The present application claims priority from Japanese Patent Application No. 2021-045694 filed on Mar. 19, 2021, the entire contents of which are hereby incorporated by reference.
The disclosure relates to an icing detector.
An icing sensor configured to detect icing that may occur on the surface of an aircraft is disclosed by Japanese Unexamined Patent Application Publication (JP-A) No. 2005-145453. The icing sensor disclosed by JP-A No. 2005-145453 detects icing with reference to the frequency of resonance that is caused in a finger by electrical excitation.
An aspect of the disclosure provides an icing detector including an aircraft structure, an exposed member, an optical fiber sensor, and a measuring device. The exposed member is coupled to the aircraft structure and is exposed to an outside of the aircraft structure. The optical fiber sensor is coupled to the exposed member and is covered by one or both of the aircraft structure and the exposed member. The measuring device is configured to measure light received from the optical fiber sensor.
The accompanying drawings are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of this specification. The drawings illustrate example embodiments and, together with the specification, serve to explain the principles of the disclosure.
An electrical icing sensor such as the one disclosed by JP-A No. 2005-145453 has a problem in being susceptible to electromagnetic interference.
It is desirable to provide an icing detector that is less susceptible to electromagnetic interference.
Embodiments of the disclosure will now be described in detail with reference to the accompanying drawings. The dimensions, materials, values, and other details to be described in the following embodiments are only exemplary for easy understanding of the disclosure and do not limit the disclosure, unless otherwise stated. In this specification and the accompanying drawings, elements having substantially the same functions or configurations are denoted by the same reference signs, respectively, and redundant description is thus omitted. The drawings are schematic and are not intended to be drawn to scale. Elements that are irrelevant to the disclosure are not illustrated.
1. Overall Configuration of Aircraft
First, an overall configuration of an aircraft 1 according to a first embodiment of the disclosure will be described with reference to
As illustrated in
The fuselage 3 is a main structural member of the aircraft 1 and is longer in the front-to-rear direction (the roll-axis direction) than in the side-to-side direction (the pitch-axis direction) and in the top-to-bottom direction (the yaw-axis direction). The fuselage 3 has thereinside a passenger space, a drive source such as an engine, a fuel tank, a flight controller, measurement devices, and other relevant devices.
The pair of main wings 5 extend in the side-to-side direction from the right and left sides, respectively, of a central portion of the fuselage 3. The main wings 5 generate upward lift that acts on the aircraft 1.
The pair of horizontal stabilizers 7 extend in the side-to-side direction from the right and left sides, respectively, of a rear portion of the fuselage 3. The horizontal stabilizers 7 stabilize the aircraft 1 with reference to the pitch axis.
The vertical stabilizer 9 extends upward from the upper side of the rear portion of the fuselage 3. The vertical stabilizer 9 stabilizes the aircraft 1 with reference to the yaw axis.
While the aircraft 1 is flying in the air or when the aircraft 1 is stationed in a cold area, ice may be formed on the aircraft 1. For example, ice may be formed on the nose (hereinafter referred to as “aircraft structure AS”) of the fuselage 3. If ice is formed on the aircraft 1, the weight of the aircraft 1 increases, which reduces the amount by which the aircraft 1 is raised by the same lift.
In this respect, the aircraft 1 according to the first embodiment includes an icing detector 100, which detects icing that may occur on the surface of the aircraft structure AS. While the first embodiment relates to a case where the aircraft structure AS is the nose of the fuselage 3, the aircraft structure AS is not limited thereto. For example, the aircraft structure AS may be any of the main wings 5, the horizontal stabilizers 7, the vertical stabilizer 9, and other relevant elements.
2. Configuration of Icing Detector
The exposed member 110 is fixed to an outer surface SU of the aircraft structure AS. Accordingly, the exposed member 110 is exposed to the outside of the aircraft structure AS. The exposed member 110 includes a post 111 and a weight member 113.
The post 111 stands on the outer surface SU of the aircraft structure AS and covers at least a portion of the optical fiber sensor 120. One end of the post 111 is fixed to the outer surface SU, while the other end of the post 111 is coupled to the weight member 113. The weight member 113 is a weight adjuster with which the weight of the exposed member 110 is adjustable.
The optical fiber sensor 120 is embedded in the post 111 and extends through the center of the post 111. That is, the optical fiber sensor 120 extends in the longitudinal direction of the post 111. The optical fiber sensor 120 covered by the exposed member 110 is permanently fixed to the exposed member 110. Thus, the optical fiber sensor 120 is coupled to the exposed member 110. The optical fiber sensor 120 further extends through the aircraft structure AS and is coupled to the measuring device 130.
