Ice skating rink resurfacing apparatus

Information

  • Patent Grant
  • 7698837
  • Patent Number
    7,698,837
  • Date Filed
    Wednesday, March 12, 2008
    16 years ago
  • Date Issued
    Tuesday, April 20, 2010
    14 years ago
  • Inventors
  • Original Assignees
    • (Midlothian, VA, US)
  • Examiners
    • Beach; Thomas A
    • Buck; Matthew R
    Agents
    • Thompson McMullan
    • Lyne, Jr.; Robert C.
Abstract
An ice resurfacing machine for small and medium-size indoor and outdoor ice skating rinks comprises a light towing vehicle, a resurfacing attachment, and a lifting and leveling assembly connecting them. To eliminate ruts in the ice, the machine removes only a thin layer of ice by scraping, fills the ruts with “snow” created by the scraping, skating, and precipitation, and adds water to fill the rut. The cold from the base ice and/or the atmosphere freezes the water and thus eliminates the rut. The machine may also be used to remove heavy snow or reduce the thickness of the ice. The resurfacing attachment includes a snow box which collects the snow and carries it along the surface of the ice.
Description
FIELD OF THE INVENTION

This invention relates to a system for resurfacing ice skating rinks.


BACKGROUND OF THE INVENTION

Ice skating is extremely popular in the northern states of America and is growing increasingly popular in the southern states. The demands for ice skating surfaces are becoming nearly impossible to meet. Many ice rinks have to operate 24 hours a day to meet skaters' needs. The number and availability of ice skating rinks are limited by the maintenance required to keep the quality of the ice surface in an optimum or at least satisfactory condition. Such maintenance involves eliminating ruts and the like created by the skaters, removing the resulting ice particles, removing any fallen snow accumulation (in the case of an outdoor rink), and controlling the thickness of the ice.


It is important to control the thickness of the ice. The average ice thickness on an indoor ice skating rink is about 0.75 to 1.0 inch. If, for example, a person were merely to constantly shovel away the ice powder created after an ice skating session and reapply water, the ice would eventually become too thick for the ice chillers to handle and the ice would become soft and wet.


Backyard or homemade ice rinks, ponds, and lakes are called natural ice skating surfaces. They are usually created outdoors when the temperature is constantly below 25° F. Natural ice skating surfaces rely on cold air temperatures to keep the surface frozen. Even in colder climates, ice skating surfaces cannot have thick ice because they are hard to keep frozen. Natural ice skating surfaces also have the disadvantage of not having protection from snowfall.


Typically these smaller rinks are maintained manually, by one or more persons using hand tools, such as a shovel, a wheelbarrow, a hose, and a T-shaped squeegee-like implement. This not only tends to be burdensome, labor intensive, energy-depleting, and slow, but it also may produce an uneven, unduly thick, and/or poor quality surface. As a practical matter, the long term result of these deficiencies is likely to be that the ice surface is resurfaced with insufficient frequency. Manual maintenance also requires fairly large quantities of water, and sometimes creates fog which can be a problem in enclosed rinks. As a member of a neighborhood recreation association having a 7,000 sq. ft. indoor ice skating rink, I have had personal experience in hand shoveling and resurfacing and the attending disadvantages thereof. That experience led to the present invention.


Large ice resurfacing machines such as those sold under the trademark Zamboni® or Olympia® have been used for many years for large rinks, for example regulation hockey rinks having regulation dimensions of 200 ft.×85 ft. and other rinks having an area of 19,000 to 20,000 sq. ft. These large machines are excellent for large rinks, but their initial expense, size, complexity, training, maintenance, and storage requirements render them less suitable for medium and small size rinks, such as those operated by homeowners, municipalities, recreation associations, parks, private establishments, and the like. In 2005 such machines of one manufacturer had a selling price in the lower $70,000 range and weighed in excess of 9,000 pounds. Also, their size limits their turning radius and maneuverability and often requires a separate building for storage. In addition, they are complex, requiring considerable skilled maintenance and operator training. Certification of an operator of one of these machines requires that he or she attend a 3-day training course. More recently, downsized versions of these machines such as the Zamboni® Model 100 and the Olympia 250® have become available, but aside from their size and weight these have many of the same shortcomings.


