IDENTIFICATION, MONITORING AND TREATMENT OF INFECTIOUS DISEASE AND CHARACTERIZATION OF INFLAMMATORY CONDITIONS RELATED TO INFECTIOUS DISEASE USING GENE EXPRESSION PROFILES

Abstract
A method is provided in various embodiments for determining a profile data set for a subject with infectious disease or inflammatory conditions related to infectious disease based on a sample from the subject, wherein the sample provides a source of RNAs. The method includes using amplification for measuring the amount of RNA corresponding to at least 2 constituents from Table 1. The profile data set comprises the measure of each constituent, and amplification is performed under measurement conditions that are substantially repeatable.
Description
TECHNICAL FIELD AND BACKGROUND ART

The present invention relates to use of gene expression data, and in particular to use of gene expression data in identification, monitoring and treatment of infectious disease and in characterization and evaluation of inflammatory conditions of a subject induced or related to infectious disease.


The prior art has utilized gene expression data to determine the presence or absence of particular markers as diagnostic of a particular condition, and in some circumstances have described the cumulative addition of scores for over expression of particular disease markers to achieve increased accuracy or sensitivity of diagnosis. Information on any condition of a particular patient and a patient's response to types and dosages of therapeutic or nutritional agents has become an important issue in clinical medicine today not only from the aspect of efficiency of medical practice for the health care industry but for improved outcomes and benefits for the patients.


SUMMARY OF THE INVENTION

In a first embodiment there is provided a method for determining a profile data set for a subject with infectious disease or inflammatory conditions related to infectious disease based on a sample from the subject, the sample providing a source of RNAs, the method comprising using amplification for measuring the amount of RNA corresponding to at least 2 constituents from Table 1 and arriving at a measure of each constituent, wherein the profile data set comprises the measure of each constituent and wherein amplification is performed under measurement conditions that are substantially repeatable.


In addition, the subject may have presumptive signs of a systemic infection including at least one of elevated white blood cell count, elevated temperature, elevated heart rate, and elevated or reduced blood pressure, relative to medical standards or the inflammatory conditions related to infectious disease may be inflammatory conditions arising from at least one of blunt or penetrating trauma, surgery, endocarditis, urinary tract infection, pneumonia, or dental or gynecological examinations or treatments.


In other embodiments, the measurement conditions that are substantially repeatable may be within a degree of repeatability of better than five percent, or better than three percent and the efficiencies of amplification for all constituents may be substantially similar wherein the efficiency of amplification for all constituents is within two percent, or alternatively, is less than one percent. In such embodiments, the sample may be selected from the group consisting of blood, a blood fraction, body fluid, a population of cells and tissue from the subject.


In another embodiment there is provided a method of characterizing infectious disease or inflammatory conditions related to infectious disease in a subject, based on a sample from the subject, the sample providing a source of RNAs, the method comprising assessing a profile data set of a plurality of members, each member being a quantitative measure of the amount of a distinct RNA constituent in a panel of constituents selected so that measurement of the constituents enables characterization of the presumptive signs of a systemic infection, wherein such measure for each constituent is obtained under measurement conditions that are substantially repeatable.


In addition, the subject may have presumptive signs of a systemic infection including at least one of elevated white blood cell count, elevated temperature, elevated heart rate, and elevated or reduced blood pressure, relative to medical standards, or alternatively, the subject may have presumptive signs of a systemic infection that are related to inflammatory conditions arising from at least one of blunt or penetrating trauma, surgery, endocarditis, urinary tract infection, pneumonia, or dental or gynecological examinations or treatments. In such embodiments, assessing may further comprises comparing the profile data set to a baseline profile data set for the panel, wherein the baseline profile data set is related to the infectious disease or inflammatory conditions related to infectious disease to be characterized.


In other embodiments, the efficiencies of amplification for all constituents are substantially similar and the infectious disease or inflammatory conditions related to infectious disease are from a microbial infection, more particularly a bacterial infection, or a eukaryotic parasitic infection, or a viral infection, or a fungal infection or are related to systemic inflammatory response syndrome (SIRS). More particularly, the infectious disease or inflammatory conditions that are related to infectious disease may be from bacteremia, viremia, or fungemia, or from septicemia due to any class of microbe. In addition, the infectious disease or inflammatory conditions related to infectious disease may be with respect to a localized tissue of the subject and the sample may be derived from a tissue or fluid of a type distinct from that of the localized tissue.


Other embodiments include storing the profile data set in a digital storage medium, wherein storing the profile data set may include storing it as a record in a database.


Yet another embodiment provides a method for evaluating infectious disease or inflammatory conditions related to infectious disease in a subject based on a first sample from the subject, the sample providing a source of RNAs, the method comprising deriving from the first sample a first profile data set, the profile data set including a plurality of members, each member being a quantitative measure of the amount of a distinct RNA constituent in a panel of constituents selected so that measurement of the constituents enables evaluation of the infectious disease or inflammatory conditions related to infectious disease wherein such measure for each constituent is obtained under measurement conditions that are substantially repeatable. The method also includes producing a calibrated profile data set for the panel, wherein each member of the calibrated profile data set is a function of a corresponding member of the first profile data set and a corresponding member of a baseline profile data set for the panel, and wherein the baseline profile data set is related to the infectious disease or inflammatory conditions related to infectious disease to be evaluated, with the calibrated profile data set being a comparison between the first profile data set and the baseline profile data set, thereby providing evaluation of the infectious disease or inflammatory conditions related to infectious disease of the subject.


In related embodiments, the subject has presumptive signs of a systemic infection including at least one of: elevated white blood cell count, elevated temperature, elevated heart rate, and elevated or reduced blood pressure, relative to medical standards, or alternatively, the infectious disease or inflammatory conditions may be related to inflammatory conditions arising from at least one of blunt or penetrating trauma, surgery, endocarditis, urinary tract infection, pneumonia, or dental or gynecological examinations or treatments.


In addition, the baseline profile data set may be derived from one or more other samples from the same subject taken under circumstances different from those of the first sample, and the circumstances may be selected from the group consisting of (i) the time at which the first sample is taken, (ii) the site from which the first sample is taken, (iii) the biological condition of the subject when the first sample is taken.


Also, the one or more other samples may be taken over an interval of time that is at least one month between the first sample and the one or more other samples, or taken over an interval of time that is at least twelve months between the first sample and the one or more samples, or they may be taken pre-therapy intervention or post-therapy intervention. In such embodiments, the first sample may be derived from blood and the baseline profile data set may be derived from tissue or body fluid of the subject other than blood. Alternatively, the first sample is derived from tissue or body fluid of the subject and the baseline profile data set is derived from blood.


In other embodiments, the baseline profile data set may be derived from one or more other samples from the same subject, taken when the subject is in a biological condition different from that in which the subject was at the time the first sample was taken, with respect to at least one of age, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure, and the baseline profile data set may be derived from one or more other samples from one or more different subjects.


In addition, the one or more different subjects may have in common with the subject at least one of age group, gender, ethnicity, geographic location, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure. In other embodiments, a clinical indicator may be used to assess infectious disease or inflammatory conditions related to infectious disease of the one or more different subjects, and may also include interpreting the calibrated profile data set in the context of at least one other clinical indicator, wherein the at least one other clinical indicator is selected from the group consisting of blood chemistry, urinalysis, X-ray or other radiological or metabolic imaging technique, other chemical assays, and physical findings.


In such embodiments, the infectious disease or inflammatory conditions related to infectious disease may be from a microbial infection, a bacterial infection, a eukaryotic parasitic infection, a viral infection, a fungal infection, or alternatively, the infectious disease or inflammatory conditions related to infectious disease may be from systemic inflammatory response syndrome (SIRS), from bacteremia, viremia, fungemia, or septicemia due to any class of microbe.


In yet other embodiments, the function is a mathematical function and is other than a simple difference, including a second function of the ratio of the corresponding member of first profile data set to the corresponding member of the baseline profile data set, or a logarithmic function. In related embodiments, each member of the calibrated profile data set has biological significance if it has a value differing by more than an amount D, where D=F(1.1)−F(0.9), and F is the second function. In such embodiments, the first sample is obtained and the first profile data set quantified at a first location, and the calibrated profile data set is produced using a network to access a database stored on a digital storage medium in a second location, wherein the database may be updated to reflect the first profile data set quantified from the sample. Additionally, using a network may include accessing a global computer network.


In related embodiments, the quantitative measure is determined by amplification, and the measurement conditions are such that efficiencies of amplification for all constituents differ by less than approximately 2 percent, or alternatively by less than approximately 1 percent.


Still another embodiment is a method of providing an index that is indicative of infectious disease or inflammatory conditions related to infectious disease of a subject based on a first sample from the subject, the first sample providing a source of RNAs, the method comprising deriving from the first sample a profile data set, the profile data set including a plurality of members, each member being a quantitative measure of the amount of a distinct RNA constituent in a panel of constituents selected so that measurement of the constituents is indicative of the presumptive signs of a systemic infection, the panel including at least two of the constituents of the Gene Expression Panel of Table 1. In deriving the profile data set, such measure for each constituent is achieved under measurement conditions that are substantially repeatable, at least one measure from the profile data set is applied to an index function that provides a mapping from at least one measure of the profile data set into one measure of the presumptive signs of a systemic infection, so as to produce an index pertinent to the infectious disease or inflammatory conditions related to infectious disease of the subject.