The measuring device 130 is provided inside the aircraft structure AS. The measuring device 130 emits light into the optical fiber sensor 120 and measures light received from the optical fiber sensor 120. In the first embodiment, the measuring device 130 measures the backscatter of the light traveling through the optical fiber sensor 120.
If the optical fiber sensor 120 is strained or deformed, the frequency of the backscatter changes in the strained or deformed part. The measuring device 130 measures such a change in the frequency of the backscatter of the light traveling through the optical fiber sensor 120. The measuring device 130 is not limited to the one described above and may measure the change in the frequency of the reflection of the light traveling through the optical fiber sensor 120.
If the optical fiber sensor 120 is strained or deformed, the light loss in the optical fiber sensor 120 increases at the strained or deformed part, which reduces the backscatter occurring at the strained part. In this respect, the measuring device 130 may measure the amount of change in the quantity of backscatter of the light traveling through the optical fiber sensor 120.
The exposed member 110 permanently fixed to the optical fiber sensor 120 has a natural frequency f expressed as follows: f=1/(2π)×(k/m)1/2, where k denotes the spring constant of the exposed member 110, and m denotes the weight of the exposed member 110. That is, the natural frequency f of the exposed member 110 permanently fixed to the optical fiber sensor 120 is tunable by adjusting the spring constant k and the weight m of the exposed member 110.
If the vibration frequency of the exposed member 110 changes, the amount of strain or deformation in the optical fiber sensor 120 changes, which changes the frequency of the backscatter to be measured by the measuring device 130. The measuring device 130 measures such a change in the frequency of the backscatter, thereby detecting the occurrence of icing on the exposed member 110.
To summarize, with the icing detector 100 according to the first embodiment, since the optical fiber sensor 120 covered by the exposed member 110 is employed, the occurrence of icing on the exposed member 110 or on the aircraft 1 is detectable.
The optical fiber sensor 120 is less susceptible to electromagnetic interference. Therefore, the icing detector 100 according to the first embodiment is applicable to a location where electromagnetic interference may occur.
An electrical icing sensor such as the one disclosed by JP-A No. 2005-145453 employs a magnetic material, a crystal vibrator, or the like. Therefore, it is difficult for the electrical icing sensor such as the one disclosed by JP-A No. 2005-145453 to freely tune the resonance frequency thereof in accordance with the environment or structure to which the icing sensor is applied. In contrast, in the first embodiment, the natural frequency (resonance frequency) of the exposed member 110 permanently fixed to the optical fiber sensor 120 is freely tunable by changing, for example, the weight of the weight member 113.
In the first embodiment, the optical fiber sensor 120 is covered by the exposed member 110. Therefore, the durability of the optical fiber sensor 120 is less likely to be deteriorated than in a case where the optical fiber sensor 120 is exposed to the outside of the aircraft structure AS.
The weight members 113A, 113B, 113C, and 113D each have the gaps Sa, Sb, Sc, or Sd provided between the plurality of portions thereof. Therefore, ice is more likely to be formed on the weight members 113A, 113B, 113C, and 113D than on the weight member 113 according to the first embodiment. The high likelihood of icing increases the ease of increasing the weight of the exposed member 110. Consequently, the ease of detection of icing with the measuring device 130 is increased.
The flexible member 211 is, for example, an optical fiber cable. One end of the flexible member 211 is coupled to the optical fiber sensor 220, and the other end of the flexible member 211 is coupled to the weight member 113. The flexible member 211 is wound around the post 111, with at least a portion thereof being spaced apart from the post 111. Accordingly, the flexible member 211 has some slack on the outside of the aircraft structure AS. Since the flexible member 211 has such slack, the optical fiber sensor 220 receives substantially no load from the flexible member 211.
The optical fiber sensor 220 is embedded in the aircraft structure AS and is positioned substantially in the center of the aircraft structure AS. The optical fiber sensor 220 is covered by the aircraft structure AS and is permanently fixed to the aircraft structure AS. The optical fiber sensor 220 is coupled to the measuring device 130.
While the optical fiber sensor 120 according to the first embodiment is covered by the exposed member 110, the optical fiber sensor 220 is covered by the aircraft structure AS, which is the difference between the two. The optical fiber sensors 120 and 220 may each be covered by both the exposed member 110 and the aircraft structure AS. That is, the optical fiber sensors 120 and 220 are each covered by at least one of the aircraft structure AS or the exposed member 110.
Therefore, if the post 111 and the weight member 113 vibrate while the aircraft 1 is flying, the flexible member 211 also vibrates, and the load of the vibration is transmitted to the optical fiber sensor 220. If such a load is transmitted to the optical fiber sensor 220, the optical fiber sensor 220 is strained or deformed, which changes the frequency of the backscatter to be measured by the measuring device 130. The measuring device 130 measures such a change in the frequency of the backscatter, thereby detecting the occurrence of icing on the exposed member 210.
