrated embodiment, fixed ejector 304 may have an inverted U-shaped or dome-shaped such that top end 308 defines a concave surface for engaging resilient mold 210 and effectively ejecting ice cubes 204.


In addition, ice ejecting assembly 300 may generally include a mold frame 310 that is configured for supporting resilient mold 210. According to the illustrated embodiment, mold frame 310 is a rigid structure that is movable relative to stationary frame 302. It should be appreciated that mold frame 310 may be any suitably rigid structure, such as a movable portion of heat exchanger 220, or any other suitable structure. Although not illustrated in the figures, ice ejecting assembly 300 may include any suitable structure for facilitating movement of mold frame 310 relative to stationary frame 302. According to the illustrated embodiment, such movement is along the vertical direction V, though other directions are possible and within the scope of the present subject matter.


Ice ejecting assembly 300 may generally include a drive mechanism for moving resilient mold 210 to engage fixed ejector 304 and deform resilient mold 210 to raise the one or more ice cubes 204. For example, as shown, motor 278 of drive mechanism 276 may be mounted to stationary frame 302 such that camshaft 284 has a fixed axis of rotation. Roller 282 of drive mechanism 276 may be in contact both with rotating cam 280 and a bottom 312 of mold frame 310. In this manner, as rotating cam 280 is moved to a high point (e.g., as shown in FIG. 8), roller 282 moves mold frame 310 to its highest vertical position (e.g., the fill position) where it may be filled with water and ice cubes 204 may be formed. By contrast, as rotating cam 280 is moved to a low point (e.g., as shown in FIG. 9), roller 282 may allow mold frame 310 to fall to its lowest position (e.g., the ejection position) where fixed ejector 304 may deform resilient mold 210 such that ice cube 204 is ejected.


Notably, for the embodiment of ice ejecting assembly 300 illustrated in FIGS. 8 and 9, the ejection of ice cube 204 relies on the weight of mold frame 310 and resilient mold 210. In this regard, because there is no direct physical connection between roller 282 and mold frame 310, proper ejection of ice cube 210 may rely upon the weight of mold frame 310 pressing against fixed ejector 304 with sufficient force to separate ice cubes 204 from resilient mold 210. However, if the weight of mold frame 310 is insufficient to eject the ice, mold frame 310 may remain in the raised position, supported by fixed ejector 304. Accordingly, ice ejecting assembly 300 may further include a resilient element 320 that is mechanically coupled to mold frame 310 and a stationary part (e.g., such as stationary frame 302 or fixed ejector). For example, this resilient element 320 may be generally configured for urging resilient mold 210 into an deformed position for ice ejection. For example, resilient element 320 may be a mechanical spring that is positioned between the top end 308 of fixed ejector 304 and bottom 312 of mold frame 310. In this manner, as mold frame 310 is raised, resilient element 320 is compressed, such that when roller 282 is moved towards the lowered position, resilient element 320 urges mold frame 310 downward along the vertical direction V until it contacts stationary frame 302. Although a mechanical spring is illustrated as connecting mold frame 310 and fixed ejector 304, it should be appreciated that other configurations of resilient element 320 may be used while remaining within the scope of the present subject matter.


It should be appreciated that ice ejecting assembly 300 may utilize alternative drive mechanisms for facilitating the ice ejection process. For example, referring now FIGS. 10 and 11, ice ejecting assembly 300 may include a scotch yoke drive mechanism 330. In this regard, scotch yoke drive mechanism 330 may include a motor 332 that rotates about an axis of rotation 334. In addition, motor 332 may be mechanically coupled to an offset pin 336 that is offset relative to axis of rotation 334. A scotch yoke arm 338 may be mechanically coupled between offset pin 336 and bottom 312 of mold frame 310. In this manner, as motor 332 rotates, offset pin 336 drives scotch yoke arm 338 and moves mold frame 310 in the vertical direction V between the raised and lowered position.


Referring now to FIGS. 12 and 13, ice ejecting assembly 300 may further include a crank and connecting rod mechanism 350. In this regard, one or more connecting arms 352 may be mechanically coupled between a drive shaft 354 of motor 278. As motor 278 rotates, connecting arms 352 may move between an extended and retracted position to move mold frame 310 between the raised and lowered position, respectively. According to still other embodiments, the drive mechanism of ice ejecting assembly 300 may include any other suitable mechanical coupling, such as a rack and pinion mechanism, a screw and nut mechanism, etc.


As explained above, aspects of the present subject matter are generally directed to a resilient silicone mold icemaker, wherein a translating mold body interacts with a stationary mechanism that is located below the mold body, e.g., to selectively deform the resilient silicone mold for icemaking and ejection. This relative motion between the resilient silicone mold and a lifting body desirable for selectively deforming the resilient silicone mold is achieved through a motion of the mold body, while keeping the lifting body stationary. This relative motion may be achieved by converting rotational motion of an electric motor to translate the mold body using any one of the following mechanisms such as cam and follower, Scotch yoke, crank and connecting rod, rack and pinion, screw and nut, etc.