The Zamboni® and Olympia® and various other machines shave off a surface ice layer of a sufficient depth, which can be as much as ⅛ inch, to remove substantially all of the ruts, and then deposit water on the resulting rut-free substrate so as to create an entirely new layer of fresh ice on the substrate. The shaving produces a rather large quantity of ice particles or “snow”, which is carried away by conveyors in the machine, stored in a snow box in the machine, and later disposed of as waste.


There has been a long-felt but unmet need for an ice resurfacing machine which has the following attributes and capabilities: relatively low initial cost; compact; easily maneuverable; short turning radius; easy to maintain and repair with standard parts; operator friendly; minimum water requirements; minimum snow disposal requirements; fast; adjustable; flexible, with ice thickness reduction capability and heavy snow removal capability; providing high quality ice surfaces; suitable for ice skating rinks of any size, including small and medium size rinks; and suitable for both indoor and outdoor use.


BRIEF SUMMARY OF THE INVENTION

An object of the invention is to fill the above-identified need, or at least provide as many of the attributes and capabilities as possible, bearing in mind the compromises necessary to reconcile the inherent competition between them.


Rather than remove a layer of ice that is sufficiently thick to remove substantially all of the ruts and then replace it with water, the present invention removes only a thin layer of ice, leaves the ruts, fills the ruts with snow, and adds hot water to fill the interstices in the snow in the ruts and melt that snow. This leaves the ruts completely filled with water, which when frozen will provide a smooth ice surface and effectively eliminate the ruts.


The inventive approach eliminates the need for apparatus to convey large quantities of snow off the ice and into the resurfacing machine, to store it in the machine, and to haul it away. This greatly reduces the cost, size, weight, and complexity of the machine. It also conserves water. Also, the inventive machine has the capabilities of removing heavy snow and reducing ice thickness. In addition, it is easy to operate and maintain and produces an excellent ice surface. Further, it works sufficiently fast to be useful for larger rinks as well as small and medium-size rinks.


Apparatus utilizing this approach takes advantage of and enhances these and other aspects and advantages of the invention, including an integrated combination of a light towing vehicle, a compact resurfacing attachment having a snow box which collects the snow and carries it along the surface of the ice, and a lifting and leveling assembly connecting the vehicle and the attachment.


Sales data for ice resurfacing machines according to the present invention are consistent with my belief that the invention fills a long-felt need. My company, Ragged Point Industries, sells these machines under the trademark “The Ice Wizard”. The first sale took place on Sep. 27, 2004. Before filing our application Ser. No. 11/078,018 on Mar. 12, 2005, we had sold 22 of these ice resurfacing machines in the United States and abroad. Since then we have sold an additional 49 of them. The machines are now being used at ice skating rinks in 16 countries throughout the world, including one on the Eiffel Tower in Paris, 37 in Saudi Arabia, 8 in Russia, and 3 in Mexico City, at the world's largest outdoor skating rink. In the United States, one was used on the set of the TV show, Skating with the Stars. Ours is not a large or sophisticated operation, as all of these machines were assembled by my partner and me at my personal residence, when we were (as we still are) employed full-time in our “day jobs”.





DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING


FIG. 1 is a right side elevation view of an ice resurfacing machine according to the invention, resting on an ice surface.



FIG. 2 is side section view of the resurfacing attachment shown in FIG. 1, showing a portion of the lifting and leveling assembly.



FIG. 3 is a plan view of the resurfacing attachment shown in FIGS. 1 and 2, with the water spreader towel removed.



FIG. 4 is a rear view of the resurfacing attachment shown in FIGS. 1-3.



FIG. 5 is a view similar to FIG. 2, but showing the invention being used in resurfacing ice.



FIG. 6 is a plan view of a turn groove in an ice surface.



FIG. 7 is a section taken at 7-7 in FIG. 6, with the groove filled with snow.



FIG. 8 is a plan view of a slip or stop gouge in an ice surface.



FIG. 9 is a section taken at 9-9 in FIG. 8, with the gouge filled with snow.



FIG. 10 is a plan view of a toe pick hole in an ice surface.



FIG. 11 is a section taken at 11-11 in FIG. 10, with the hole filled with snow.





