The present invention relates to an ice making unit of a flow-down type ice making machine that generates ice blocks in an ice making region by flow-down supplying ice making water to the ice making region of an ice making plate having a back face provided with an evaporation tube.
As an ice making machine automatically producing ice blocks, a flow-down type ice making machine is known in which an ice making unit is configured with an ice making portion in which a pair of ice making plates are disposed facing each other approximately vertically sandwiching an evaporation tube configuring a refrigeration system, ice blocks are generated by flow-down supplying ice making water on a surface (ice making surface) of each of the ice making plates cooled by a refrigerant circulatively supplied to the evaporation tube in ice making operation, and the ice blocks are separated by shifting to deicing operation to fall down and released (for example, refer to Patent Document 1). Such a flow-down type ice making machine warms the ice making plates by supplying a hot gas to the evaporation tube in deicing operation and also flowing deicing water at normal temperature down on a back face of the ice making plates, and allows the ice blocks to fall down under its own weight by melting a frozen portion with the ice making surface in the ice blocks.
In the flow-down type ice making machine, a configuration is employed in which a projection projecting outwardly is provided between positions of vertically forming ice blocks on the ice making surface of each ice making plate and such an ice block sliding down along the ice making surface in deicing operation is stranded on the projection, thereby preventing the ice block from not falling down by being caught in an ice block below to prevent the ice blocks to be melted more than necessary. Patent Document 1:Japanese Laid-Open Patent [Kokai] Publication No. 2006-52906
In the flow-down type ice making machine, since melted water generated by melting of the frozen portion in deicing operation enters between the ice making surface and the ice block sliding down along the ice making surface, even when a lower end of the ice block touches a projection, the ice block is sometimes not stranded on the projection due to surface tension of the melted water and the ice block may not be spaced apart from the ice making surface to end up staying at an upper portion of the projection. As an ice block stays at an upper portion of a projection in such a manner, the ice block is melted more than necessary, which leads to a decrease in ice production per cycle. Moreover, excessive melting generates uneven reduction in an ice block and the like and ends up forming an ice block having poor appearance. In addition, when an ice block falls down from above over an ice block staying at an upper portion of a projection and ends up abutting and be caught in the staying ice block, there is also a possibility of occurring doubly making ice.
In a configuration of providing a projection on an ice making surface as in the flow-down type ice making machine, when an ice block grows to such a position to make contact with a projection upon completion of ice making operation, the ice block cannot be stranded on the projection by the speed of sliding down along the ice making surface in deicing operation, and suppression of falling down due to the surface tension of the melted water described above becomes apparent. Therefore, vertical intervals from the evaporation tube provided on the back face of the ice making plate are enlarged not to grow an ice block to such a position to make contact with the projection upon completion of ice making operation. However, drawbacks are pointed out, in this case, that the vertical dimension of the ice making plate itself becomes longer and the vertical installation space of the ice making unit is enlarged, so that the ice making machine itself also becomes larger in size.
Here, the pair of ice making plates facing each other sandwiching the evaporation tube are positioned in parallel apart by the diameter of the evaporation tube, and in deicing operation, deicing water is supplied from above to a gap between both ice making plates positioned above an uppermost portion of the evaporation tube. In this case, since the gap between both ice making plates is wide (same as the diameter of the evaporation tube), most of the deicing water supplied from above is directly supplied to the evaporation tube without flowing the back faces of the ice making plates above the uppermost portion of the evaporation tube. Therefore, there has been a problem that it takes time to melt a frozen face above the evaporation tube in an uppermost portion of an ice block and thus other areas of the ice block ends up being melted more than necessary.
In an ice making plate provided with such a projection, when a lower end of the ice block sliding down along an ice making surface abuts the projection, an ice block sometimes rotates using the lower end as a fulcrum point. Therefore, in a case of configuring an ice making unit by disposing a plurality of ice making portions in parallel, it is required to enlarge intervals between adjacent ice making portions not to allow an ice block falling down while rotating to stay between the facing ice making plates to get stuck, so that drawbacks are pointed out that the parallel installation space for the ice making portions in the ice making unit becomes larger and the ice making machine also becomes larger in size.
Consequently, in view of the problems inherent in an ice making unit of a conventional flow-down type ice making machine, the present invention is proposed to solve them suitably and it is an object of the present invention to provide an ice making unit of a flow-down type ice making machine in which ice blocks can be separated promptly from the ice making plates so that the ice making capacity is improved and also downsizing can be sought.
In order to solve the problems and achieve the desired object, an ice making unit of a flow-down type ice making machine according to the present invention is an ice making unit of a flow-down type ice making machine, comprising an ice making portion having: an ice making plate provided, horizontally at every predetermined interval, with a plurality of projected rims projecting out on a front side and also extending vertically; and an evaporation tube disposed on a back face of the ice making plate and winding to have horizontally extending horizontal extensions vertically apart from each other, to generate an ice block by supplying ice making water to an ice making surface portion positioned between the projected rims in the ice making plate, wherein
the ice making surface portion is provided with vertically multi steps of inclined portions inclined from a back side to a front side as directed downwardly from above, an lower inclination end of each inclined portion is configured to be positioned closer to the front side than an upper inclination end of an inclined portion positioned below, and the horizontal extensions of the evaporation tube are disposed to make contact with a back face of each inclined portion.
