This invention relates to improvements in ice skate blade sharpening machines, and more particularly, to ice skate blade sharpening machines which can create a wide variety of profiles on ice skate blades.
In winter sports such as ice skating and hockey the blades of an ice skate are the point of contact for all of the forces generated in turns, spins, jumps, etc. Ice skates typically have a convex shape along a length of the skate blade and a concave shape across the width of the blade, defining two edges along the length of the blade. A skater can use either of these two edges in executing maneuvers on the ice surface. In order to maintain a desired blade configuration, a skate sharpening machine must be configured to create a groove along the length of the blade such that the two edges are of equal height.
As skate blades differ from one pair to another, the sharpening of the skate blade to a required profile has long been considered to be part art and part science. The operator of a skate sharpening machine is required to first dress a grinding wheel to have the desired contour and then ensure that during the grinding process the centerline of the contour on a wheel coincides with the centerline of the blade along its full length. If this is not done an irregular groove will be created along the length of the blade, with one edge being higher/lower than the other.
The dressing of the skate sharpening grinding wheel is traditionally carried out using a single point diamond dresser that is pivoted about an axis generally perpendicular to an axis of rotation of the grinding wheel. The single point diamond dresser is slowly swung through an arc that intersects the outer periphery of the grinding wheel, removing material from the wheel to create and define a grinding wheel contour. Since the dresser pivots, the contour formed on the grinding wheel is a convex arcuate surface with a radius typically in the range of ⅜ inch to 1⅝ inch. Generally speaking several passes are required to achieve a surface with the desired quality. Once the grinding wheel contour has been created, it may be used to create a complementary concave surface on the skate blade.
It would be desirable to provide an ice skate blade sharpening machine that uses a contouring tool which can create one of many different shaped contours on the grinding wheel, such that a desired contour may be ground into the skate blade during the sharpening process.
In accordance with a first aspect, an ice skate sharpening machine comprises a skate holder which holds the blade in a releasably fixed position, a rotatable grinding wheel having a periphery and rotatable about a grinding wheel axis, and a contouring tool having a contour surface, moveable between an engaged position and a disengaged position, wherein in the engaged position the contouring tool is held in place with respect to the grinding wheel axis, the contour surface engages the rotating grinding wheel and grinds the periphery of the grinding wheel to define a grinding wheel contour, and wherein the grinding wheel contour grinds the blade to define a profile when the grinding wheel is rotating and the blade is held in the releasably fixed position.
From the foregoing disclosure and the following more detailed description of various preferred embodiments it will be apparent to those skilled in the art that the present invention provides a significant advance in the technology of ice skate sharpening machines. Particularly significant in this regard is the potential the invention affords for providing a high quality, low cost ice skate blade sharpening machine capable of generating a wide range of profiles on an ice skate blade. Additional features and advantages of various preferred embodiments will be better understood in view of the detailed description provided below.
It should be understood that the appended drawings are not necessarily to scale, presenting a somewhat simplified representation of various preferred features illustrative of the basic principles of the invention. The specific design features of the ice skate blade sharpening machine as disclosed here, including, for example, the specific dimensions of the contouring tool, will be determined in part by the particular intended application and use environment. Certain features of the illustrated embodiments have been enlarged or distorted relative to others to enhance visualization and clear understanding. In particular, thin features may be thickened, for example, for clarity of illustration. All references to direction and position, unless otherwise indicated, refer to the orientation illustrated in the drawings.
It will be apparent to those skilled in the art, that is, to those who have knowledge or experience in this area of technology, that many uses and design variations are possible for the improved ice skate blade sharpening machine disclosed here. The following detailed discussion of various alternative and preferred features and embodiments will illustrate the general principles of the invention with reference to an ice skate blade sharpening machine particularly suitable for ice skates used for playing winter sports such as hockey and figure skating. Other embodiments suitable for other applications will be readily apparent to those skilled in the art given the benefit of this disclosure.
Turning now to the drawings,
In sharpening the blade of a skate it is important that a centerline 116 of the skate blade 106 be aligned with a centerline 112 of the contour 303 of the grinding wheel 102 as the blade is moved by movement of the skate holder 105 during the blade sharpening process. See
The contouring tool is mounted on an adjustment device, here a pivot arm 104 which is movable about a pivot arm axis 97 between an engaged position where the contour surface 202 engages the grinding wheel and a disengaged position where the contour surface 202 does not engage the grinding wheel. As shown here, the pivot arm axis 97 is generally parallel to the grinding wheel axis 98. The pivot arm allows for easy removal of one contouring tool and replacement with another. Other adjustment devices for moving the contour surface into and out of engagement with the grinding wheel are discussed below.
In accordance with a highly advantageous feature, the contour surface described herein may have any of a variety of cross sections instead of being limited to the convex arcuate profile of known blade sharpening devices. This makes it possible for skaters to experiment and find a given profile that gives them better performance in skating than currently used profiles.
The contouring tool 103 may advantageously be manufactured to various dimensions and geometries to cover a spectrum of profiles normally used by skate sharpeners. For example, when the desired profile 107 on the blade 106 is concave and has a radii, the profile dimensions may be of: ¼, ⅜, ½, ⅝, ¾, ⅞, 1, 1⅛, 1¼, 1⅜, 1½, and 1⅝ (inches). Other combinations of contouring tool shapes and contour surfaces, such as parabolic and elliptical shapes, or non-concave shapes such as flat bottomed or multi-groove, will be readily apparent to those skilled in the art given the benefit of this disclosure.
Advantageously, the contouring tools disclosed here can be readily interchangeable and allow for rapid switching from one radius to another as sharpening goes from one set of skates to another. Changing a contouring tool can be done much quicker than the time required to redress a grinding wheel to a different radius using the traditional single point diamond dresser. In accordance with another highly advantageous feature, a contouring tool may be indexable as shown in the preferred embodiment of
Contouring tools 103 disclosed here are preferably coated with an abrasive material that is harder than material which forms the grinding wheel 102. In turn, the grinding wheel material is preferably harder than the material that forms the ice skate blades 106. A preferred abrasive coating suitable for use on the contouring tool here is diamond dust, chips or grit in a plated metallic surface coating such as electroplated nickel.
It will be understood here by those skilled in the art that the contouring tool is held in place with respect to the grinding wheel axis in the sense although there may be some vibrational movement as the contouring tool engages the grinding wheel periphery, the contouring tool is staying in the same plane with respect to the grinding wheel axis while in the engaged position. In the preferred embodiments shown in the drawings, contouring tool 103 in
The embodiments discussed were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to use the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
This application claims priority benefit of U.S. Provisional Patent Application 60/928,322, filed on May 10, 2007.
Number | Date | Country | |
---|---|---|---|
60928322 | May 2007 | US |