DETAILED DESCRIPTION OF THE INVENTION
Definitions

The following terms are used throughout this application in accordance with these definitions, unless a different interpretation is required by the context.


The terms “ice rink” and “rink” refer to ice having a horizontal surface used for ice skating, including recreational, professional, hockey, or figure skating, whether located indoors or outdoors, constructed or naturally occurring (such as a pond), or cooled naturally or by refrigeration.


The term “rut” refers to local, concave imperfections in the surface of an ice rink, including grooves, nicks, cracks, and gouges. (Ruts are typically caused by ice skate blades, falls, and hockey sticks.)


The term “snow” refers to particles of frozen water removed from the surface of an ice rink by scraping, including scrapings of the top layer of the ice, skater-generated snow, fallen snow, sleet, frozen rain, condensation, or other precipitation on the surface, including any liquid water mixed with them. Since “snow” includes associated liquid water, its nature will vary greatly depending upon wetness, compaction, temperature, slushiness, particle size, flowability, stickiness, etc.


The term “average thickness”, in a reference to a layer of snow being removed by a scraper blade from an ice surface, means the theoretical thickness the layer would have if the surface were perfectly and uniformly flat and level.


The term “box” is used in accordance with its dictionary definition relating to machines, e.g., an enclosing casing or part in a machine.


The term “cut”, used as a noun, means a series of passes of the machine, usually overlapping, that cover a desired rink area, as one would use that term with respect to mowing a lawn or field.


The Ice Resurfacing Machine


FIG. 1 shows an ice resurfacing machine according to the present invention resting on ice surface 10. The machine consists of four groups of components—vehicle 12, resurfacing attachment 14, lifting and leveling assembly 16 connecting them, and water supply system 17.


Vehicle 12 has wheels 18, steering mechanism 20, driver's seat 22, a motor (not shown), a battery (not shown), and a standard trailer hitch receiver 24. The particular vehicle shown is a golf cart with an electric motor. Other vehicles, such as all-terrain vehicles and tractors, may be used for outdoor rinks. As an alternative to battery power, motors powered by compressed gas such as butane or propane may be used for indoor rinks.


Water supply system 17 consists of water supply tank 26 in vehicle 12 behind driver's seat 22. Located within tank 26 is water pump 27, which is connected to water supply line 28 via water regulator 29, which may be manually regulated to vary the volume of water flow. Water regulator 29 is a ball valve. Alternatively, water supply system 17 may be mounted on resurfacing attachment 14.


As shown in FIGS. 2, 3, and 4 as well as in FIG. 1, resurfacing attachment 14 includes snow box 30, which is open at the bottom. As indicated in FIGS. 2-4, snow box 30 has rear wall 30a, left side wall 30b, right side wall 30c, and top wall 30d, with the bottom edges of the rear and side walls being substantially coplanar. It may be called either a “snow box”, because of its function of generating, using, and collecting “snow”, or an “ice box”, because of its location and end product. It is made of sheet metal, but other materials such as plastic compositions may also be used. Attached to top wall 30d is snow box support frame 32, which consists of welded vertical, lateral, and longitudinal square metal tubes.


Ice blade mounting bar 34, which is shown in FIG. 2, extends laterally across the width of box 30 and is fastened to the side walls of box 30. Ice blade 36, which is made of tempered steel, is bolted to mounting bar 34 by two bolts in longitudinal slots in blade 36. The slots are parallel to the longitudinal axis of the vehicle. Mounting bar 34 and blade 36 are inclined at an angle of 12° to the surface of the ice. By loosening the bolts, sliding blade 36 in the slots forward or backward to a new position, and re-tightening the bolts, the height of the sharp cutting edge of the blade with respect to the bottom edges of the box may be varied. It is not possible, or necessary, to vary the height of the blade during resurfacing. Usually the edge of blade 36 will be coplanar with the bottom edges of box 30. For a dry cut to reduce ice thickness, the blade edge will extend below the box edges by ⅛ inch or so. The slots are sufficiently long to allow the blade edge to protrude ¼ inch below the box edges.