According to an ice making unit of a flow-down type ice making machine of the present invention, ice blocks are separated and fall down promptly from ice making plates, so that the ice making capacity is improved. In addition, downsizing of the ice making unit can be sought.
Next, a description is given below to an ice making unit of a flow-down type ice making machine according to the present invention by way of preferred Embodiments with reference to the attached drawings.
On a surface (ice making surface) of each of the ice making plates 14, 14, as illustrated in
Each of the projected rims 18 projects, as illustrated in
In the upper inclination end of each inclined portion 22 in an uppermost portion, as illustrated in
The horizontal extensions 16a of the evaporation tube 16 are, in the cross section illustrated in
Below the ice making unit 12, an ice making water tank (not shown) is provided in which a predetermined amount of ice making water is stored, and an ice making water supply tube 30 led out of the ice making water tank via a circulation pump (not shown) is connected to respective ice making water sprays 32 provided above the respective ice making portions 10. Each of the ice making water sprays 32 is, as illustrated in
Above each of the ice making portions 10, the deicing water spray 34 is provided that faces above a space between the pair of ice making plates 14, 14 and extends across the width of the ice making portion 10. In the deicing water spray 34, as illustrated in
Each of the ice making unit 12 is configured with the plurality of ice making portions 10 configured as described above, in which, as illustrated in
A refrigeration device 38 of the flow-down type ice making machine is configured, as illustrated in
Next, a description is given below to operation of an ice making unit of a flow-down type ice making machine according to this Embodiment.
In ice making operation of a flow-down type ice making machine, each inclined portion 22 in each ice making plate 14 is forcibly cooled by exchanging heat with the refrigerant circulating in the evaporation tube 16. In such a situation, the circulation pump is activated to supply the ice making water stored in the ice making water tank to each ice making region 20 of both the ice making plates 14, 14 through the ice making water sprays 32. The ice making water supplied to each ice making region 20, as illustrated in
As the supply of the ice making water to each ice making region 20 of both the ice making plates 14, 14 through the ice making water sprays 32 is continued, the ice block M is gradually formed on each inclined portion 22 of each ice making region 20. This allows the ice making water to, as illustrated in
As a predetermined time period for making ice passes and an ice making completion detecting means, not shown, detects the completion of ice making operation, the ice making operation is terminated and deicing operation is started. Upon completion of the ice making operation, as illustrated in
Due to the start of the deicing operation, the hot gas valve HV is open to circulatively supply a hot gas to the evaporation tubes 16, and the feed water valve WV is open to supply deicing water to the back faces of the ice making plates 14, 14 through the deicing water sprays 34, thereby heating the ice making plates 14, 14 to melt the frozen face of each ice block M. The deicing water having fallen down the back faces of the ice making plates 14, 14 is collected into the ice making water tank in the same manner as the ice making water, and that is used as the ice making water for the next time.
As the ice making plates 14 are heated due to the deicing operation, the frozen face of each ice block M with the inclined portion 22 is melted and the ice block M begins to slide down on the inclined portion 22. There is no projection or the like that inhibits sliding of the ice block M on the ice making surface of the inclined portion 22, so that the ice block M are promptly separated from the lower inclination end of the inclined portion 22 to fall down.
As all ice blocks M are separated from the ice making plates 14, 14 and a deicing completion detecting means, not shown, detects completion of deicing due to raise in temperature of the hot gas, the deicing operation is terminated and then ice making operation is started to reciprocate the ice making—deicing cycle described above.
Due to the repeated ice making operations, as illustrated in
According to the ice making unit of the flow-down type ice making machine of the Embodiment described above, the following actions and effects are achieved.
(A) Since the respective vertically adjacent inclined portions 22 in each ice making region 20 are apart, relative to front and back, between the lower inclination end of the inclined portion 22 above and the upper inclination end of the inclined portion 22 below, each inclined portion 22 can be disposed vertically adjacent to each other. That is, since it is not required to consider the contact with a projection or the like as in conventional techniques, the vertical intervals between the horizontal extensions 16a in each evaporation tube 16 can be made narrower and the vertical dimensions of the ice making portions 10 can be made smaller. Accordingly, the size of each ice making plate 14 can be smaller, so that the vertical dimensions of the ice making unit 12 and the ice making machine itself can be downsized, and thus the production costs can be reduced.
(B) The ice making plate portion 19 in each ice making region 20 has the inclined portions 22 and the coupling portions 24 disposed vertically alternately to be in a concave and convex shape, and the inclined portions 22 and the link portions 24 are provided consecutively in a zigzag manner relative to the projected rims 18, so that deformation of the projected rims 18 to fall on the ice making regions 20 is suppressed. Accordingly, the ice block M formed on each inclined portion 22 is prevented from being caught in the projected rims 18, and excessive melting of the ice block M can be prevented caused by deformation of the projected rims 18.
