Priority is claimed to German Patent Application No. DE 10 2016 109 142.1, filed May 18, 2016. The entire disclosure of said application is incorporated by reference herein.
The present invention relates to an input device comprising an input area and an optical or capacitive sensor which is aligned with its scan to detect a surface structure of a finger touching the input area, in particular the dactylogram of a finger, in the scan area defined by the detection area of the sensor. Such sensors are regularly used to identify and authenticate users. Such sensors are also known to be used to analyze the scan area for movement of the input means, herein the finger, via a chronologically successive and multiple detection, in order to recognize the operation as an input following movement of the surface structure in the scan, and hence to assign a control function or a switch function, for example, to perform a cursor control.
No input devices have to date been described which have a sensor that in particular capacitively detects the scan area which are operated both in a first mode, wherein identification via the surface structure detected by the sensor is performed, and in a second mode, wherein input is performed by detecting a movement made in the scan area, which is also called a detection area. The first mode is hereinafter referred to as the “identification mode” and the second mode is hereinafter referred to as the “input mode”. There have to date been concerns about a substantially desirable operation of an input device in the two modes in that risk of non-sufficient rapidity of signal processing and data processing in movement detection in the input mode was presumed, in particular if cursor control, in particular a control that is maximally continuous and immediately subsequent to the input, was envisaged.
An aspect of the present invention was to provide an input device that is capable of being operated in both of the above-described modes, and which is in particular capable of being operated without any delay or tardiness felt by the user while operating in the input mode.
In an embodiment, the present invention provides an input device which includes an input area, an optical or capacitive sensor comprising a scan area, and an analyzing unit. The optical or capacitive sensor is configured to detect a surface structure of a finger touching the input area in the scan area. The input device is configured to be operated in an identification mode where the surface structure located in the scan area is detected via the optical or capacitive sensor. The input device is also configured to be operated in an input mode where at least a sub-area of the scan area is detected at least once via the optical or capacitive sensor and is analyzed by the analyzing unit so that the analyzing unit assigns at least one of a control function and a switch function to a relative movement of the surface structure in the sub-area.
The present invention is described in greater detail below on the basis of embodiments and of the drawings in which:
The input device according to the present invention comprises an input area and an optical or capacitive, for example, a capacitive sensor, which, with its scan area, is aligned to detect a surface structure of a finger touching the input area in the scan area of the sensor. The sensor can, for example, be designed to detect a surface structure of a finger in a locally resolved manner. Such capacitively operating sensors are, for example, described in WO 151 27 046 A1, the disclosure of which is incorporated by reference herein.
The input area can, for example, be about the size of an average fingertip of an adult. The input area can, for example, define a maximum area of less than 2.5 cm2, for example, equal to or less than 1 cm2.
The input device of the present invention is designed to be operated in an identification mode, wherein the surface structure in the scan area is detected in a single scan step, i.e., across the entire detection range of the sensor. The input device of the present invention is further designed to be operated in an input mode, wherein at least a sub-area of the scan area, i.e., the entire scan area or, for example, a sub-area of the scan area that in regard of the area's extent is smaller, is detected at least once, for example, several times, i.e., it is scanned by the sensor and is analyzed by an analyzing unit, in order to assign a control function or a switch function to a relative movement of the surface structure, for example, the finger, in the sub-area. An input device is thereby provided which allows the identification of a user and optionally an authentication of the user, while simultaneously allowing for an input, and thus permitting an operation via the same input device. An input in the sense of the present invention means the movement of a finger in the input area which is suitable to be detected in the input mode and to be assigned to a switch function and/or to a control function. Authentication in the sense of the present invention comprises, for example, following identification, the comparison of data acquired in the preceding identification to saved data that have been acquired in the still chronologically preceding identification steps, in order to assign a control function and/or a switch function solely upon sufficient conformity or, conversely, to deny the assignment thereof.
In an embodiment of the input device according to the present invention, in the identification mode, in at least one identification step, characteristic points of the surface structure can, for example, be detected and saved while utilizing the entire scan area, and in the input mode, a subset of all characteristic points that have been detected in one or more of the preceding identification steps and located in a sub-area are evaluated in order to assign a control function to a relative movement of the characteristic points. The term characteristic points is to be broadly interpreted and does not necessarily require punctiform expansion, and consequently, it may be zones having specific expansion and/or irregular contour characteristic to the surface structure of the finger of the user. It is not moreover necessarily required to be characteristic points individual to the respective user, especially if an authentication is omitted. As characteristic points, for example, minutiae or a selection of one or more specific minutiae are assumed that generally represent the endings and furcations of the friction ridge of the human finger print. Specific minutiae can, for example, include a ridge ending, a single furcation, a bifurcation, a trifurcation, a single vortex, a double vortex, a lateral contact, a hook, a point, an interval, an X line, a single bridge, a double bridge and/or a continuous line. In regard to the detection of characteristic points in a dactylogram of a finger, reference is made, for example, to US 2010/150411 A1, the contents of which are incorporated by reference herein.
In an embodiment of the present invention, provision can, for example, be made for the input device to be designed for repeatedly performing the identification mode in several chronological identification steps, wherein the characteristic points of the surface structure are gathered and saved, and in the input mode, at least one saved characteristic point of an identification step chronologically located even in advance of the preceding identification step is made use of. The input device according to the present invention may thereby be realized, for example, with a comparably small scan area, i.e., the scan area having the expansion of a dimension below the fingertip. Installation space is thus saved and, for example, integration of the input device into a stirring wheel is enabled.