As shown in FIG. 2, ice blade 36 and ice blade mounting bar 34 are spaced from rear wall 30a and top wall 30d, respectively, so as to be located in the forward portion (i.e., the right hand half) of snow box 30 and in the lower portion (i.e., the lower half) of snow box 30. Thus, blade 36 and mounting bar 34 are in the forward, lower quadrant of the snow box. Blade 36, mounting bar 34, and the side walls define passage 30e above the blade and bar. The cross sectional area of passage 30e constitutes a major portion (approximately 80%) of the transverse cross sectional area of the interior of the snow box. To the rear of passage 30e is snow storage chamber 30f, which constitutes a major portion of the internal volume of the snow box. Aside from the blade and the mounting bar, the interior of the snow box is essentially empty and open, and free of machinery or other obstructions


Water distributor 38 is a tube secured to the rear wall of snow box 30 by hangers 40. A number of aligned holes 42 spaced ½ inch apart in the tube are aimed at the rear wall of box 30. One end of water distributor 38 is connected to water supply line 28 at a 90° elbow.


Also attached to the rear wall of snow box 30 is towel holder 43. Removably connected by studs to towel holder 43 are water spreader towel 44 and towel backing bar 46, which in turn are attached to each other. This connection enables the towel and backing bar to be quickly replaced so that the towel can be allowed to dry. Spreader towel 44 is made of terry cloth, while backing bar 46 is made of stainless steel. Towel 44 lies on the ice over the width of box 30. A spreader towel is sometimes referred to as a “mat”.


Lifting and leveling assembly 16 includes at its front end a drawbar 48 which engages and is removably connected to hitch receiver 24. Post 52 is fixed to the drawbar. Pivotally connected to post 52 are central support arm 54 and two lever links 56, which in turn are pivotally connected at their rear ends to outer support arms 60 and farther forward to the piston of hydraulic unit 58 comprising a cylinder, piston, motor, pump, and fluid reservoir. Two support bars 62 are pivotally connected at their front ends to the drawbar, at their rear ends to snow box support frame 32, and in between to the lower ends of outer support arms 60. By virtue of their threaded parts, the three support arms 54, 60 are manually adjustable, and may be lengthened or shortened in turnbuckle fashion. The lifting and leveling assembly is a three point hitch, which was commercially available before the present invention was conceived.


Adjustment of support arm 54 levels the lower edges of snow box 30 from front to rear. Adjustment of support arms 60 levels the lower edges of the snow box 30 from side to side. Actuating hydraulic unit 58 to extend the piston lifts snow box 30 vertically, while actuating it to retract the piston lowers snow box 30 so that it rests on the surface of the ice. Such actuation does not tilt the plane defined by the snow box's lower edges, which if properly level will remain parallel to the surface of the ice irrespective of the vertical position if the snow box.


Operation of the Ice Resurfacing Machine

The resurfacing machine may be used in three different modes—routine resurfacing mode, heavy snow removal mode, and ice thickness reduction mode. Routine resurfacing, the mode of its most frequent use, is appropriate after skaters have created snow and there has been no significant precipitation, extreme wear, or degradation. Heavy snow removal is appropriate when precipitation has fallen on an outdoor rink. Ice thickness reduction is appropriate when the thickness of the ice has become or is becoming thicker than 1 inch. It will be understood that other factors may be involved (for example, heavy snow resulting from especially vigorous skating, or falling and freezing condensation from the roof of an indoor rink) and that there is no bright line between the conditions warranting the selection of the appropriate mode. Usually, when either of the latter two modes is used, the operation will be immediately followed by a routine surfacing.


The heavy snow removal and ice thickness reduction modes are used without applying water to the surface of the ice and hence are sometimes referred to as a “dry cut”. Towel 44 is removed for either of these modes. In the routine resurfacing mode, blade 36 is adjusted and secured so that it is coplanar with the bottom edges of box 30. In the heavy snow removal mode, blade 36 is either at that coplanar position or is adjusted and secured so that it is above the coplanar position. In the ice thickness reduction mode, blade 36 is adjusted and secured so that it is below the coplanar position.