In addition, the subject may have presumptive signs of a systemic infection including at least one of: elevated white blood cell count, elevated temperature, elevated heart rate, and elevated or reduced blood pressure, relative to medical standards, or alternatively, the infectious disease or inflammatory conditions may be related to inflammatory conditions arising from at least one of blunt or penetrating trauma, surgery, endocarditis, urinary tract infection, pneumonia, or dental or gynecological examinations or treatments.


In related embodiments, the index function is constructed as a linear sum of terms having the form: I=ΣCiMiP(i), wherein I is the index, Mi is the value of the member i of the profile data set, Ci is a constant, and P(i) is a power to which Mi is raised, the sum being formed for all integral values of i up to the number of members in the data set. In addition, the values Ci and P(i) are determined using statistical techniques, such as latent class modeling, to correlate data, including clinical, experimentally derived, and any other data pertinent to the presumptive signs of a systemic infection. In alternative embodiments, there is provided a normative value of the index function, determined with respect to a relevant set of subjects, so that the index may be interpreted in relation to the normative value, wherein the normative value may include constructing the index function so that the normative value is approximately 1, alternatively so that the normative value is approximately 0 and deviations in the index function from 0 are expressed in standard deviation units. In still other embodiments, the relevant set of subjects has in common a property that is at least one of age group, gender, ethnicity, geographic location, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure, or alternatively has in common a property that is at least one of age group, gender, ethnicity, geographic location, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure.


In other embodiments, a clinical indicator may be used to assess the infectious disease or inflammatory conditions related to infectious disease of the relevant set of subjects by interpreting the calibrated profile data set in the context of at least one other clinical indicator, wherein the at least one other clinical indicator is selected from the group consisting of blood chemistry, urinalysis, X-ray or other radiological or metabolic imaging technique, other chemical assays, and physical findings. In addition, the quantitative measure may be determined by amplification, the measurement conditions being such that efficiencies of amplification for all constituents differ by less than approximately 2 percent, or they differ by less than approximately 1 percent, and the measurement conditions that are substantially repeatable are within a degree of repeatability of better than five percent, or within a degree of repeatability of better than three percent.


In such embodiments, the infectious disease or inflammatory conditions related to infectious disease being evaluated are with respect to a localized tissue of the subject and the first sample is derived from tissue or fluid of a type distinct from that of the localized tissue, wherein the infectious disease or inflammatory conditions related to infectious disease are from a microbial infection, more particularly a bacterial infection, still more particularly a eukaryotic parasitic infection, a viral infection, a fungal infection or from a systemic inflammatory response syndrome (SIRS).


A method of providing an index according to claim 61, further comprising:


deriving from at least one other sample at least one other profile data set, the at least one other profile data set including a plurality of members, each being a quantitative measure of the amount of a distinct RNA constituent in a panel of constituents selected so that measurement of the constituents is indicative of the presumptive signs of a systemic infection,


wherein the at least one other sample is from the same subject, taken under circumstances different from those of the first sample with respect to at least one of time, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure; and


applying at least one measure from the at least one other profile data set to an index function that provides a mapping from the at least one measure of the at least one other profile data set into one measure of the infectious disease or inflammatory conditions related to infectious disease under different circumstances, so as to produce at least one other index pertinent to the infectious disease or inflammatory conditions related to infectious disease of the subject under circumstances different from those of the first sample.


Related embodiments include providing an index wherein the index function has 2, 3, 4, or 5 components including disease status, disease severity, or disease course. In addition, the index function may be constructed as a linear sum of terms having the form: I=ΣCiMiP(i), wherein I is the index, Mi is the value of the member i of the profile data set, Ci is a constant, and P(i) is a power to which Mi is raised, the sum being formed for all integral values of i up to the number of members in the data set, wherein the values Ci and P(i) are determined using statistical techniques, such as latent class modeling, to correlate data, including clinical, experimentally derived, and any other data pertinent to the presumptive signs of a systemic infection.


Alternatively, a normative value of the index function is provided, determined with respect to a relevant set of subjects, so that the at least one other index may be interpreted in relation to the normative value, wherein providing the normative value includes constructing the index function so that the normative value is approximately 1, or so that the normative value is approximately 0 and deviations in the index function from 0 are expressed in standard deviation units. Such embodiments may also include using a clinical indicator to assess infectious disease or inflammatory conditions related to infectious disease of the relevant set of subjects by interpreting the calibrated profile data set in the context of at least one other clinical indicator selected from the group consisting of blood chemistry, urinalysis, X-ray or other radiological or metabolic imaging technique, other chemical assays, and physical findings.


As in other embodiments, the quantitative measure is determined by amplification, and the measurement conditions are such that efficiencies of amplification for all constituents differ by less than approximately 2 percent, or differ by less than approximately 1 percent, and the measurement conditions that are substantially repeatable are within a degree of repeatability of better than five percent or within a degree of repeatability of better than three percent.


In addition, the infectious disease or inflammatory conditions related to infectious disease are with respect to a localized tissue of the subject and the first sample is derived from tissue or fluid of a type distinct from that of the localized tissue.


Still other embodiments include a method for providing an index wherein the infectious disease or inflammatory conditions related to infectious disease are from a microbial infection, a bacterial infection, a viral infection, a fungal infection, a eukaryotic parasite infection, or from systemic inflammatory response syndrome (SIRS) and the panel of constituents includes at least two constituents of Table 1.


Another embodiment provides a method for evaluating infectious disease or inflammatory conditions related to infectious disease of a subject based on a first sample from the subject, the first sample providing a source of RNAs, the method comprising deriving from the first sample a first profile data set, the first profile data set including a plurality of members, each member being a quantitative measure of the amount of a distinct RNA constituent in a panel of constituents selected so that measurement of the constituents enables evaluation of the infectious disease or inflammatory conditions related to infectious disease wherein such measure for each constituent is obtained under measurement conditions that are substantially repeatable. The method also includes producing a calibrated profile data set for the panel, wherein each member of the calibrated profile data set is a function of a corresponding member of the first profile data set and a corresponding member of a baseline profile data set for the panel, wherein each member of the baseline profile data set is a normative measure determined with respect to a relevant set of subjects of the amount of one of the constituents in the panel and the baseline profile data set is related to the infectious disease or inflammatory conditions related to infectious disease to be evaluated, and the calibrated profile data set is a comparison between the first profile data set and the baseline profile data set, thereby providing evaluation of the infectious disease or inflammatory conditions related to infectious disease of the subject.


In such an embodiment, the subject may have presumptive signs of a systemic infection including at least one of: elevated white blood cell count, elevated temperature, elevated heart rate, and elevated or reduced blood pressure, relative to medical standards, or the infectious disease or inflammatory conditions may be related to inflammatory conditions arising from at least one of: blunt or penetrating trauma, surgery, endocarditis, urinary tract infection, pneumonia, or dental or gynecological examinations or treatments.


Additionally, the relevant set of subjects is a set of healthy subjects having in common a property that is at least one of age group, gender, ethnicity, geographic location, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure. As with other embodiments, the quantitative measure is determined by amplification, and the measurement conditions are such that efficiencies of amplification for all constituents differ by less than approximately 2 percent, or they differ by less than approximately 1 percent, and the measurement conditions are substantially repeatable within a degree of repeatability of better than five percent or within a degree of repeatability of better than three percent.


In such embodiments, the infectious disease or inflammatory conditions related to infectious disease being evaluated is with respect to a localized tissue of the subject and the first sample is derived from tissue or fluid of a type distinct from that of the localized tissue and the profile data set may be stored in a digital storage medium, including storing it as a record in a database. In addition, the baseline profile data set is derived from one or more other samples from the same subject taken under circumstances different from those of the first sample, wherein the one or more other samples are taken pre-therapy intervention or alternatively taken post-therapy intervention, or the one or more other samples are taken over an interval of time that is at least one month between an initial sample and the sample, or at least twelve months between an initial sample and the sample. Also, the first sample is derived from blood and the baseline profile data set is derived from tissue or body fluid of the subject other than blood, or alternatively, the first sample is derived from tissue or body fluid of the subject and the baseline profile data set is derived from blood.


Yet another embodiment provides a method for evaluating infectious disease or inflammatory conditions related to infectious disease of a subject based on a first sample from the subject and a second sample from a defined population of indicator cells, the samples providing a source of RNAs, the method comprising applying the first sample or a portion thereof to the defined population of indicator cells. The method also includes deriving from the second sample a first profile data set, the first profile data set including a plurality of members, each member being a quantitative measure of the amount of a distinct RNA or protein constituent in a panel of constituents selected so that measurement of the constituents enables measurement of the presumptive signs of a systemic infection, wherein such measure for each constituent is obtained under measurement conditions that are substantially repeatable, and also includes producing a calibrated profile data set for the panel, wherein each member of the calibrated profile data set is a function of a corresponding member of the first profile data set and a corresponding member of a baseline profile data set for the panel, wherein each member of the baseline data set is a normative measure determined with respect to a relevant set of subjects of the amount of one of the constituents in the panel and wherein the baseline profile data set is related to the infectious disease or inflammatory conditions related to infectious disease to be evaluated, the calibrated profile data set being a comparison between the first profile data set and the baseline profile data set, thereby providing evaluation of the infectious disease or inflammatory conditions related to infectious disease of the subject.


