With initial reference to
Freezer compartment 12 is also shown to include an icemaker assembly 30 having an icemaker unit 34 provided with an ice mold portion 35 and a bail arm 38. Bail arm 38 is selectively shiftable into and out of an ice storage unit or bin 41 depending upon a level of ice cubes stored therein. That is, as the level of ice cubes within ice storage bin rises, bail arm 38 also rises, ultimately resulting in de-activating icemaker unit 34 in a manner known in the art. Conversely, as a level of ice cubes in bin 41 drops, bail arm 38 drops to re-activate icemaker unit 34, thereby establishing a new ice production cycle. In general, the above described structure has been provided for the sake of completeness and to enable a better understanding of the drawings. Instead, the present invention is directed to particulars of icemaker assembly 30 as discussed below.
As best shown in
Bin 41 also includes an auger 85 positioned above bottom wall 66. As discussed more fully below, auger 85 can be selectively rotated in either clockwise or counterclockwise directions to guide ice cubes from ice storage area 69 to crusher/dispenser unit 74. Towards that end, auger 85 includes a first end portion 87 that is rotatably supported by side wall 60, leading to a second end portion 88 through an intermediate helical or serpentine portion 89. Actually, first end portion 87 is operatively coupled to a blade (not shown) of crusher/dispenser unit 74. In accordance with the invention, second end 88 is supported for rotation on side wall 61 through a coupler 100. More specifically, coupler 100 is positioned within an opening 101 formed in side wall 61 and attached to second end portion 88 of auger 85. Actually, second end portion 88 of auger 85 wraps around and extends into coupler 100 in a manner that will be discussed more fully below. In any case, coupler 100 is adapted to receive a drive member 104 provided adjacent rear wall 15 of freezer compartment 12. Drive member 104 is operatively connected to a motor 106 through a shaft 107 that projects through an opening (not separately labeled) of rear wall 15. Motor 106 selectively rotates auger 85, through coupler 100, in either a clockwise or counterclockwise direction depending upon a particular consumer selection as will be described more fully below.
As best shown in
With this construction, coupler 100 is mounted to bin 41 by first inserting main body portion 120 into opening 101. As main body portion 120 is inserted, clip members 135 and 136 and, more particularly, tab members 138 engage with side edge portions (not separately labeled) of opening 101, causing clip members 135 and 136 to deflect inward. Once coupler 100 is fully seated, clip members 135 and 136 deflect back outward, with clip members 135 and 136 trapping rear wall 61 between flange 126 and tab members 138, while still allowing coupler 100 to rotate in a manner that will be described more fully below. Main body portion 120 is also shown to include a third opening 141 which is positioned so as to receive second end portion 88 of auger 85, as well as a cog member 144 that projects outward from circumferential side section 124 towards a center of bottom section 122. As best shown in
Reference will now be made to
In accordance with the most preferred form of the invention, each second end portion 183, 184 is chamfered or angled so as to more readily receive coupler 100. That is, the angling or chamfering of second end portions 183 and 184 ensures that coupler 100 readily receives drive member 104 when bin 41 is inserted into freezer compartment 12. In addition, first arm member 177 is shorter than second arm member 178. This arrangement ensures that, when inserting bin 41 into freezer compartment 12, second arm member 178 initially enters into coupler 100, with angled end portion 184 aiding in establishing a desired alignment. As bin 41 is seated, first arm member 177 enters coupler 100 to further ensure a positive connection between bin 41 and drive member 104.
In further accordance with the most preferred form of the invention, drive member 104 includes first and second arcuate notches 194 and 195 formed on opposing side edges, e.g., side edges 189 and 193, of corresponding ones of each intermediate portion 186, 187 of arm members 177 and 178. Arcuate notches 194 and 195 are sized to receive second end portion 88 of auger 85 as will be discussed more fully below. Positioned opposite arcuate notches 194 and 195, each arm member 177, 178 includes a drive flat 197 and 198 defined by second side edge 190 and first side edge 192 respectively. Finally, drive member 104 is shown to include an opening 199 provided in intermediate section 172 that is designed to receive shaft 107 in order to mount drive member 104 to motor 106 for co-rotation.
Having described the preferred constructions of bin 41, coupler 100 and drive member 104, reference will now be made to
In accordance with the present invention, the dispenser allows a consumer to choose between crushed ice, causing motor 106 to rotate auger 85 in a counterclockwise direction, or cubed ice, resulting in a clockwise rotation of auger 85. As auger 85 actually transports the ice from bin 41 to lower outlet 75, it is important to ensure a positive connection between drive member 104 and coupler 100, as well as a positive connection to second end portion 88 of auger 85 particularly when dispensing crushed ice. That is, forces generated by crushing ice cubes could cause bin 41 to migrate forward and disengage from drive member 104.
Accordingly, when rotated for an ice cube dispensing operation as shown in
At this point, it should be understood that a limited amount of play exists between coupler 100 and second end portion 88 to allow first and second arm members 177 and 178 to simultaneously contact both auger 85 and cog member 144 when rotating in each direction. In this manner, the present invention provides a solid interface for operating crusher/dispenser 79, particularly in a crushed ice dispensing mode. That is, with the forces generated when crushing ice, drive member 104 directly engages with and retains second end portion 88 of auger 85 to ensure proper operation and prevent ice bin 41 from migrating away from drive member 104.
Based on the above, it should be readily apparent that the present invention provides, in each of two difference drive configurations, a positive connection between a drive member and an auger of an ice bin, with the auger being further maintained in a positive drive condition during ice crushing operations. More specifically, the present invention provides for a drive member that is readily received by a coupler when an ice bin is inserted into a freezer compartment 12, yet ensures distinct positive connections to an ice auger in order to effectively enable an icemaker assembly to selectively operate to dispense cubed or crushed ice. Also, while described with first arm member 177 engaging with and retaining auger 85, second arm member 178 could also operate in this manner depending upon a particular orientation of drive member 104. Although described with reference to a preferred embodiment of the invention, it should be readily understood that various changes and/or modifications can be made to the invention without departing from the spirit thereof. For instance, while shown as a side-by-side style refrigerator, the invention is applicable as a factory installation or retrofit arrangement in various refrigerator models including top mount, bottom mount and French door-type refrigerators. In addition, although the auger is shown to be generally serpentine in shape, other shapes, including a helical arrangement, could be employed. In general, the invention is only intended to be limited by the scope of the following claims.