The routine resurfacing mode is carried out as follows. The operator fills tank 26 with hot water having a temperature in the range of from about 95° F. to about 120° F. and, with the box in the raised position, drives vehicle 12 to the desired starting position on the ice. Then he or she lowers box 30 until it rests evenly on the surface of the ice, turns on pump 27, and drives around the ice in a desired pattern. Typically the pattern is a series of slightly overlapped ovals with ever-decreasing radii, possibly with an initial swath along the longitudinal axis of the rink to avoid ending with irregularities due to turning radius limitations. If the box fills completely with snow, the operator drives to a location either on the ice or on a smooth, level surface contiguous with the ice, stops the vehicle, and raises box 30, leaving the snow exposed on the surface, so that the “dumped” snow may be shoveled into a container such as cart, either then or later.


As so used in the routine resurfacing mode, the ice resurfacing machine depicted in the drawings will resurface about 8,000 sq. feet before box 30 fills up with snow to the extent that dumping is required. As used in either of the waterless modes, the box fills up more quickly and more frequent dumping is required. Also, the lower the position of blade 36, the more snow is collected and the more frequently dumping is required.


Whenever the machine is stopped on the ice, water pump 27 should be turned off and box 30 should be raised. Otherwise, the hot water will melt the ice and the towel or box will stick to the ice. This is accomplished manually by “Water On/Water Off” and “Snow Box Up/Snow Box Down” controls in vehicle 12.


In the routine resurfacing mode, with the edge of blade 36 coplanar with the bottom edge of box 30, blade 36 will lightly scrape the surface of the ice and remove the snow already on the surface of the ice and a very thin layer of the ice. I estimate that the average thickness of this layer is about 1/32 inch, and certainly less than 1/16 inch. Blade 36 also levels the ice by removing high spots and bumps.


If necessary to generate sufficient snow to fill the ruts in the surface of the ice, blade 36 may be lowered slightly. The blade may be effectively lowered in a small increment by stopping vehicle 12 and adjusting central support arm 60 so as to lower the front of box 30, which avoids the need to move blade 36 with respect to blade mounting bar 34 described above.


During routine resurfacing, the operator manually controls water regulator 29 to adjust water flow as desired. Increased flow is warranted by higher vehicle speed, resurfaced areas that appear to have insufficient water, creating new ice at the beginning of the skating season, and building up low spots. Decreased flow is warranted by reduced vehicle speed (as may be necessary for turning corners) and standing water. The slower the vehicle speed, the better the quality of the ice resurfaced.


The ice resurfacing machine according to the invention requires very little maintenance. The operator needs to make sure the batteries have the proper charge and water levels. Most golf carts require a monthly water fill. The scraper blade, though it holds a good edge and is very durable, requires sharpening from time to time. Also, the individual components are relatively light and can be easily moved and handled by one or two people.


The Ice Resurfacing Method


FIG. 5 shows resurfacing attachment 14 being used to resurface ice in the routine resurfacing mode, as it is being towed toward the right. Blade 36 is scraping ice surface 10 so as to create snow 64 and propel it upward and away from the angled blade, most of which snow, as viewed relative to snow box 30, passes through passage 30d over blade 36 and proceeds to snow storage chamber 30e at the rear of box 30. There is no obstruction to the movement of the snow along this path. The snow is collected at 66 in the buildup just ahead of blade 36 and at 67 at the rear of box 30. In this manner snow box 30 carries the collected snow so that it slides along the surface of the ice. Most of the snow so carried is in chamber 30e.


Although the snow “passes through passage 30d over blade 36” as viewed relative to the moving snow box, when viewed relative to the earth (i.e., the ice) it does not have significant horizontal movement, but essentially moves only up and then back down. It does not experience significant horizontal movement until it is carried forward on along the surface of the ice by rear wall 30a. In a Newtonian sense, in which frictional forces are disregarded, this snow is stationary just before it is removed from the ice, and, just after the angled blade removes it from the ice and propels it upward and away from the blade, the inertia of the snow keeps it stationary in the horizontal direction. Thus, a hypothetical tiny man standing on an ice molecule as the snow box passes over him would first experience being lifted upward several inches as the blade passes under him. Then he and his molecule would either fall back to the surface of the ice, where he would rest for a moment, or would be caught by the rear wall 30a or the already-collected snow in snow chamber 30f in front of it. Then he would experience being carried horizontally along the surface of the ice by rear wall 30a, with the rest of the collected snow. In this manner, the movement of the blade and box do all of the separating for the snow. It is not necessary that an external agency or moving part, such as a conveyor, do so.