In related embodiments, the subject may have presumptive signs of a systemic infection including at least one of: elevated white blood cell count, elevated temperature, elevated heart rate, and elevated or reduced blood pressure, relative to medical standards, or alternatively, the infectious disease or inflammatory conditions may be related to inflammatory conditions arising from at least one of: blunt or penetrating trauma, surgery, endocarditis, urinary tract infection, pneumonia, or dental or gynecological examinations or treatments, and the relevant set of subjects is a set of healthy subjects.


In addition, the relevant set of subjects has in common a property that is at least one of age group, gender, ethnicity, geographic location, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure. Additionally, a clinical indicator may be used to assess infectious disease or inflammatory conditions-related to infectious disease of the relevant set of subjects by interpreting the calibrated profile data set in the context of at least one other clinical indicator, wherein the at least one other clinical indicator is selected from the group consisting of blood chemistry, urinalysis, X-ray or other radiological or metabolic imaging technique, other chemical assays, and physical findings.


As with other embodiments, the quantitative measure is determined by amplification, and the measurement conditions are such that efficiencies of amplification for all constituents differ by less than approximately 2 percent, or they differ by less than approximately 1 percent, and the measurement conditions are substantially repeatable within a degree of repeatability of better than five percent, or within a degree of repeatability of better than three percent. Also, the infectious disease being evaluated is with respect to a localized tissue of the subject and the first sample is derived from tissue or fluid of a type distinct from that of the localized tissue, and the infectious disease or inflammatory conditions related to infectious disease is a microbial infection.


In related embodiments, the baseline profile data set is derived from one or more other samples from the same subject taken under circumstances different from those of the first sample, wherein the one or more other samples are taken pre-therapy intervention, or are taken post-therapy intervention, or are taken over an interval of time that is at least one month between an initial sample and the sample, or are taken over an interval of time that is at least twelve months between an initial sample and the sample. In such embodiments, the first sample is derived from blood and the baseline profile data set is derived from tissue or body fluid of the subject other than blood, or the first sample is derived from tissue or body fluid of the subject and the baseline profile data set is derived from blood.


In another embodiment of the invention, a method for evaluating infectious disease or inflammatory conditions related to infectious disease of a target population of cells affected by a first agent, based on a sample from the target population of cells to which the first agent has been administered, the sample providing a source of RNAs, is presented. The method comprises deriving from the sample a first profile data set, the first profile data set including a plurality of members, each member being a quantitative measure of the amount of a distinct RNA constituent in a panel of constituents selected so that measurement of the constituents enables evaluation of the infectious disease or inflammatory conditions related to infectious disease affected by the first agent, wherein such measure for each constituent is obtained under measurement conditions that are substantially repeatable; and producing a calibrated profile data set for the panel, wherein each member of the calibrated profile data set is a function of a corresponding member of the first profile data set and a corresponding member of a baseline profile data set for the panel, wherein each member of the baseline data set is a normative measure determined with respect to a relevant set of target populations of cells of the amount of one of the constituents in the panel, and wherein the baseline profile data set is related to the infectious disease or inflammatory conditions related to infectious disease to be evaluated, the calibrated profile data set being a comparison between the first profile data set and the baseline profile data set, thereby providing an evaluation of the infectious disease or inflammatory conditions related to infectious disease of the target population of cells affected by the first agent. The target population of cells may have presumptive signs of a systemic infection including at least one of: elevated white blood cell count, elevated temperature, elevated heart rate, and elevated or reduced blood pressure, relative to medical standards. The infectious disease or inflammatory conditions related to infectious disease may be related to inflammatory conditions arising from at least one of: blunt or penetrating trauma, surgery, endocarditis, urinary tract infection, pneumonia, or dental or gynecological examinations or treatments. The relevant set of target populations of cells may be a set of healthy target populations of cells. Alternatively, the relevant set of target populations of cells may have in common a property that is at least one of age group, gender, ethnicity, geographic location, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure. In such a case, a clinical indicator may be used to assess infectious disease or inflammatory conditions related to infectious disease of the relevant set of target populations of cells, and the method further comprises interpreting the calibrated profile data set in the context of at least one other clinical indicator; the at least one other clinical indicator may be selected from the group consisting of blood chemistry, urinalysis, X-ray or other radiological or metabolic imaging technique, other chemical assays, and physical findings. The quantitative measure may be determined by amplification, and the measurement conditions are such that efficiencies of amplification for all constituents differ by less than approximately 2 percent, or alternatively, less than approximately 1 percent. The measurement conditions that are substantially repeatable may be within a degree of repeatability of better than five percent, or alternatively better than three percent. Also, the infectious disease or inflammatory conditions related to infectious disease being evaluated may be with respect to a localized tissue of the subject and the first sample is derived from tissue or fluid of a type distinct from that of the localized tissue. The infectious disease or inflammatory conditions related to infectious disease may be a microbial infection, a bacterial infection, a eukaryotic parasitic infection, a viral infection, a fungal infection, systemic inflammatory response syndrome (SIRS), bacteremia, viremia, fungemia, or septicemia due to any class of microbe. A related embodiment of the method may further comprise storing the profile data set in a digital storage medium. Storing the profile data set may include storing it as a record in a database. The embodiment may include the limitations that the first sample is derived from blood and the baseline profile data set is derived from tissue or body fluid of the subject other than blood. Alternatively, the first sample may be derived from tissue or body fluid of the subject and the baseline profile data set is derived from blood. As well, the baseline profile data set may be derived from one or more other samples from the same subject taken under circumstances different from those of the first sample. Such one or more other samples may be taken pre-therapy intervention, post-therapy intervention, or over an interval of time that is at least one month between an initial sample and the sample.


Other embodiments of the invention are directed toward a method for evaluating infectious disease or inflammatory conditions related to infectious disease of a target population of cells affected by a first agent in relation to the infectious disease or inflammatory conditions related to infectious disease of the target population of cells affected by a second agent, based on a first sample from the target population cells to which the first agent has been administered and a second sample from the target population of cells to which the second agent has been administered, the samples providing a source of RNAs. Such a method includes the steps of deriving from the first sample a first profile data set and from the second sample a second profile data set, the first and second profile data sets each including a plurality of members, each member being a quantitative measure of the amount of a distinct RNA constituent in a panel of constituents selected so that measurement of the constituents enables evaluation of the infectious disease or inflammatory conditions related to infectious disease affected by the first agent in relation to the second agent, wherein such measure for each constituent is obtained under measurement conditions that are substantially repeatable; and producing a first calibrated profile data set and a second calibrated profile data set for the panel, wherein (i) each member of the first calibrated profile data set is a function of a corresponding member of the first profile data set and a corresponding member of a baseline profile data set for the panel, and (ii) each member of the second calibrated profile data set is a function of a corresponding member of the second profile data set and a corresponding member of the baseline profile data set, wherein each member of the baseline data set is a normative measure, determined with respect to a relevant set of subjects, of the amount of one of the constituents in the panel, and wherein the baseline profile data set is related to the infectious disease or inflammatory conditions related to infectious disease to be evaluated, the first and second calibrated profile data sets being a comparison between the first profile data set and the baseline profile set and a comparison between the second profile data set and the baseline profile data set, thereby providing an evaluation of the infectious disease or inflammatory conditions related to infectious disease of the target population of cells affected by the first agent in relation to the infectious disease or inflammatory conditions related to infectious disease of the target population of cells affected by the second agent. The target population of cells may have presumptive signs of a systemic infection including at least one of: elevated white blood cell count, elevated temperature, elevated heart rate, and elevated or reduced blood pressure, relative to medical standards. As well, the target population of cells may have presumptive signs of a systemic infection that are related to inflammatory conditions arising from at least one of: blunt or penetrating trauma, surgery, endocarditis, urinary tract infection, pneumonia, or dental or gynecological examinations or treatments. The first agent may be a first drug and the second agent may be a second drug. Alternatively, the first agent is a drug and the second agent is a complex mixture or a nutriceutical. The quantitative measure may be determined by amplification, and the measurement conditions are such that efficiencies of amplification for all constituents differ by less than approximately 2 percent, or alternatively by less than approximately 1 percent. The measurement conditions that are substantially repeatable may be within a degree of repeatability of better than five percent, or alternatively better than three percent. The infectious disease or inflammatory conditions related to infectious disease being evaluated may be with respect to a localized tissue of the subject and the first sample is derived from tissue or fluid of a type distinct from that of the localized tissue. The infectious disease or inflammatory conditions related to infectious disease may be a microbial infection, bacterial infection, a eukaryotic parasitic infection, a viral infection, a fungal infection, systemic inflammatory response syndrome (SIRS), bacteremia, viremia, fungemia, or septicemia due to any class of microbe. This method may further include the step of storing the first and second profile data sets in a digital storage medium. The first and second profile data sets may include storing each data set as a record in a database. The baseline profile data set may be derived from one or more other samples from the same subject taken under circumstances different from those of the first sample, or alternatively different from those of the second sample. The first sample may be derived from blood and the baseline profile data set may be derived from tissue or body fluid of the subject other than blood. The first sample may be derived from tissue or body fluid of the subject and the baseline profile data set may be derived from blood.