This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims
  • 1. An ice making assembly for a refrigerator appliance, the ice making assembly defining a vertical direction and comprising: a resilient mold defining a mold cavity for receiving water;a heat exchanger in thermal communication with the resilient mold to freeze the water and form one or more ice cubes;a fixed ejector positioned below the resilient mold, wherein the resilient mold is movable relative to the fixed ejector; anda drive mechanism for moving the resilient mold to engage the fixed ejector and deform the resilient mold to raise the one or more ice cubes.
  • 2. The ice making assembly of claim 1, wherein the resilient mold is positioned in a mold frame and the drive mechanism is configured to move the mold frame along the vertical direction toward or away from the fixed ejector.
  • 3. The ice making assembly of claim 2, wherein the mold frame is an aluminum heat exchanger.
  • 4. The ice making assembly of claim 1, further comprising: a resilient element mechanically coupled to the resilient mold for urging the resilient mold into an undeformed position.
  • 5. The ice making assembly of claim 4, wherein the resilient element is positioned between the fixed ejector and a bottom of a mold frame.
  • 6. The ice making assembly of claim 1, wherein the drive mechanism comprises: a motor mechanically coupled to an offset pin; anda scotch yoke mechanism mechanically coupling the offset pin and a mold frame such that rotating the motor moves the mold frame along the vertical direction.
  • 7. The ice making assembly of claim 1, wherein the drive mechanism comprises at least one of a crank and connecting rod mechanism, a rack and pinion mechanism, or a screw and nut mechanism.
  • 8. The ice making assembly of claim 1, wherein the drive mechanism comprises: a motor mechanically coupled to a rotating cam; anda roller that rides against the rotating cam to move the resilient mold between a lowered position and a raised position.
  • 9. The ice making assembly of claim 1, wherein the fixed ejector is fixed to a stationary frame of the ice making assembly.
  • 10. The ice making assembly of claim 1, wherein the fixed ejector is an dome-shaped member.
  • 11. The ice making assembly of claim 1, further comprising: a sweep assembly positioned over the resilient mold and being movable between a retracted position and an extended position to push the one or more ice cubes out of the resilient mold.
  • 12. The ice making assembly of claim 11, wherein the drive mechanism is operably coupled to the sweep assembly to selectively slide the sweep assembly to discharge the one or more ice cubes.
  • 13. The ice making assembly of claim 11, further comprising: a water supply spout for providing a flow of water, the water supply spout being positioned above the resilient mold and the sweep assembly such that the sweep assembly may move between the extended position and the retracted position without contacting the water supply spout.
  • 14. A refrigerator appliance defining a vertical direction, a lateral direction, and a transverse direction, comprising: a cabinet defining a chilled chamber;a door being rotatably mounted to the cabinet to provide selective access to the chilled chamber;an icebox mounted to the door and defining an ice making chamber; andan ice making assembly positioned within the ice making chamber, the ice making assembly comprising: a resilient mold defining a mold cavity for receiving water;a heat exchanger in thermal communication with the resilient mold to freeze the water and form one or more ice cubes;a fixed ejector positioned below the resilient mold, wherein the resilient mold is movable relative to the fixed ejector; anda drive mechanism for moving the resilient mold to engage the fixed ejector and deform the resilient mold to raise the one or more ice cubes.
  • 15. The refrigerator appliance of claim 14, wherein the resilient mold is positioned in a mold frame and the drive mechanism is configured to move the mold frame along the vertical direction toward or away from the fixed ejector.
  • 16. The refrigerator appliance of claim 14, further comprising: a resilient element mechanically coupled to the resilient mold for urging the resilient mold into an undeformed position.
  • 17. The refrigerator appliance of claim 14, wherein the drive mechanism comprises: a motor mechanically coupled to an offset pin; anda scotch yoke mechanism mechanically coupling the offset pin and a mold frame such that rotating the motor moves the mold frame along the vertical direction.
  • 18. The refrigerator appliance of claim 14, wherein the drive mechanism comprises at least one of a crank and connecting rod mechanism, a rack and pinion mechanism, or a screw and nut mechanism.
  • 19. The refrigerator appliance of claim 14, wherein the fixed ejector is an dome-shaped member fixed to a stationary frame of the ice making assembly.
  • 20. An ice making assembly for a refrigerator appliance, the ice making assembly defining a vertical direction and comprising: a resilient mold defining a mold cavity for receiving water;a heat exchanger in thermal communication with the resilient mold to freeze the water and form one or more ice cubes;a mold lifter positioned below the resilient mold, wherein the resilient mold and the mold lifter are movable relative to each other; anda drive mechanism for moving at least one of the resilient mold or the mold lifter to deform the resilient mold and raise the one or more ice cubes.