The present application relates to electric connectors. It finds particular application in conjunction with lighting systems and will be described with a particular reference thereto. However, it is to be appreciated that the following also relates to electrical systems and the like.
Insulation displacement connectors (IDC) are used to interconnect conductors which have a wire surrounded by an outer insulating layer. These devices typically include a central body or housing having one or more channels for receiving the conductors, and a metallic contact element such as U-element which provides the electrical connection between the conductors. As the U-element contacts the insulated conductor, the inner walls of the U-element penetrate the outer insulating layer and make contact with the metal wire.
Typically, to connect multi-conductor parallel cables by using commercially available IDC splice connectors the wires are cut and separated. Corresponding cut and separated wires from the two cables are inserted into the connector. The connection is terminated separately for each pair of corresponding wires. Thus, this process must be completed for each set of wires to be connected using a different connector each time.
Other known connectors require a similar process but can connect multiple wires together through an intermediate connecting part so the whole connection requires three separate assemblies, e.g., for three sets of wires.
Such termination procedures are complex and labor intensive. In addition, the miniature lighting products use miniature IDC connectors. When the connectors mentioned above scaled down, they often become fragile and break easily.
A connector for electrically connecting corresponding conductors of at least first and second cables is disclosed. The connector comprises a connecting portion into which the conductors of the first and second cables are inserted opposing one another to electrically connect corresponding conductors of each cable. A positive terminal and a negative terminal terminate and electrically connect corresponding conductors of each cable.
In accordance with another aspect, an insulation displacement connector (IDC) for electrically connecting insulated cables which each includes electric conductors is disclosed. A main body includes first and second hinging members. A positive terminal and a negative terminal electrically connect pairs of wires of corresponding conductors by insulation displacement method when the first and second hinging members are snapped closed.
In accordance with another aspect, an insulation displacement connector (IDC) for electrically connecting at least first and second cables each cable having parallel electric wires insulated from one another by a layer of insulative material is disclosed. A connecting portion includes wire receiving slots and wire aligning members, into which wire receiving slots the wires surrounded by the insulative material are inserted. A positive terminal and a negative terminal each has a bifurcated end and is oriented toward a corresponding wire receiving slot. Each bifurcated end pierces the insulative layer of a respective wire and establishes electrical contact with the respective wire.
With reference to
The main body 10 includes a connecting portion 40 including wire receiving slots 42 of substantially circular geometry, in which conductors 12, 14 of the first and second cables 16, 18 are arranged. The connecting portion 40 retains and aligns the corresponding wires to be connected. Nubs 44 assist in retaining the conductors 12, 14. As explained in detail below, a first hinging portion or section 46 including substantially circular wire slots 48 and a hinge 50 mechanically snaps onto the first cable 16. A second hinging portion or section 52 including substantially circular wire slots 54 and a hinge 56 mechanically snaps onto the second cable 18 so that corresponding pairs of wires 24, 30; 26, 32; 28, 34 make electrical contact.
With continuing reference to
Each prong 62, 64, 66, 68, 82, 84 includes a corresponding bifurcated or V-shaped end 90, 92, 94, 96, 98, 100 which extends out of the corresponding terminal 60, 80 toward the wire receiving slots 42. The first hinging portion 46 snaps onto the connecting portion 40 with the conductors 12 of the first cable 16 arranged in the wire receiving slots 42. The ends 90, 92, 98 of the prongs 62, 64, 82 push the conductors 12, puncture the insulating material layer 38 of the conductors 12 and electrically contact the wires 24, 26, 28. The snapping connection includes an engagement of a first engaging member or clip 110 of the first hinging section 46 with a matching recess or void 112 of the connecting portion 40 to secure the first hinging section 46 onto the connecting portion 40. Likewise, the second hinging portion 52 snaps onto the connecting portion 40 with the conductors 14 of the second cable 18 arranged in the wire receiving slots 42. The ends 94, 96, 100 of the prongs 66, 68, 84 push the conductors 14, puncture the insulating material layer 38 of the conductors 14 of the second cable 18 and electrically contact the wires 30, 32, 34. The snapping connection includes an engagement of a second engaging member or clip 114 of the second hinging section 52 with a recess or void (not shown) of the connecting portion 40 to secure the second hinging section 52 onto the connecting portion 40. As a result, the first positive prongs 62, 66 provide the electrical connection between the first positive wires 24, 30, the second positive prongs 64, 68 provide the electrical connection between the second positive wires 26, 32, and the negative prongs 82, 84 provide an electrical connection between the negative wires 28, 34 of the first and second cables 16, 18. Of course, it is contemplated that a different number of terminals and/or prongs can be used. For example, the illustrated embodiment can have two positive terminals and one negative terminal to achieve the polarity insensitive design.
In one embodiment, each bifurcated end 90, 92, 94, 96, 98, 100 defines a gap 120 sized to receive the respective conductor 12,14 of one of the first and second cable 16, 18. In one embodiment, each conductor 12, 14 includes multiple strands of wire surrounded by the insulation layer 38. The wire compressively squeezes into the gap 120 of the end 90, 92, 94, 96, 98, 100 of one of the prongs 62, 64, 66, 68, 82, 84 when the first or second hinging section 46, 52 is snapped in place onto the connecting portion 40.
In this manner, a miniature robust IDC connector is provided which includes a body having two living hinges and two terminals. The living hinges push the wires into the static terminal creating IDC connection. Such miniature connector can be assembled without special tools and, for example, placed in a tight spot or connect a miniature LED light.
With reference to
Each prong 62, 64, 66, 68, 82, 84 includes a corresponding bifurcated or V-shaped end 90, 92, 94, 96, 98, 100 which extends out of the corresponding terminal 60, 80 toward the receiving slots 42. The electrical connection between corresponding wires of the first and second cables 16, 18 is achieved by squeezing the first and second terminal holders 200, 202 toward one another onto the main body 10. The squeezing of the first and second terminal holders 200, 202 results in bifurcating the ends connecting to the conductors 12, 14 of the corresponding first and second cables 16, 18 thus connecting respective pairs of wires. The terminal holders 200, 202 retain the terminals 60, 80 and interface to the main body to provide proper alignment and retention of the terminals to the main body. The terminal holders 200, 202 can also have features to position the wire during termination and have voids to retain the gel for moisture protection. The connector is scalable for the size of the wires, the number of conductors to be connected, and which wires are to be connected. The end result is a small compact IDC splice connection usable with miniature LED lights, for example, that is placed over the wires to be connected and is terminated by squeezing the connection with a standard pair of pliers.
Optionally, the main body 10 includes multiple voids to be filled with a dielectric gel that provides moisture resistance to the critical areas where the terminals connect to the wire and to each other.
The exemplary embodiment has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the exemplary embodiment be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
4954098 | Hollingsworth et al. | Sep 1990 | A |
5080606 | Burkard | Jan 1992 | A |
5520549 | Tanaka et al. | May 1996 | A |
5626489 | Marshall et al. | May 1997 | A |
5934930 | Camps et al. | Aug 1999 | A |
6017241 | Komai | Jan 2000 | A |
6261119 | Green | Jul 2001 | B1 |
6406323 | Chung Long Shan | Jun 2002 | B2 |
6552268 | Daoud et al. | Apr 2003 | B2 |
6685497 | Urban et al. | Feb 2004 | B1 |
6761589 | Venditti et al. | Jul 2004 | B2 |
20040229495 | Negishi et al. | Nov 2004 | A1 |
20050227529 | Mrakovich et al. | Oct 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080085625 A1 | Apr 2008 | US |