To summarize, the optical fiber sensor 220 is covered by the aircraft structure AS. Therefore, the durability of the optical fiber sensor 220 is less likely to be deteriorated than in a case where the optical fiber sensor 220 is exposed to the outside of the aircraft structure AS.
Furthermore, since the flexible member 211 exposed to the outside of the aircraft structure AS is employed, the transmission of the vibration or load generated by icing on the exposed member 210 to the optical fiber sensor 220 is achieved in a good manner. The effects produced by the first embodiment are also produced.
While some embodiments of the disclosure have been described above with reference to the accompanying drawings, the disclosure is not limited thereto, needless to say. It is obvious that those skilled in the art can conceive various changes or modifications within the scope defined by the appended claims. It is of course understood that such changes or modifications are included in the technical scope of the disclosure.
The above embodiments each relate to a case where the exposed member 110 or 210 includes the weight member 113. However, the weight member 113 is an optional element and may be omitted from the exposed member 110 or 210.
According to each of the above embodiments of the disclosure, an icing detector that is less susceptible to electromagnetic interference is provided.
Number | Date | Country | Kind |
---|---|---|---|
2021-045694 | Mar 2021 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4775118 | Daniels | Oct 1988 | A |
4797660 | Rein, Jr. | Jan 1989 | A |
4851817 | Brossia | Jul 1989 | A |
5014042 | Michoud | May 1991 | A |
5206806 | Gerardi | Apr 1993 | A |
5475370 | Stern | Dec 1995 | A |
5596320 | Barnes | Jan 1997 | A |
5617076 | Stern | Apr 1997 | A |
5694497 | Sansone | Dec 1997 | A |
5748091 | Kim | May 1998 | A |
5760711 | Burns | Jun 1998 | A |
5841538 | Schoeffler | Nov 1998 | A |
6052056 | Burns | Apr 2000 | A |
6069565 | Stern | May 2000 | A |
6091335 | Breda | Jul 2000 | A |
6215940 | Johnson | Apr 2001 | B1 |
6430996 | Anderson | Aug 2002 | B1 |
6819265 | Jamieson | Nov 2004 | B2 |
7312713 | Alfano | Dec 2007 | B2 |
7370525 | Zhao | May 2008 | B1 |
7800743 | Huffman | Sep 2010 | B1 |
7969566 | Smith | Jun 2011 | B2 |
8325338 | Pope | Dec 2012 | B1 |
9555894 | Botura | Jan 2017 | B2 |
9769431 | Shi | Sep 2017 | B2 |
10099791 | Borigo | Oct 2018 | B2 |
10175167 | Grinderslev | Jan 2019 | B2 |
10232949 | English | Mar 2019 | B2 |
10895525 | Swanson | Jan 2021 | B2 |
11479361 | Cueto-Gomez | Oct 2022 | B2 |
20050031246 | Rowe | Feb 2005 | A1 |
20050100414 | Salama | May 2005 | A1 |
20050103927 | Barre et al. | May 2005 | A1 |
20070046478 | Crisman | Mar 2007 | A1 |
20070216536 | Alfano | Sep 2007 | A1 |
20080110254 | Zhao | May 2008 | A1 |
20130327756 | Clemen, Jr. | Dec 2013 | A1 |
20140175271 | Samson | Jun 2014 | A1 |
20150103867 | Meis et al. | Apr 2015 | A1 |
20170021934 | Levkovitch et al. | Jan 2017 | A1 |
20170030848 | Borigo | Feb 2017 | A1 |
20170153387 | Wei | Jun 2017 | A1 |
20180284017 | Grinderslev | Oct 2018 | A1 |
20190113561 | Yogeeswaran | Apr 2019 | A1 |
20200207478 | Marom | Jul 2020 | A1 |
20220057519 | Goldstein | Feb 2022 | A1 |
20230408242 | Roman | Dec 2023 | A1 |
Number | Date | Country |
---|---|---|
111216899 | Jun 2020 | CN |
S 63-135810 | Jun 1988 | JP |
2005-145453 | Jun 2005 | JP |
2019-059473 | Apr 2019 | JP |
2019-070623 | May 2019 | JP |
2020-169864 | Oct 2020 | JP |
Entry |
---|
Extended European Search Report issued Jul. 21, 2022 for European Patent Application No. 22160286.5-1004. |
Japanese Office Action, dated Sep. 3, 2024 in Japanese Application No. 2021-045694 and English Translation thereof. |
Number | Date | Country | |
---|---|---|---|
20220299675 A1 | Sep 2022 | US |