Meanwhile, water pump 27 pumps pressurized hot water from tank 26, through line 28, and into water distributor 38. Pressurized water issuing from holes 42 in distributor 38 strikes the rear wall of box 30 and flows down its surface due to gravity and surface tension, as shown symbolically at 68, thereby further distributing the water in the transverse direction as it falls onto ice surface 10. Finally, towel 44 spreads the water uniformly across the surface of the ice, where it will freeze to form good ice, typically within a few minutes.



FIGS. 6 through 11 show three types of ruts commonly made in the ice by skaters. FIGS. 6 and 7 show turn groove 80, which has a maximum depth of 80D. FIGS. 8 and 9 show slip or stop gouge 82, which has a maximum depth of 82D. FIGS. 10 and 11 show toe pick hole 84, which has a maximum depth of 84D. FIGS. 7, 9, and 11 show these ruts filled with snow, as will be explained next. Normally depths 80D and 84D are greater than 1/16 inch, but they sometimes go as deep as 1 inch (i.e., all the way through the ice). Normally depth 82D is less than 1/16 inch. Thus, the suffix “D” refers to the maximum depth of each of these ruts.



FIG. 5 depicts six ruts in the surface exaggeratedly at 70, 72, 74, 76, 78, 79, going from right to left. These ruts are in different locations with respect to box 30, blade 36, and towel 44, but will be used here to illustrate the sequence of the inventive resurfacing method for a single rut. Rut 70 is empty, and rut 72 is empty or nearly so. Rut 74 is partly or complete filled by collected snow from 66. Rut 76 differs from rut 74 in that its depth has been slightly reduced because a thin layer has been scraped off the surface of the ice by blade 36. Rut 78 has been filled, or topped off, by collected snow from 67. Such snow is shown in FIGS. 7, 9, and 11 at 86, 88, 90. Finally, rut 79 is filled with water, since the hot water filled the interstices of and melted the snow that had filled the rut. Thus, to complete the hypothetical tiny man analogy, the molecule on which he was standing would be end up either (1) deposited in a rut, flooded, melted, and refrozen as new ice, or (2) carried off the ice and recycled or disposed of.


Specific Data

Specific data for the resurfacing machine shown in the drawings are as follows:















Dimensions
121 in. long × 48 in. wide × 54 in. high


Weight
950 pounds


Top speed
12 mph


Capacity of water tank 26
25 gallons


Capacity of water pump 27
750 gallons per hour


Exterior dimensions of snow
48 in. wide × 24 in. long × 10 in. high


box 30


Internal volume of snow box 30
6.67 cu. ft.


Approximate time for routine
10 minutes or less


resurfacing of 7,000 sq. ft.


ice skating rink









Reference Character Table

The following table lists the reference characters and names of features and elements used herein, with asterisks indicating groups of features and elements:















Ref.

Paragraph



Char.
Feature or element
introduced in
FIGS. shown in







10
ice surface
0033
1, 2, 5, 6-11


12
vehicle*
0033, 0034
1


14
resurfacing attachment*
0033, 0036
1, 2-5


16
lifting and leveling
0033, 0041
1



assembly*


17
water supply system*
0033, 0035
1


18
wheels
0034
1


20
steering mechanism
0034
1


22
driver's seat
0034
1



battery (not shown)
0034




motor (not shown)
0034



24
hitch receiver
0034
1


26
water supply tank
0035
11 


27
water pump
0035
1


28
water supply line
0035
1-3


29
water regulator
0035
1


30
snow box or ice box*
0036
1-5


30a
rear wall
0036
2, 5


30b
left side wall
0036
2-5


30c
right side wall
0036
3, 4


30d
top wall
0036
2, 5


30e
snow passage
0038
2, 5


30f
snow storage chamber
0038
2, 5


32
snow box support frame
0036
1-5


34
blade mounting bar
0038
2


36
ice blade
0038
1, 2, 5


38
water distributor
0039
1-5


40
hangers
0039
2-4


42
holes
0039
3


43
towel holder
0040
1, 2, 3


44
water spreader towel
0040
1, 2, 4, 5


46
towel backing bar
0040
2


48
drawbar (not shown)
0041
1


52
post
0041
1


54
central support arm
0041
1



(adjustable)


