1. Field of the Invention
The present invention pertains to the art of refrigerators and, more particularly, to a refrigerator having an icemaker assembly provided with a fan that is selectively operable to speed ice formation.
2. Discussion of the Prior Art
Whether to ensure an adequate amount of ice for a party, or to keep up with daily demand, there is a need to decrease ice production time. To address this concern in the art of refrigerated appliances, it is known to employ fans or other similar devices to direct air across an ice mold in order to decrease ice production time. Typically, the fan is oriented to direct a flow of air from an evaporator over the ice mold. The flow of air disturbs a thermal barrier that is present about the ice mold in order to increase temperature transfer rates and, as a consequence, decrease an amount of time required to form ice.
While the above described arrangements simply utilize fans, other arrangements expose the ice mold directly to the evaporator and utilize an evaporator fan to blow cool air. In some cases the evaporator is part of a primary refrigeration system that is employed to maintain temperatures in a fresh food and freezer compartment of the refrigerator, while in other cases the evaporator is dedicated to ice production. Dedicated evaporators are typically employed in systems which locate the icemaker in a portion of the refrigerator other than the freezer compartment. While effective, the above described systems typically rely on a cooling demand signal to operate. That is, regardless of a need for ice, the above described systems only function when either the fresh food or freezer compartment requires cooling which necessitates the activation of the refrigeration system. Correspondingly, even during periods when no ice production is required, the above described systems function upon activation of the refrigeration system.
Regardless of the teachings in the prior art, there still exists a need for an enhanced system to reduce ice production time in a refrigerator. More specifically, there exists a need for system that is selectively operated to decrease ice production time regardless of a need for cooling in compartments of the refrigerator.
The present invention is directed to a refrigerator including a cabinet, a freezer compartment located in the cabinet and an icemaker assembly mounted in the freezer compartment. In accordance with the invention, the icemaker assembly includes a support bracket having at least one support arm and a back plate, and a bin slidably attached to the at least one support arm. An icemaker unit having an ice mold is also supported by the at least one support arm within the freezer compartment. Furthermore, the icemaker assembly includes a fan that is mounted to the back plate of the support bracket. The fan is selectively operable to direct an airflow onto the icemaker unit in order to speed ice production. Preferably, the fan directs the airflow onto, around and below the icemaker, disrupting a thermal barrier to speed ice cube formation.
In accordance with the most preferred form of the invention, operation of the fan is tied to activation of an icemaker water inlet valve through a controller. After an ice harvest cycle, i.e., when ice cubes are deposited from the icemaker unit into a storage bin, the icemaker water inlet valve opens, allowing fresh water into the icemaker unit to refill the ice mold. As fresh water enters the ice mold, the controller activates the fan to blow air across, around and below the ice mold to speed ice production. The controller is also preferably coupled to a timer that limits operation of the fan to a predetermined time period.
Additional objects, features and advantages of the present invention will become more readily apparent from the following detailed description of a preferred embodiment when taken in conjunction with the drawings wherein like reference numerals refer to corresponding parts in the several views.
With initial reference to
The present invention is particularly directed to the incorporation of an icemaker assembly 32 within refrigerator 2. With particular reference to
Icemaker assembly 32 also includes an icemaker unit 70 having a main body portion 72, a trough or ice mold portion 73, a motor end mount 75, an end cover 76 and a bale arm 78. In general, the construction and operation of icemaker unit 70 is known in the art and does not form part of the present invention. However, in accordance with the invention, icemaker unit 70 is secured to back plate 63 so as to be suspended at a select vertical location upon support rails 26 and 27 through support arms 37 and 38. Although icemaker unit 70 could be attached to support arms 37 and 38 in a variety of ways, in accordance with the embodiment shown, icemaker unit 70 is provided with a pair of brackets 80 and 81 which are fixed to back plate 63 by means of screws 84 and 85.
Also preferably provided as part of icemaker assembly 32 is a pair of side rails 99 and 100. As shown, each side rail 99, 100 is formed with a pair of spaced openings 104 and 105, as well as a central aperture 109. With this construction, each side rail 99, 100 can be positioned against a respective support arm 37, 38, with openings 104, 105 receiving a corresponding one of tabs 58 and 59. A screw 112 is provided which extends through aperture 109 and is threadably received in an opening 115 provided in a respective support arm 37, 38.
Icemaker assembly 32 also includes an ice storage bin 122. Most preferably, bin 122 is integrally molded of plastic to include a front wall 126, side walls 127 and 128, a bottom wall 129 and an open rear wall portion 131. In addition, bin 122 preferably includes a ledge member 134 having a base 136, upstanding sides 137 and 138, and an upper plateau portion 140. Furthermore, bin 122 is provided with a separate front panel 147 having a recessed zone 149 and a handle portion 150. As shown, side walls 127 and 128 lead to front, out-turned flanges 155 and 156. In the embodiment shown, front panel 147 is fixed across front wall 126 by means of a plurality of screws 160 which extend through flanges 155 and 156 and into front panel 147 from behind.