In yet another embodiment of the invention, a method of providing an index that is indicative of an inflammatory condition of a subject with presumptive signs of a systemic infection, based on a first sample from the subject, the first sample providing a source of RNAs, is presented. The method comprises deriving from the first sample a profile data set, the profile data set including a plurality of members, each member being a quantitative measure of the amount of a distinct RNA constituent in a panel of constituents selected so that measurement of the constituents is indicative of the inflammatory condition, the panel including at least two of the constituents of the Gene Expression Panel of Table 1; and in deriving the profile data set, achieving such measure for each constituent under measurement conditions that are substantially repeatable; applying at least one measure from the profile data set to an index function that provides a mapping from at least one measure of the profile data set into at least one measure of the inflammatory condition, so as to produce an index pertinent to the inflammatory condition of the sample; wherein the index function uses data from a baseline profile data set for the panel, each member of the baseline data set being a normative measure, determined with respect to a relevant set of subjects, of the amount of one of the constituents in the panel, wherein the baseline data set is related to the inflammatory condition to be evaluated. The subject may have presumptive signs of a systemic infection including at least one of: elevated white blood cell count, elevated temperature, elevated heart rate, and elevated or reduced blood pressure, relative to medical standards. Alternatively, the presumptive signs of a systemic infection are related to inflammatory conditions arising from at least one of: blunt or penetrating trauma, surgery, endocarditis, urinary tract infection, pneumonia, or dental or gynecological examinations or treatments. The at least one measure of the profile data set that is applied to the index function may be 2, 3, 4, or 5.


Still other embodiments provide a method of using an index to direct therapy intervention in a subject with infectious disease or inflammatory conditions related to infectious disease, the method comprising providing an index according to any of the above-discussed embodiments, comparing the index to a normative value of the index, determined with respect to a relevant set of subjects to obtain a difference, and using the difference between the index and the normative value for the index to direct therapy intervention, wherein therapy intervention is microbe-specific therapy, or is bacteria-specific therapy, or is fungus-specific therapy, or is virus-specific therapy, or is eukaryotic parasite-specific therapy.


Another embodiment provides a method for differentiating a type of pathogen within a class of pathogens of interest in a subject with infectious disease or inflammatory conditions related to infectious disease, based on at least one sample from the subject, the sample providing a source of RNA, the method comprising: determining at least one profile data set for the subject, comparing the profile data set to at least one baseline profile data set, determined with respect to at least one relevant set of samples within the class of pathogens of interest to obtain a difference, and using the difference to differentiate the type of pathogen in the at least one profile data set for the subject from the class of pathogen in the at least one baseline profile data set, wherein the class of pathogens is microbial. Alternatively, the class of pathogens is bacterial and the difference is used to differentiate a Gram(+) bacterial pathogen from a Gram(−) bacterial pathogen. Alternatively, the class of pathogens is fungal and the difference is used to differentiate an acute Candida pathogen from a chronic Candida pathogen. More particularly, the class of pathogens is viral and the difference is used to differentiate a DNA viral pathogen from an RNA viral pathogen, or the class of pathogens is viral and the difference is used to differentiate a rhinovirus pathogen from an influenza pathogen. Still more particularly, the class of pathogens is eukaryotic parasites and the difference is used to differentiate a plasmodium parasite pathogen from a trypanosomal pathogen.


Yet another embodiment provides a method of using an index for differentiating a type of pathogen within a class of pathogens of interest in a subject with infectious disease or inflammatory conditions related to infectious disease, based on at least one sample from the subject, the method comprising providing at least one index according to any of the above disclosed embodiments for the subject, comparing the at least one index to at least one normative value of the index, determined with respect to at least one relevant set of subjects to obtain at least one difference, and using the at least one difference between the at least one index and the at least one normative value for the index to differentiate the type of pathogen from the class of pathogen.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of the invention will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:



FIG. 1A shows the results of assaying 24 genes from the Source Inflammation Gene Panel (shown in Table 1) on eight separate days during the course of optic neuritis in a single male subject.



FIG. 1B illustrates use of an inflammation index in relation to the data of FIG. 1A, in accordance with an embodiment of the present invention.



FIG. 2 is a graphical illustration of the same inflammation index calculated at 9 different, significant clinical milestones.



FIG. 3 shows the effects of single dose treatment with 800 mg of ibuprofen in a single donor as characterized by the index.



FIG. 4 shows the calculated acute inflammation index displayed graphically for five different conditions.



FIG. 5 shows a Viral Response Index for monitoring the progress of an upper respiratory infection (URI).



FIGS. 6 and 7 compare two different populations using Gene Expression Profiles (with respect to the 48 loci of the Inflammation Gene Expression Panel of Table 1).



FIG. 8 compares a normal population with a rheumatoid arthritis population derived from a longitudinal study.



FIG. 9 compares two normal populations, one longitudinal and the other cross sectional.



FIG. 10 shows the shows gene expression values for various individuals of a normal population.



FIG. 11 shows the expression levels for each of four genes (of the Inflammation Gene Expression Panel of Table 1), of a single subject, assayed monthly over a period of eight months.



FIGS. 12 and 13 similarly show in each case the expression levels for each of 48 genes (of the Inflammation Gene Expression Panel of Table 1), of distinct single subjects (selected in each case on the basis of feeling well and not taking drugs), assayed, in the case of FIG. 12 weekly over a period of four weeks, and in the case of FIG. 13 monthly over a period of six months.



FIG. 14 shows the effect over time, on inflammatory gene expression in a single human subject, of the administration of an anti-inflammatory steroid, as assayed using the Inflammation Gene Expression Panel of Table 1.



FIG. 15, in a manner analogous to FIG. 14, shows the effect over time, via whole blood samples obtained from a human subject, administered a single dose of prednisone, on expression of 5 genes (of the Inflammation Gene Expression Panel of Table 1).



FIG. 16 also shows the effect over time, on inflammatory gene expression in a single human subject suffering from rheumatoid arthritis, of the administration of a TNF-inhibiting compound, but here the expression is shown in comparison to the cognate locus average previously determined (in connection with FIGS. 6 and 7) for the normal (i.e., undiagnosed, healthy) population.



FIG. 17A further illustrates the consistency of inflammatory gene expression in a population.



FIG. 17B shows the normal distribution of index values obtained from an undiagnosed population.



FIG. 17C illustrates the use of the same index as FIG. 17B, where the inflammation median for a normal population has been set to zero and both normal and diseased subjects are plotted in standard deviation units relative to that median.



FIG. 18 plots, in a fashion similar to that of FIG. 17A, Gene Expression Profiles, for the same 7 loci as in FIG. 17A, two different (responder v. non-responder) 6-subject populations of rheumatoid arthritis patients.



FIG. 19 thus illustrates use of the inflammation index for assessment of a single subject suffering from rheumatoid arthritis, who has not responded well to traditional therapy with methotrexate.



FIG. 20 similarly illustrates use of the inflammation index for assessment of three subjects suffering from rheumatoid arthritis, who have not responded well to traditional therapy with methotrexate.



FIGS. 21-23 show the inflammation index for an international group of subjects, suffering from rheumatoid arthritis, undergoing three separate treatment regimens.



FIG. 24 illustrates use of the inflammation index for assessment of a single subject suffering from inflammatory bowel disease.



FIG. 25 shows Gene Expression Profiles with respect to 24 loci (of the Inflammation Gene Expression Panel of Table 1) for whole blood treated with Ibuprofen in vitro in relation to other non-steroidal anti-inflammatory drugs (NSAIDs).



FIGS. 26A-26D illustrate how the effects of two competing anti-inflammatory compounds can be compared objectively, quantitatively, precisely, and reproducibly.



FIGS. 27 through 41 illustrate the use of gene expression panels in early identification and monitoring of infectious disease.



FIG. 27 uses a novel bacterial Gene Expression Panel of 24 genes, developed to discriminate various bacterial conditions in a host biological system.



FIG. 28 shows differential expression for a single locus, IFNG, to LTA derived from three distinct sources: S. pyogenes, B. subtilis, and S. aureus.



FIGS. 29 and 30 show the response after two hours of the Inflammation 48A and 48B loci respectively (discussed above in connection with FIGS. 6 and 7 respectively) in whole blood to administration of a Gram-positive and a Gram-negative organism.



FIGS. 31 and 32 correspond to FIGS. 29 and 30 respectively and are similar to them, with the exception that the monitoring here occurs 6 hours after administration.



FIG. 33 compares the gene expression response induced by E. coli and by an organism-free E. coli filtrate.



FIG. 34 is similar to FIG. 33, but here the compared responses are to stimuli from E. coli filtrate alone and from E. coli filtrate to which has been added polymyxin B.



FIG. 35 illustrates the gene expression responses induced by S. aureus at 2, 6, and 24 hours after administration.