In an embodiment of the present invention, the input device can, for example, be designed so that the sub-area, during operation performed in the input mode, is selected so that the sub-area comprises at least two, for example, exactly two, neighboring characteristic points, for example, having the smallest distance. It is thereby possible to more accurately detect a movement input, and it is in particular possible to recognize movement of the finger having a rotational portion of movement on the input area. The number of the characteristic points in the respective sub-area can, for example, be limited by selecting the size of the sub-area so that maximally five, for example, maximally three, for example, maximally two characteristic points are enclosed in the sub-area. Expense in data processing is thereby reduced.
In an embodiment of the present invention, provision can, for example, be made so that a sub-area of the scan area is repeatedly scanned, wherein the sub-area undergoes a prediction of movement due to a movement detected via a predicted acquisition of the sub-area, in order to perform tracking of the sub-area with the aid of the prediction of movement.
In an embodiment of the present invention, provision can, for example, be made that the sub-area operating in the input mode is selected at least during the first detection that follows the first identification mode so that the sub-area is arranged spaced apart of the edge of the scan area and within the scan area of the preceding identification step in order to provide reliable recognition of movement.
In an embodiment of the present in invention, provision can, for example, be made so that during operation in the input mode, one sub-area among several possible sub-areas that, for example, are applicable due to an equal number of characteristic points and the size of the sub-area being equal, is selected so that the distance to an external characteristic point that is outside the selected sub-area is lower in comparison to the remaining sub-areas, wherein the external characteristic point is located in the scan area of the preceding identification step and/or in the scan area of a chronologically still further preceding identification step. A simple resetting of the sub-area, especially in repeated detection during operation in the input mode, is thereby allowed.
The present invention further relates to an input process comprising the following steps:
Providing an input device comprising an input area and an optical or capacitive sensor which is aligned with its scan area to detect a surface structure of a finger touching the input area in the scan area. The process provides for operation of the input device in an identification mode, wherein the surface structure is detected in the scan area. The process furthermore provides a chronologically subsequent operation of the input device in an input mode, wherein at least a sub-area of the scan area is detected and is analyzed at least one time, for example, several times, in order to assign a control function to a relative movement of the surface structure in the sub-area. A process is thereby provided that enables identification, eventually also authentication of a user, in the above-described sense, while simultaneously allowing input and thus operation via the same input device. Reference is further made to the above explanation of terms.
In an embodiment of the process of the present invention, in the identification mode, characteristic points of the surface structure are detected and saved in at least one identification step, and in the input mode, a subset of all characteristic points detected in one or more preceding identification steps and located in the sub-area is analyzed, in order to assign a control function to a relative movement of the characteristic points. The term characteristic points is to be interpreted as indicated above.
In an embodiment of the present invention, provision can, for example, be made to repeatedly perform the identification mode in several chronological identification steps, wherein characteristic points of the surface structure are gathered and saved, and, in the input mode, at least one saved characteristic point of an identification step chronologically located even in advance of the preceding identification step is made use of. The input device according to the present invention may thereby, for example, be realized with a comparably small scan area, i.e., with a dimension of the scan area below the expansion of a fingertip.
In an embodiment of the process of the present invention, provision can, for example, be made that the sub-area, during operation in the input mode, is selected so that the sub-area comprises at least two, for example, exactly two, neighboring characteristic points.
Input of movement is thereby to be detected more accurately, and it is in particular possible to recognize movement of the finger on the input area having a rotational portion of movement. The number of the characteristic points in the respective sub-area can, for example, be limited by selecting the size of the sub-area so that maximally five, for example, maximally three, for example, maximally two characteristic points are enclosed in the sub-area. Expense in data processing is thereby reduced.
In an embodiment of the input process according to the present invention, provision can, for example, be made for a sub-area of the scan area to be scanned several times, wherein the sub-area, due to a movement detected by way of the preceding detection of the sub-area, undergoes a prediction of movement, in order to perform tracking of the sub-area with the aid of the prediction of movement.
In an embodiment of the present invention, provision can, for example, furthermore be made so that the sub-area during operation in the input mode, at least in the first detection following the identification mode, is selected so that the sub-area is arranged spaced apart of the edge of the scan area and is arranged within the scan area of the preceding identification step in order to allow reliable recognition of movement.
In an embodiment of the present invention, provision can, for example, be made that while operating in the input mode, one among several possible sub-areas that, for example, would be applicable due to an equal number of characteristic points, the size of the sub-area being constant, is selected so that the distance to an external characteristic point located outside the selected sub-area is smaller in comparison to the remaining sub-areas, wherein the external characteristic point is in the scan area of the preceding identification step and/or in the scan area of a chronologically still further preceding identification step. A simple resetting of the sub-area, in particular in repeated detection during operation in the input mode, is thereby allowed. The present invention further relates to the use of the input device in one of the above-described embodiments in a vehicle, in particular while being arranged in a steering wheel of the vehicle, in particular in a steering wheel spoke belonging to the steering wheel and supporting the steering wheel rim.
Reference is made to the subsequent drawings with respect to further embodiments of the process of the present invention and the input device of the present invention, respectively. The drawings are thereby merely to be understood as examples.
A first embodiment of the input process according to the present invention is explained in detail in
The present invention is not limited to embodiments described herein; reference should be had to the appended claims. The features individually listed in the claims can thereby be combined with each other in any technologically expedient way to show further embodiments of the present invention. The description, in particular in connection with the drawings, additionally characterizes and specifies the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2016 109 142.1 | May 2016 | DE | national |