(C) The gaps between the respective ice making portions with each other and the gaps between them and the side walls 36 are made smaller, thereby lowering the temperature of the entire space surrounded by the both side walls 36, 36 in ice making operation for a short period of time and also reducing the time period to generate the ice block M, and thus the ice making capacity is improved.
(D) Each channel 28 formed between the upper inclination ends on the back faces of the inclined portions 22, 22 formed in the uppermost portions of the ice making plates 14, 14 has the width narrower than the diameter of the evaporation tubes 16, so that, as illustrated in
(E) Since the ice making plate portion 19 in each ice making region 20 has the inclined portions 22 and the coupling portions 24 disposed vertically alternately to be in a concave and convex shape, the flow down rate is suppressed when the ice making water supplied from above the ice making plates 14 falls down along the ice making plate portion 19, and the decrease in the ice making efficiency due to the scattering of the ice making water is prevented. Even when the amount of the ice making water supply is reduced, the ice making water falls down while spreading out the entire surface of each inclined portion 22, and thus the ice making water can be frozen efficiently on each inclined portion 22. Moreover, since the amount of the ice making water supply is suppressed, the required ice making water supply is enabled for a compact pump motor with a small output, and thus it is possible to contribute to reduction in costs for the ice making unit and energy saving.
(F) During the formation of an ice block M on each inclined portion 22, the flow down rate of the ice making water is suppressed even when the ice making water falls down along the outer surface of the ice block M, so that a decrease in the ice making efficiency due to the spattering of the ice making water is prevented.
(G) Since the respective vertically adjacent inclined portions 22 in each ice making region 20 are apart, relative to front and back, between the lower end edge of the inclined portion 22 above and the upper end edge of the inclined portion 22 below, the ice blocks M formed on the respective inclined portion 22 are prevented from coupling lengthwise with each other even when both the inclined portions 22 are vertically adjacent to each other.
(H) Since the ice blocks M formed on the inclined portions 22, 22 adjacent widthwise sandwiching the projected rims 18 in each ice making region 20 are transversely coupled sandwiching the projected rims 18, the length of the scales S formed in the areas along the edges of the ice blocks M on the projected rims 18 is shortened, and thus the scales S can be prevented from causing an obstacle to sliding of the ice blocks M in deicing operation. Accordingly, it is possible to prevent occurrence of making ice doubly, freeze-up, and the like caused by the scales S.
(I) Even when the surface tension of the melted water acts on an ice block M, the ice block M is promptly separated from the ice making surface of the inclined portion 22, so that it does not happen that the ice block M is melted more than necessary to decrease the ice production per cycle, and thus the ice making capacity is improved. In addition, since an ice block M dissolved from the freezing with an inclined portion 22 does not stay on the ice making surface of the inclined portion 22, formation of an ice block M having poor appearance due to excessive melting and occurrence of making ice doubly are also prevented.
(J) In the ice making portions 10 of this Embodiment, ice blocks M sliding down on the inclined portions 22 in deicing operation fall down from the inclined portions 22 smoothly without hitting a projection or the like, so that the ice blocks M do not rotate and the like. Accordingly, the intervals separating the respective ice making portions from each other and the intervals separating the ice making portions 10 from the side walls 36 can be made narrower in the ice making unit 12, and the dimensions in the alignment of the ice making portions 10 in the ice making unit 12 can be made smaller for downsizing. In addition, because of the downsizing of the ice making unit 12, the ice making machine itself can also be downsized.
The present invention is not limited to the configuration of the Embodiment described above and can employ other configurations appropriately.
(1) In the ice making portion of the Embodiment, the projecting dimension of the projected rims projecting out on the surfaces of the ice making plates may also be set to a value less than the thickness of ice blocks to be generated on the inclined portions, that is, a value that allows horizontally (widthwise) adjacent ice blocks generated on inclined portions to be partially coupled to each other upon completion of ice making. Specifically, it is sufficient that the projecting ends of the projected rims are set to be positioned closer to the back side (side to be close to the evaporation tube) than the maximum projecting position, towards the front side, of the ice blocks generated on the inclined portions upon completion of making ice. By configuring in such a manner, the plurality of ice blocks coupled to each other beyond the projected rims in deicing operation slide down at once, thereby enabling to separate the ice blocks from the inclined portions more smoothly. Since the ice blocks coupled to each other are separated by the impact of falling down in the ice storage, they can be used as individual ice block units at the time of use.
(2) Although the description in the Embodiment is given to a case of disposing the ice making unit consisting of the plurality of ice making portions in the ice making machine, such an ice making unit may also be configured with one ice making portion.
(3) Although the ice making portion is described in the Embodiment in a configuration of disposing the pair of ice making plates facing each other sandwiching the evaporation tube, it is not limited to this configuration but can employ a configuration of being provided with an evaporation tube on a back face of one sheet of ice making plate.
(4) The number of steps of inclined portions formed in each ice making plate and the number of ice making portions configuring each ice making unit are not limited to those illustrated in the Embodiment but can be set arbitrarily.
Number | Date | Country | Kind |
---|---|---|---|
2008-095309 | Apr 2008 | JP | national |
2009-077178 | Mar 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/056527 | 3/30/2009 | WO | 00 | 9/16/2010 |