FIGS. 36 through 41 compare the gene expression induced by E. coli and S. aureus under various concentrations and times.



FIG. 42 illustrates application of a statistical T-test to identify potential members of a signature gene expression panel that is capable of distinguishing between normal subjects and subjects suffering from unstable rheumatoid arthritis.



FIG. 43 illustrates, for a panel of 17 genes, the expression levels for 8 patients presumed to have bacteremia.



FIG. 44 illustrates application of a statistical T-test to identify potential members of a signature gene expression panel that is capable of distinguishing between normal subjects and subjects suffering from bacteremia FIG. 45 illustrates application of an algorithm (shown in the figure), providing an index pertinent to rheumatoid arthritis (RA) as applied respectively to normal subjects, RA patients, and bacteremia patients.



FIG. 46 illustrates application of an algorithm (shown in the figure), providing an index pertinent to bacteremia as applied respectively to normal subjects, rheumatoid arthritis patients, and bacteremia patients.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS
Definitions

The following terms shall have the meanings indicated unless the context otherwise requires:


“Algorithm” is a set of rules for describing a biological condition. The rule set may be defined exclusively algebraically but may also include alternative or multiple decision points requiring domain-specific knowledge, expert interpretation or other clinical indicators.


An “agent” is a “composition” or a “stimulus”, as those terms are defined herein, or a combination of a composition and a stimulus.


“Amplification” in the context of a quantitative RT-PCR assay is a function of the number of DNA replications that are tracked to provide a quantitative determination of its concentration. “Amplification” here refers to a degree of sensitivity and specificity of a quantitative assay technique. Accordingly, amplification provides a measurement of concentrations of constituents that is evaluated under conditions wherein the efficiency of amplification and therefore the degree of sensitivity and reproducibility for measuring all constituents is substantially similar.


A “baseline profile data set” is a set of values associated with constituents of a Gene Expression Panel resulting from evaluation of a biological sample (or population or set of samples) under a desired biological condition that is used for mathematically normative purposes. The desired biological condition may be, for example, the condition of a subject (or population or set of subjects) before exposure to an agent or in the presence of an untreated disease or in the absence of a disease. Alternatively, or in addition, the desired biological condition may be health of a subject or a population or set of subjects. Alternatively, or in addition, the desired biological condition may be that associated with a population or set of subjects selected on the basis of at least one of age group, gender, ethnicity, geographic location, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure.


A “set” or “population” of samples or subjects refers to a defined or selected group of samples or subjects wherein there is an underlying commonality or relationship between the members included in the set or population of samples or subjects.


A “population of cells” refers to any group of cells wherein there is an underlying commonality or relationship between the members in the population of cells, including a group of cells taken from an organism or from a culture of cells or from a biopsy, for example,


A “biological condition” of a subject is the condition of the subject in a pertinent realm that is under observation, and such realm may include any aspect of the subject capable of being monitored for change in condition, such as health, disease including cancer, trauma; aging; infection; tissue degeneration; developmental steps; physical fitness; obesity, and mood. As can be seen, a condition in this context may be chronic or acute or simply transient. Moreover, a targeted biological condition may be manifest throughout the organism or population of cells or may be restricted to a specific organ (such as skin, heart, eye or blood), but in either case, the condition may be monitored directly by a sample of the affected population of cells or indirectly by a sample derived elsewhere from the subject. The term “biological condition” includes a “physiological condition”.


“Body fluid” of a subject includes blood, urine, spinal fluid, lymph, mucosal secretions, prostatic fluid, semen, haemolymph or any other body fluid known in the art for a subject.


“Calibrated profile data set” is a function of a member of a first profile data set and a corresponding member of a baseline profile data set for a given constituent in a panel.


A “clinical indicator” is any physiological datum used alone or in conjunction with other data in evaluating the physiological condition of a collection of cells or of an organism. This term includes pre-clinical indicators.


A “composition” includes a chemical compound, a nutriceutical, a pharmaceutical, a homeopathic formulation, an allopathic formulation, a naturopathic formulation, a combination of compounds, a toxin, a food, a food supplement, a mineral, and a complex mixture of substances, in any physical state or in a combination of physical states.


To “derive” a profile data set from a sample includes determining a set of values associated with constituents of a Gene Expression Panel either (i) by direct measurement of such constituents in a biological sample or (ii) by measurement of such constituents in a second biological sample that has been exposed to the original sample or to matter derived from the original sample.


“Distinct RNA or protein constituent” in a panel of constituents is a distinct expressed product of a gene, whether RNA or protein. An “expression” product of a gene includes the gene product whether RNA or protein resulting from translation of the messenger RNA.


A “Gene Expression Panel” is an experimentally verified set of constituents, each constituent being a distinct expressed product of a gene, whether RNA or protein, wherein constituents of the set are selected so that their measurement provides a measurement of a targeted biological condition.


A “Gene Expression Profile” is a set of values associated with constituents of a Gene Expression Panel resulting from evaluation of a biological sample (or population or set of samples).


A “Gene Expression Profile Inflammatory index” is the value of an index function that provides a mapping from an instance of a Gene Expression Profile into a single-valued measure of inflammatory condition.


The “health” of a subject includes mental, emotional, physical, spiritual, allopathic, naturopathic and homeopathic condition of the subject.


“Index” is an arithmetically or mathematically derived numerical characteristic developed for aid in simplifying or disclosing or informing the analysis of more complex quantitative information. A disease or population index may be determined by the application of a specific algorithm to a plurality of subjects or samples with a common biological condition.


“Inflammation” is used herein in the general medical sense of the word and may be an acute or chronic; simple or suppurative; localized or disseminated; cellular and tissue response, initiated or sustained by any number of chemical, physical or biological agents or combination of agents.


“Inflammatory state” is used to indicate the relative biological condition of a subject resulting from inflammation, or characterizing the degree of inflammation


A “large number” of data sets based on a common panel of genes is a number of data sets sufficiently large to permit a statistically significant conclusion to be drawn with respect to an instance of a data set based on the same panel.


A “normative” condition of a subject to whom a composition is to be administered means the condition of a subject before administration, even if the subject happens to be suffering from a disease.


A “panel” of genes is a set of genes including at least two constituents.


A “sample” from a subject may include a single cell or multiple cells or fragments of cells or an aliquot of body fluid, taken from the subject, by means including venipuncture, excretion, ejaculation, massage, biopsy, needle aspirate, lavage sample, scraping, surgical incision or intervention or other means known in the art.


A “Signature Profile” is an experimentally verified subset of a Gene Expression Profile selected to discriminate a biological condition, agent or physiological mechanism of action.


A “Signature Panel” is a subset of a Gene Expression Panel, the constituents of which are selected to permit discrimination of a biological condition, agent or physiological mechanism of action.


A “subject” is a cell, tissue, or organism, human or non-human, whether in vivo, ex vivo or in vitro, under observation. When we refer to evaluating the biological condition of a subject based on a sample from the subject, we include using blood or other tissue sample from a human subject to evaluate the human subject's condition; but we also include, for example, using a blood sample itself as the subject to evaluate, for example, the effect of therapy or an agent upon the sample.


A “stimulus” includes (i) a monitored physical interaction with a subject, for example ultraviolet A or B, or light therapy for seasonal affective disorder, or treatment of psoriasis with psoralen or treatment of melanoma with embedded radioactive seeds, other radiation exposure, and (ii) any monitored physical, mental, emotional, or spiritual activity or inactivity of a subject.


“Therapy” includes all interventions whether biological, chemical, physical, metaphysical, or combination of the foregoing, intended to sustain or alter the monitored biological condition of a subject.


The PCT patent application publication number WO 01/25473, published Apr. 12, 2001, entitled “Systems and Methods for Characterizing a Biological Condition or Agent Using Calibrated Gene Expression Profiles,” filed for an invention by inventors herein, and which is herein incorporated by reference, discloses the use of Gene Expression Panels for the evaluation of (i) biological condition (including with respect to health and disease) and (ii) the effect of one or more agents on biological condition (including with respect to health, toxicity, therapeutic treatment and drug interaction).


In particular, Gene Expression Panels may be used for measurement of therapeutic efficacy of natural or synthetic compositions or stimuli that may be formulated individually or in combinations or mixtures for a range of targeted biological conditions; prediction of toxicological effects and dose effectiveness of a composition or mixture of compositions for an individual or for a population or set of individuals or for a population of cells; determination of how two or more different agents administered in a single treatment might interact so as to detect any of synergistic, additive, negative, neutral or toxic activity; performing pre-clinical and clinical trials by providing new criteria for pre-selecting subjects according to informative profile data sets for revealing disease status; and conducting preliminary dosage studies for these patients prior to conducting phase 1 or 2 trials. These Gene Expression Panels may be employed with respect to samples derived from subjects in order to evaluate their biological condition.


A Gene Expression Panel is selected in a manner so that quantitative measurement of RNA or protein constituents in the Panel constitutes a measurement of a biological condition of a subject. In one kind of arrangement, a calibrated profile data set is employed. Each member of the calibrated profile data set is a function of (i) a measure of a distinct constituent of a Gene Expression Panel and (ii) a baseline quantity.