56
lever links
0041
1


58
hydraulic unit
0041
1


60
outer support arms
0041
1, 5



(adjustable)


62
support bars
0041
1, 5


64
snow
0052
5


66
collected snow toward
0052
5



front of box


67
collected snow toward
0052
5



rear of box


68
water
0054
5


70
rut ahead of box front
0056
5



wall


72
rut just behind box front
0056
5



wall


74
rut beneath collected
0056
5



snow at 66


76
rut behind blade
0056
5


78
rut beneath collected
0056
5



snow at 67


79
rut behind towel
0056
5


80
turn groove
0055
6, 7


80D
maximum depth of turn
0055
7



groove


82
slip or stop gouge
0055
8, 9


82D
maximum depth of slip
0055
9



or stop gouge


84
toe pick hole
0055
10, 11


84D
maximum depth of toe
0055
11 



pick hole


86
snow filling turn groove
0055
7


88
snow filling slip or stop
0055
9



gouge


90
snow filling toe pick
0055
11 



hole









It will be understood that, while presently preferred embodiments of the invention have been illustrated and described, the invention is not limited thereto, but may be otherwise variously embodied within the scope of the following claims.

Claims
  • 1. An ice resurfacing machine for use in resurfacing ice of the flat surface of an ice skating rink, which machine comprises (a) a vehicle having a motor, wheels driven by the motor, a steering mechanism for steering the wheels, and a hitch receiver;(b) a resurfacing attachment having (i) a snow box support frame;(ii) entirely an open-bottomed snow box attached to the frame, which snow box has a rear wall, side walls, and a top wall, with the rear and side walls terminating in bottom edges which define the bottom edges of the snow box;(iii) a blade mounting member within the snow box;(iv) an ice scraping blade secured to the blade mounting member so that the blade extends across the width of and is surrounded by the snow box; which blade and mounting member (1) are spaced from rear wall and top wall, respectively, so as to be located in the forward, lower portion of the snow box;(2) define with the top wall of the snow box, above the blade and mounting member, an open and unobstructed snow passage having a transverse cross sectional area which constitutes a major portion of the transverse cross sectional area of the interior of the snow box; and(3) define with the rear wall of the snow box, behind the blade and mounting member, and communicating with the snow passage, a snow storage chamber constituting a major portion of the internal volume of the snow box;(v) a water distributor mounted at the rear of the snow box; and(vi) a removable water spreader towel mounted at the rear of the snow box; and(c) a lifting and leveling assembly between, and connecting, the vehicle and the resurfacing attachment;whereby, when the machine is driven across the surface of the ice, with the blade on the surface at an angle to the surface and with the bottom edges of the snow box adjacent the surface, the blade scrapes the surface of the ice to remove a thin top layer of ice and thereby produce snow; most of the snow so produced is propelled upward and away from the blade and, as viewed relative to the snow box, passes freely over the blade, through the passage, and into the snow storage chamber, where that snow is collected and carried by the snow box in such a manner that the collected snow slides along the surface of the ice and is deposited into ruts in the surface of the ice; water is applied to the surface of the ice by the water distributor and is added to the ruts; and the water towel wipes the surface of the ice, spreading the water and leaving the ruts filled with water.
  • 2. An ice resurfacing machine according to claim 1 wherein the height of the snow passage is at least one-half the interior height of the snow box.
  • 3. An ice resurfacing machine according to claim 1 wherein the cross sectional area of the passage in the snow box is approximately 80% of the transverse cross sectional area of the interior of the snow box.
  • 4. An ice resurfacing machine according to claim 1 wherein the internal volume of the snow box is approximately 7 cubic feet.
  • 5. An ice resurfacing machine according to claim 1 wherein said lifting and leveling assembly comprises a drawbar, support arms, a hydraulic cylinder including a piston, a vertical post, lever links, and support bars operatively connected with the snow box support frame so that actuation of the piston moves the snow box vertically, with the bottom edges of the snow box remaining parallel to the surface of the ice.
  • 6. An ice resurfacing machine according to claim 1 wherein, as viewed relative to the earth, the blade passes under most of the snow produced by the scraping by the blade, the passage passes freely around that snow, and the storage chamber collects that snow.
  • 7. An ice resurfacing machine according to claim 1 wherein said flat surface of the ice and said rear, side, and top walls of the snow box confine the snow on five sides while the snow is in the passage and the storage chamber.
  • 8. An ice resurfacing machine according to claim 1 wherein the bottom edges of the snow box are substantially coplanar.
  • 9. An ice resurfacing machine according to claim 1 wherein the machine further comprises (a) a drawbar connected to the hitch receiver;(b) a substantially horizontal, adjustable, central support arm connected to the snow box support frame;(c) a hydraulic cylinder including a piston;(d) two substantially vertical, adjustable, outer support arms;(e) a substantially vertical post attached at its lower end to the drawbar and along its length to the forward end of the central support arm;(f) lever links pivotally connected at one end to the upper end of the post, at its other end to the upper end of the outer support arm, and in between to the upper end of the cylinder; and(g) support bars pivotally connected at their forward ends to the drawbar and at their rear ends to the lower end of the snow box support frame;said snow box support frame, drawbar, support arms, cylinder, post, links, and bars being operatively connected so that (i) adjustment of the outer support arms will level the box from side to side; (ii) adjustment of the central support arm will level the box from front to back; and (iii) actuation of the cylinder will move the snow box vertically to either a first, upper position sufficiently high to enable the removal of collected snow from beneath the box or a second, lower position on the surface of the ice.
  • 10. An ice resurfacing machine according to claim 9 wherein, during said vertical movement of the snow box between the first and second positions, the bottom edges of the snow box remain parallel to the surface of the ice.
CROSS REFERENCE TO RELATED APPLICATION