Icemaker assembly 32 also includes a shelf 166 having a peripheral rim 168, an upstanding rear strip 170 and a platform 173 which is preferably made from a visually transparent material such as glass, but which could be opaque. In general, platform 173 is encapsulated by rim 168 to define a spill-proof shelf. It should be recognized that encapsulating shelving of this type is known for use in at least fresh food compartments of refrigerators. In accordance with the present invention, shelf 166 is mounted upon support arms 37 and 38 above icemaker unit 70. In one preferred embodiment, shelf 166 is fixed upon support arms 37 and 38. However, it should be understood that shelf 166 could readily be mounted for sliding movement into and out from freezer compartment 9 relative to support arms 37 and 38. Finally, a wire harness 180 is provided. Wire harness 180 includes opposing terminal connectors 183 and 184 for providing required electrical connections to icemaker unit 70, preferably through back wall 11. Although not shown, a water supply tube would also be routed to icemaker unit 70. The water supply tube would be connected to a valve, which is schematically indicated at 200 in
In accordance with the invention, icemaker assembly 32 includes a fan 250 that is selectively operated to speed the production of ice within icemaker unit 70. As will be discussed more fully below, fan 250 is coupled to a controller 255. In any case, fan 250 is preferably mounted at a central opening 260 provided in back plate 63. In addition to central opening 260, back plate 63 also includes a plurality of mounting apertures 261-264 for mounting fan 250 in a manner that will be described more fully below. Fan 250 is shown in
As best shown in
In accordance with the most preferred form of the invention, fan 250 is activated upon the cycling of valve 200. More specifically, upon sensing a need for ice, icemaker unit 70 opens valve 200 allowing water to enter into the ice mold portion 73. After valve 200 closes or, alternatively, prior to the closing of valve 200, controller 255 activates fan 250. Upon activation, fan 250 directs a cooling airflow over, across and about icemaker unit 70 to increase a mass flow of cold air about ice mold 73 and hasten the formation of ice. That is, by increasing the mass flow of cold air, fan 250 speeds the heat transfer between the water and the air in freezer compartment 9, causing ice to form within icemaker unit 70 quicker that would otherwise be possible. Preferably, fan 250 is operated for a predetermined time period established by a timer 300 that is coupled to controller 250. The duration of the time period is established as a factory setting which may be subsequently altered or adjusted by a technician if necessary. In any case, the preferred mounting of fan 250 ensures a uniform airflow distribution about icemaker unit 70 such that the mass flow of cold air covers the entire icemaker unit 70 and not merely about portions thereof.
Although described with reference to a preferred embodiment of the invention, it should be readily understood that various changes and/or modifications can be made to the invention without departing from the spirit thereof. For instance, while shown as a side-by-side model, the present invention could also be incorporated into top mount, bottom mount, French door, built-in or free-standing, and dedicated freezer models. In addition, it should be understood that the refrigerator could be provided with operator controls that enable the icemaker fan to be selectively de-activated by a consumer if so desired. Finally, although shown separately, it should be understood that the controller can be provided as part of the icemaker unit. In general, the invention is only intended to be limited by the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3048986 | Archer | Aug 1962 | A |
3055186 | Linstromberg et al. | Sep 1962 | A |
3182464 | Archer | May 1965 | A |
3206940 | Archer | Sep 1965 | A |
3280584 | Grimm et al. | Oct 1966 | A |
3382682 | Frohbieter | May 1968 | A |
3449919 | Fox | Jun 1969 | A |
3775992 | Bright | Dec 1973 | A |
4727720 | Wernicki | Mar 1988 | A |
4852359 | Mazzotti | Aug 1989 | A |
6351955 | Oltman et al. | Mar 2002 | B1 |
6438988 | Paskey | Aug 2002 | B1 |
6543249 | Kim et al. | Apr 2003 | B2 |
6655158 | Wiseman et al. | Dec 2003 | B1 |
6679073 | Hu | Jan 2004 | B1 |
6708509 | Senner | Mar 2004 | B1 |
6732537 | Anell et al. | May 2004 | B1 |
6742353 | Ohashi et al. | Jun 2004 | B2 |
6895767 | Hu | May 2005 | B2 |
6945068 | Kim et al. | Sep 2005 | B2 |
7185508 | Voglewede et al. | Mar 2007 | B2 |
20040177626 | Hu | Sep 2004 | A1 |
20040237565 | Lee et al. | Dec 2004 | A1 |
20050061016 | Lee et al. | Mar 2005 | A1 |
20050076654 | Chung | Apr 2005 | A1 |
20050160756 | Lee et al. | Jul 2005 | A1 |
20050217284 | An et al. | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
2247468 | Oct 1990 | JP |
409033155 | Feb 1997 | JP |
11148763 | Jun 1999 | JP |
11173732 | Jul 1999 | JP |
11173733 | Jul 1999 | JP |
2000329436 | Nov 2000 | JP |
2001272145 | Oct 2001 | JP |
2001289544 | Oct 2001 | JP |
2002031464 | Jan 2002 | JP |
2004036974 | Feb 2004 | JP |
2004125214 | Apr 2004 | JP |
WO 2004036127 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070227176 A1 | Oct 2007 | US |