We have found that valuable and unexpected results may be achieved when the quantitative measurement of constituents is performed under repeatable conditions (within a degree of repeatability of measurement of better than twenty percent, and preferably five percent or better, and more preferably three percent or better). For the purposes of this description and the following claims, we regard a degree of repeatability of measurement of better than twenty percent as providing measurement conditions that are “substantially repeatable”. In particular, it is desirable that, each time a measurement is obtained corresponding to the level of expression of a constituent in a particular sample, substantially the same measurement should result for the substantially the same level of expression. In this manner, expression levels for a constituent in a Gene Expression Panel may be meaningfully compared from sample to sample. Even if the expression level measurements for a particular constituent are inaccurate (for example, say, 30% too low), the criterion of repeatability means that all measurements for this constituent, if skewed, will nevertheless be skewed systematically, and therefore measurements of expression level of the constituent may be compared meaningfully. In this fashion valuable information may be obtained and compared concerning expression of the constituent under varied circumstances.


In addition to the criterion of repeatability, it is desirable that a second criterion also be satisfied, namely that quantitative measurement of constituents is performed under conditions wherein efficiencies of amplification for all constituents are substantially similar (within one to two percent and typically one percent or less). When both of these criteria are satisfied, then measurement of the expression level of one constituent may be meaningfully compared with measurement of the expression level of another constituent in a given sample and from sample to sample.


Present embodiments relate to the use of an index or algorithm resulting from quantitative measurement of constituents, and optionally in addition, derived from either expert analysis or computational biology (a) in the analysis of complex data sets; (b) to control or normalize the influence of uninformative or otherwise minor variances in gene expression values between samples or subjects; (c) to simplify the characterization of a complex data set for comparison to other complex data sets, databases or indices or algorithms derived from complex data sets; (d) to monitor a biological condition of a subject; (e) for measurement of therapeutic efficacy of natural or synthetic compositions or stimuli that may be formulated individually or in combinations or mixtures for a range of targeted biological conditions; (f) for predictions of toxicological effects and dose effectiveness of a composition or mixture of compositions for an individual or for a population or set of individuals or for a population of cells; (g) for determination of how two or more different agents administered in a single treatment might interact so as to detect any of synergistic, additive, negative, neutral of toxic activity (h) for performing pre-clinical and clinical trials by providing new criteria for pre-selecting subjects according to informative profile data sets for revealing disease status and conducting preliminary dosage studies for these patients prior to conducting phase 1 or 2 trials.


Gene expression profiling and the use of index characterization for a particular condition or agent or both may be used to reduce the cost of phase 3 clinical trials and may be used beyond phase 3 trials; labeling for approved drugs; selection of suitable medication in a class of medications for a particular patient that is directed to their unique physiology; diagnosing or determining a prognosis of a medical condition or an infection which may precede onset of symptoms or alternatively diagnosing adverse side effects associated with administration of a therapeutic agent; managing the health care of a patient; and quality control for different batches of an agent or a mixture of agents.


The subject

The methods disclosed here may be applied to cells of humans, mammals or other organisms without the need for undue experimentation by one of ordinary skill in the art because all cells transcribe RNA and it is known in the art how to extract RNA from all types of cells.


Selecting Constituents of a Gene Expression Panel

The general approach to selecting constituents of a Gene Expression Panel has been described in PCT application publication number WO 01/25473. We have designed and experimentally verified a wide range of Gene Expression Panels, each panel providing a quantitative measure, of biological condition, that is derived from a sample of blood or other tissue. For each panel, experiments have verified that a Gene Expression Profile using the panel's constituents is informative of a biological condition. (We show elsewhere that in being informative of biological condition, the Gene Expression Profile can be used to used, among other things, to measure the effectiveness of therapy, as well as to provide a target for therapeutic intervention.) Examples of Gene Expression Panels, along with a brief description of each panel constituent, are provided in tables attached hereto as follows:


Table 1. Inflammation Gene Expression Panel


Table 2. Diabetes Gene Expression Panel


Table 3. Prostate Gene Expression Panel


Table 4. Skin Response Gene Expression Panel


Table 5. Liver Metabolism and Disease Gene Expression Panel


Table 6. Endothelial Gene Expression Panel


Table 7. Cell Health and Apoptosis Gene Expression Panel


Table 8. Cytokine Gene Expression Panel


Table 9. TNF/IL1 Inhibition Gene Expression Panel


Table 10. Chemokine Gene Expression Panel


Table 11. Breast Cancer Gene Expression Panel


Table 12. Infectious Disease Gene Expression Panel


Other panels may be constructed and experimentally verified by one of ordinary skill in the art in accordance with the principles articulated in the present application.


Design of Assays

We commonly run a sample through a panel in quadruplicate; that is, a sample is divided into aliquots and for each aliquot we measure concentrations of each constituent in a Gene Expression Panel. Over a total of 900 constituent assays, with each assay conducted in quadruplicate, we found an average coefficient of variation, (standard deviation/average)*100, of less than 2 percent, typically less than 1 percent, among results for each assay. This figure is a measure of what we call “intra-assay variability”. We have also conducted assays on different occasions using the same sample material. With 72 assays, resulting from concentration measurements of constituents in a panel of 24 members, and such concentration measurements determined on three different occasions over time, we found an average coefficient of variation of less than 5 percent, typically less than 2 percent. We regard this as a measure of what we call “inter-assay variability”.


We have found it valuable in using the quadruplicate test results to identify and eliminate data points that are statistical “outliers”; such data points are those that differ by a percentage greater, for example, than 3% of the average of all four values and that do not result from any systematic skew that is greater, for example, than 1%. Moreover, if more than one data point in a set of four is excluded by this procedure, then all data for the relevant constituent is discarded.


Measurement of Gene Expression for a Constituent in the Panel

For measuring the amount of a particular RNA in a sample, we have used methods known to one of ordinary skill in the art to extract and quantify transcribed RNA from a sample with respect to a constituent of a Gene Expression Panel. (See detailed protocols below. Also see PCT application publication number WO 98/24935 herein incorporated by reference for RNA analysis protocols). Briefly, RNA is extracted from a sample such as a tissue, body fluid, or culture medium in which a population of cells of a subject might be growing. For example, cells may be lysed and RNA eluted in a suitable solution in which to conduct a DNAse reaction. First strand synthesis may be performed using a reverse transcriptase. Gene amplification, more specifically quantitative PCR assays, can then conducted and the gene of interest size calibrated against a marker such as 18S rRNA (Hirayama et al., Blood 92, 1998: 46-52). Samples are measured in multiple duplicates, for example, 4 replicates. Relative quantitation of the mRNA is determined by the difference in threshhold cycles between the intemal control and the gene of interest. In an embodiment of the invention, quantitative PCR is performed using amplification, reporting agents and instruments such as those supplied commercially by Applied Biosystems (Foster City, Calif.). Given a defined efficiency of amplification of target transcripts, the point (e.g., cycle number) that signal from amplified target template is detectable may be directly related to the amount of specific message transcript in the measured sample. Similarly, other quantifiable signals such as fluorescence, enzyme activity, disintegrations per minute, absorbance, etc., when correlated to a known concentration of target templates (e.g., a reference standard curve) or normalized to a standard with limited variability can be used to quantify the number of target templates in an unknown sample.


Although not limited to amplification methods, quantitative gene expression techniques may utilize amplification of the target transcript. Alternatively or in combination with amplification of the target transcript, amplification of the reporter signal may also be used. Amplification of the target template may be accomplished by isothermic gene amplification strategies, or by gene amplification by thermal cycling such as PCR.


It is desirable to obtain a definable and reproducible correlation between the amplified target or reporter and the concentration of starting templates. We have discovered that this objective can be achieved by careful attention to, for example, consistent primer-template ratios and a strict adherence to a narrow permissible level of experimental amplification efficiencies (for example 99.0 to 100% relative efficiency, typically 99.8 to 100% relative efficiency). For example, in determining gene expression levels with regard to a single Gene Expression Profile, it is necessary that all constituents of the panels maintain a similar and limited range of primer template ratios (for example, within a 10-fold range) and amplification efficiencies (within, for example, less than 1%) to permit accurate and precise relative measurements for each constituent. We regard amplification efficiencies as being “substantially similar”, for the purposes of this description and the following claims, if they differ by no more than approximately 10%. Preferably they should differ by less than approximately 2% and more preferably by less than approximately 1%. These constraints should be observed over the entire range of concentration levels to be measured associated with the relevant biological condition. While it is thus necessary for various embodiments herein to satisfy criteria that measurements are achieved under measurement conditions that are substantially repeatable and wherein specificity and efficiencies of amplification for all constituents are substantially similar, nevertheless, it is within the scope of the present invention as claimed herein to achieve such measurement conditions by adjusting assay results that do not satisfy these criteria directly, in such a manner as to compensate for errors, so that the criteria are satisfied after suitable adjustment of assay results.