This application discloses and claims subject matter which was disclosed in provisional patent application Ser. No. 60/552,820, filed Mar. 12, 2004, and regular patent application Ser. No. 11/078,018, filed Mar. 12, 2005 and issued as U.S. Pat. No. 7,364,240, of which this present application is a division.

US Referenced Citations (32)
Number Name Date Kind
2642679 Zamboni Jun 1953 A
2763939 Zamboni Sep 1956 A
2795870 Leduc Jun 1957 A
3044193 Zamboni Jul 1962 A
3178837 Capalbo Apr 1965 A
3302975 Vandenberg Feb 1967 A
3475056 Jones Oct 1969 A
3591236 Jones Jul 1971 A
3622205 Zamboni Nov 1971 A
3705746 McLeod Dec 1972 A
3917350 Bricher Nov 1975 A
4312142 Toepffer Jan 1982 A
4317298 Mathers Mar 1982 A
4358241 Anderson Nov 1982 A
4372617 Zamboni Feb 1983 A
4705320 Zamboni Nov 1987 A
4728536 Burley et al. Mar 1988 A
4747174 Hightower May 1988 A
4918844 Marsh Apr 1990 A
5172499 Griffin Dec 1992 A
5701690 Miscio Dec 1997 A
5771698 Abel Jun 1998 A
6119466 Vaillancourt Sep 2000 A
6138387 Fox et al. Oct 2000 A
6467552 Whatmough Oct 2002 B1
6477794 Hoffmann Nov 2002 B1
6478203 Burns Nov 2002 B2
6705624 Cassoni Mar 2004 B2
6796384 Potter Sep 2004 B1
6993806 Finley Feb 2006 B2
20030070326 Beilin et al. Apr 2003 A1
20040187357 Pirila Sep 2004 A1
Foreign Referenced Citations (5)
Number Date Country
WO9410392 May 1994 WO
WO9410393 Nov 1994 WO
WO02093106 Nov 2002 WO
WO03033992 Apr 2003 WO
WO2004083528 Sep 2004 WO
Related Publications (1)
Number Date Country
20080155864 A1 Jul 2008 US
Provisional Applications (1)
Number Date Country
60552820 Mar 2004 US
Divisions (1)
Number Date Country
Parent 11078018 Mar 2005 US
Child 12075436 US