In practice, we run tests to assure that these conditions are satisfied. For example, we typically design and manufacture a number of primer-probe sets, and determine experimentally which set gives the best performance. Even though primer-probe design and manufacture can be enhanced using computer techniques known in the art, and notwithstanding common practice, we still find that experimental validation is useful. Moreover, in the course of experimental validation, we associate with the selected primer-probe combination a set of features:


The reverse primer should be complementary to the coding DNA strand. In one embodiment, the primer should be located across an intron-exon junction, with not more than three bases of the three-prime end of the reverse primer complementary to the proximal exon. (If more than three bases are complementary, then it would tend to competitively amplify genomic DNA.)


In an embodiment of the invention, the primer probe should amplify cDNA of less than 110 bases in length and should not amplify genomic DNA or transcripts or cDNA from related but biologically irrelevant loci.


A suitable target of the selected primer probe is first strand cDNA, which may be prepared, in one embodiment, is described as follows:


(a) Use of Whole Blood for Ex Vivo Assessment of a Biological Condition Affected by an Agent.


Human blood is obtained by venipuncture and prepared for assay by separating samples for baseline, no stimulus, and stimulus with sufficient volume for at least three time points. Typical stimuli include lipopolysaccharide (LPS), phytohemagglutinin (PHA) and heat-killed staphylococci (HKS) or carrageean and may be used individually (typically) or in combination. The aliquots of heparinized, whole blood are mixed without stimulus and held at 37° C. in an atmosphere of 5% CO2 for 30 minutes. Stimulus is added at varying concentrations, mixed and held loosely capped at 37° C. for 30 min. Additional test compounds may be added at this point and held for varying times depending on the expected pharmacokinetics of the test compound. At defined times, cells are collected by centrifugation, the plasma removed and RNA extracted by various standard means.


Nucleic acids, RNA and or DNA are purified from cells, tissues or fluids of the test population of cells or indicator cell lines. RNA is preferentially obtained from the nucleic acid mix using a variety of standard procedures (or RNA Isolation Strategies, pp. 55-104, in RNA Methodologies, A laboratory guide for isolation and characterization, 2nd edition, 1998, Robert E. Farrell, Jr., Ed., Academic Press), in the present using a filter-based RNA isolation system from Ambion (RNAqueous™, Phenol-free Total RNA Isolation Kit. Catalog #1912, version 9908; Austin, Tex.).


In accordance with one procedure, the whole blood assay for Gene Expression Profiles determination was carried out as follows: Human whole blood was drawn into 10 mL Vacutainer tubes with Sodium Heparin. Blood samples were mixed by gently inverting tubes 4-5 times. The blood was used within 10-15 minutes of draw. In the experiments, blood was diluted 2-fold, i.e. per sample per time point, 0.6 mL whole blood+0.6 mL stimulus. The assay medium was prepared and the stimulus added as appropriate.


A quantity (0.6 mL) of whole blood was then added into each 12×75 mm polypropylene tube, 0.6 mL of 2×LPS (from E. coli serotye 0127:B8, Sigma#L3880 or serotype 055, Sigma #L4005, 10 ng/ml, subject to change in different lots) into LPS tubes was added. Next, 0.6 mL assay medium was added to the “control” tubes with duplicate tubes for each condition. The caps were closed tightly. The tubes were inverted 2-3 times to mix samples. Caps were loosened to first stop and the tubes incubated @37° C., 5% CO2 for 6 hours. At 6 hours, samples were gently mixed to resuspend blood cells, and 1 mL was removed from each tube (using a micropipettor with barrier tip), and transferred to a 2 mL “dolphin” microfuge tube (Costar #3213).


The samples were then centrifuged for 5 min at 500×g, ambient temperature (IEC centrifuge or equivalent, in microfuge tube adapters in swinging bucket), and as much serum from each tube was removed as possible and discarded. Cell pellets were placed on ice; and RNA extracted as soon as possible using an Ambion RNAqueous kit.


(b) Amplification Strategies.


Specific RNAs are amplified using message specific primers or random primers. The specific primers are synthesized from data obtained from public databases (e.g., Unigene, National Center for Biotechnology Information, National Library of Medicine, Bethesda, Md.), including information from genomic and cDNA libraries obtained from humans and other animals. Primers are chosen to preferentially amplify from specific RNAs obtained from the test or indicator samples, see, for example, RT PCR, Chapter 15 in RNA Methodologies, A laboratory guide for isolation and characterization, 2nd edition, 1998, Robert E. Farrell, Jr., Ed., Academic Press; or Chapter 22 pp. 143-151, RNA isolation and characterization protocols, Methods in molecular biology, Volume 86, 1998, R. Rapley and D. L. Manning Eds., Human Press, or 14 in Statistical refinement of primer design parameters, Chapter 5, pp. 55-72, PCR applications: protocols for functional genomics, M. A. Innis, D. H. Gelfand and J. J. Sninsky, Eds., 1999, Academic Press). Amplifications are carried out in either isothermic conditions or using a thermal cycler (for example, a ABI 9600 or 9700 or 7700 obtained from Applied Biosystems, Foster City, Calif.; see Nucleic acid detection methods, pp. 1-24, in Molecular methods for virus detection, D. L. Wiedbrauk and D. H., Farkas, Eds., 1995, Academic Press). Amplified nucleic acids are detected using fluorescent-tagged detection primers (see, for example, Taqman™ PCR Reagent Kit, Protocol, part number 402823 revision A, 1996, Applied Biosystems, Foster City Calif.) that are identified and synthesized from publicly known databases as described for the amplification primers. In the present case, amplified DNA is detected and quantified using the ABI Prism 7700 Sequence Detection System obtained from Applied Biosystems (Foster City, Calif.). Amounts of specific RNAs contained in the test sample or obtained from the indicator cell lines can be related to the relative quantity of fluorescence observed (see for example, Advances in quantitative PCR technology: 5′ nuclease assays, Y. S. Lie and CJ. Petropolus, Current Opinion in Biotechnology, 1998, 9:43-48, or Rapid thermal cycling and PCR kinetics, pp. 211-229, chapter 14 in PCR applications: protocols for functional genomics, M. A. Innis, D. H. Gelfand and J. J. Sninsky, Eds., 1999, Academic Press).


As a particular implementation of the approach described here, we describe in detail a procedure for synthesis of first strand cDNA for use in PCR. This procedure can be used for both whole blood RNA and RNA extracted from cultured cells (i.e. THP-1 cells).


Materials

1. Applied Biosystems TAQMAN Reverse Transcription Reagents Kit (P/N 808-0234). Kit Components: 10× TaqMan RT Buffer, 25 mM Magnesium chloride, deoxyNTPs mixture, Random Hexamers, RNase Inhibitor, MultiScribe Reverse Transcriptase (50 U/mL) (2) RNase/DNase free water (DEPC Treated Water from Ambion (P/N 9915G), or equivalent)


Methods

1. Place RNase Inhibitor and MultiScribe Reverse Transcriptase on ice immediately. All other reagents can be thawed at room temperature and then placed on ice.


2. Remove RNA samples from −80° C. freezer and thaw at room temperature and then place immediately on ice.


3. Prepare the following cocktail of Reverse Transcriptase Reagents for each 100 mL RT reaction (for multiple samples, prepare extra cocktail to allow for pipetting error):


















1 reaction (mL)
11X, e.g. 10 samples (mL)











10X RT Buffer
10.0
110.0



25 mM MgCl2
22.0
242.0



dNTPs
20.0
220.0



Random Hexamers
5.0
 55.0



RNAse Inhibitor
2.0
 22.0



Reverse Transcriptase
2.5
 27.5



Water
18.5
203.5



Total:
80.0
880.0 (80 mL per sample)










4. Bring each RNA sample to a total volume of 20 mL in a 1.5 mL microcentrifuge tube (for example, for THP-1 RNA, remove 10 mL RNA and dilute to 20 mL with RNase/DNase free water, for whole blood RNA use 20 mL total RNA) and add 80 mL RT reaction mix from step 5,2,3. Mix by pipetting up and down.


5. Incubate sample at room temperature for 10 minutes.


6. Incubate sample at 37° C. for 1 hour.


7. Incubate sample at 90° C. for 10 minutes.


8. Quick spin samples in microcentrifuge.


9. Place sample on ice if doing PCR immediately, otherwise store sample at −20° C. for future use.


10. PCR QC should be run on all RT samples using 18S and b-actin (see SOP 200-020).


The use of the primer probe with the first strand cDNA as described above to permit measurement of constituents of a Gene Expression Panel is as follows:


Set up of a 24-gene Human Gene Expression Panel for Inflammation.


Materials

1. 20® Primer/Probe Mix for each gene of interest.


2. 20® Primer/Probe Mix for 18S endogenous control.


3. 2® Taqman Universal PCR Master Mix.


4. cDNA transcribed from RNA extracted from cells.


5. Applied Biosystems 96-Well Optical Reaction Plates.


6. Applied Biosystems Optical Caps, or optical-clear film.


7. Applied Biosystem Prism 7700 Sequence Detector.


Methods

1. Make stocks of each Primer/Probe mix containing the Primer/Probe for the gene of interest, Primer/Probe for 18S endogenous control, and 2® PCR Master Mix as follows. Make sufficient excess to allow for pipetting error e.g. approximately 10% excess. The following example illustrates a typical set up for one gene with quadruplicate samples testing two conditions (2 plates).

















9X



1X (1 well)
(2 plates worth)


















2X Master Mix
12.50
112.50


20X 18S Primer/Probe Mix
1.25
11.25


20X Gene of interest Primer/Probe Mix
1.25
11.25


Total
15.00
135.00









2. Make stocks of cDNA targets by diluting 95 μl of cDNA into 2000 μl of water. The amount of cDNA is adjusted to give Ct values between 10 and 18, typically between 12 and 13.


3. Pipette 15 μl of Primer/Probe mix into the appropriate wells of an Applied Biosystems 96-Well Optical Reaction Plate.


4. Pipette 10 μl of cDNA stock solution into each well of the Applied Biosystems 96-Well Optical Reaction Plate.


5. Seal the plate with Applied Biosystems Optical Caps, or optical-clear film.


6. Analyze the plate on the AB Prism 7700 Sequence Detector.


Methods herein may also be applied using proteins where sensitive quantitative techniques, such as an Enzyme Linked ImmunoSorbent Assay (ELISA) or mass spectroscopy, are available and well-known in the art for measuring the amount of a protein constituent. (see WO 98/24935 herein incorporated by reference).


Baseline Profile Data Sets

The analyses of samples from single individuals and from large groups of individuals provide a library of profile data sets relating to a particular panel or series of panels. These profile data sets may be stored as records in a library for use as baseline profile data sets. As the term “baseline” suggests, the stored baseline profile data sets serve as comparators for providing a calibrated profile data set that is informative about a biological condition or agent. Baseline profile data sets may be stored in libraries and classified in a number of cross-referential ways. One form of classification may rely on the characteristics of the panels from which the data sets are derived. Another form of classification may be by particular biological condition. The concept of biological condition encompasses any state in which a cell or population of cells may be found at any one time. This state may reflect geography of samples, sex of subjects or any other discriminator. Some of the discriminators may overlap. The libraries may also be accessed for records associated with a single subject or particular clinical trial. The classification of baseline profile data sets may further be annotated with medical information about a particular subject, a medical condition, a particular agent etc.


The choice of a baseline profile data set for creating a calibrated profile data set is related to the biological condition to be evaluated, monitored, or predicted, as well as, the intended use of the calibrated panel, e.g., as to monitor drug development, quality control or other uses. It may be desirable to access baseline profile data sets from the same subject for whom a first profile data set is obtained or from different subject at varying times, exposures to stimuli, drugs or complex compounds; or may be derived from like or dissimilar populations or sets of subjects.


The profile data set may arise from the same subject for which the first data set is obtained, where the sample is taken at a separate or similar time, a different or similar site or in a different or similar biological condition. For example, FIG. 5 provides a protocol in which the sample is taken before stimulation or after stimulation. The profile data set obtained from the unstimulated sample may serve as a baseline profile data set for the sample taken after stimulation. The baseline data set may also be derived from a library containing profile data sets of a population or set of subjects having some defining characteristic or biological condition. The baseline profile data set may also correspond to some ex vivo or in vitro properties associated with an in vitro cell culture. The resultant calibrated profile data sets may then be stored as a record in a database or library (FIG. 6) along with or separate from the baseline profile data base and optionally the first profile data set although the first profile data set would normally become incorporated into a baseline profile data set under suitable classification criteria. The remarkable consistency of Gene Expression Profiles associated with a given biological condition makes it valuable to store profile data, which can be used, among other things for normative reference purposes. The normative reference can serve to indicate the degree to which a subject conforms to a given biological condition (healthy or diseased) and, alternatively or in addition, to provide a target for clinical intervention.


Selected baseline profile data sets may be also be used as a standard by which to judge manufacturing lots in terms of efficacy, toxicity, etc. Where the effect of a therapeutic agent is being measured, the baseline data set may correspond to Gene Expression Profiles taken before administration of the agent. Where quality control for a newly manufactured product is being determined, the baseline data set may correspond with a gold standard for that product. However, any suitable normalization techniques may be employed. For example, an average baseline profile data set is obtained from authentic material of a naturally grown herbal nutriceutical and compared over time and over different lots in order to demonstrate consistency, or lack of consistency, in lots of compounds prepared for release.


Calibrated Data

Given the repeatability we have achieved in measurement of gene expression, described above in connection with “Gene Expression Panels” and “gene amplification”, we conclude that where differences occur in measurement under such conditions, the differences are attributable to differences in biological condition. Thus we have found that calibrated profile data sets are highly reproducible in samples taken from the same individual under the same conditions. We have similarly found that calibrated profile data sets are reproducible in samples that are repeatedly tested. We have also found repeated instances wherein calibrated profile data sets obtained when samples from a subject are exposed ex vivo to a compound are comparable to calibrated profile data from a sample that has been exposed to a sample in vivo. We have also found, importantly, that an indicator cell line treated with an agent can in many cases provide calibrated profile data sets comparable to those obtained from in vivo or ex vivo populations of cells. Moreover, we have found that administering a sample from a subject onto indicator cells can provide informative calibrated profile data sets with respect to the biological condition of the subject including the health, disease states, therapeutic interventions, aging or exposure to environmental stimuli or toxins of the subject.


Calculation of Calibrated Profile Data Sets and Computational Aids

The calibrated profile data set may be expressed in a spreadsheet or represented graphically for example, in a bar chart or tabular form but may also be expressed in a three dimensional representation. The function relating the baseline and profile data may be a ratio expressed as a logarithm. The constituent may be itemized on the x-axis and the logarithmic scale may be on the y-axis. Members of a calibrated data set may be expressed as a positive value representing a relative enhancement of gene expression or as a negative value representing a relative reduction in gene expression with respect to the baseline.


Each member of the calibrated profile data set should be reproducible within a range with respect to similar samples taken from the subject under similar conditions. For example, the calibrated profile data sets may be reproducible within one order of magnitude with respect to similar samples taken from the subject under similar conditions. More particularly, the members may be reproducible within 50%, more particularly reproducible within 20%, and typically within 10%. In accordance with embodiments of the invention, a pattern of increasing, decreasing and no change in relative gene expression from each of a plurality of gene loci examined in the Gene Expression Panel may be used to prepare a calibrated profile set that is informative with regards to a biological condition, biological efficacy of an agent treatment conditions or for comparison to populations or sets of subjects or samples, or for comparison to populations of cells. Patterns of this nature may be used to identify likely candidates for a drug trial, used alone or in combination with other clinical indicators to be diagnostic or prognostic with respect to a biological condition or may be used to guide the development of a pharmaceutical or nutriceutical through manufacture, testing and marketing.


The numerical data obtained from quantitative gene expression and numerical data from calibrated gene expression relative to a baseline profile data set may be stored in databases or digital storage mediums and may retrieved for purposes including managing patient health care or for conducting clinical trials or for characterizing a drug. The data may be transferred in physical or wireless networks via the World Wide Web, email, or internet access site for example or by hard copy so as to be collected and pooled from distant geographic sites (FIG. 8).


In an embodiment of the present invention, a descriptive record is stored in a single database or multiple databases where the stored data includes the raw gene expression data (first profile data set) prior to transformation by use of a baseline profile data set, as well as a record of the baseline profile data set used to generate the calibrated profile data set including for example, annotations regarding whether the baseline profile data set is derived from a particular Signature Panel and any other annotation that facilitates interpretation and use of the data.


Because the data is in a universal format, data handling may readily be done with a computer. The data is organized so as to provide an output optionally corresponding to a graphical representation of a calibrated data set.


For example, a distinct sample derived from a subject being at least one of RNA or protein may be denoted as Pl. The first profile data set derived from sample Pl is denoted Mj, where Mj is a quantitative measure of a distinct RNA or protein constituent of Pl. The record Ri is a ratio of M and P and may be annotated with additional data on the subject relating to, for example, age, diet, ethnicity, gender, geographic location, medical disorder, mental disorder, medication, physical activity, body mass and environmental exposure. Moreover, data handling may further include accessing data from a second condition database which may contain additional medical data not presently held with the calibrated profile data sets. In this context, data access may be via a computer network.


The above described data storage on a computer may provide the information in a form that can be accessed by a user. Accordingly, the user may load the information onto a second access site including downloading the information. However, access may be restricted to users having a password or other security device so as to protect the medical records contained within. A feature of this embodiment of the invention is the ability of a user to add new or annotated records to the data set so the records become part of the biological information.


The graphical representation of calibrated profile data sets pertaining to a product such as a drug provides an opportunity for standardizing a product by means of the calibrated profile, more particularly a signature profile. The profile may be used as a feature with which to demonstrate relative efficacy, differences in mechanisms of actions, etc. compared to other drugs approved for similar or different uses.


The various embodiments of the invention may be also implemented as a computer program product for use with a computer system. The product may include program code for deriving a first profile data set and for producing calibrated profiles. Such implementation may include a series of computer instructions fixed either on a tangible medium, such as a computer readable medium (for example, a diskette, CD-ROM, ROM, or fixed disk), or transmittable to a computer system via a modem or other interface device, such as a communications adapter coupled to a network. The network coupling may be for example, over optical or wired communications lines or via wireless techniques (for example, microwave, infrared or other transmission techniques) or some combination of these. The series of computer instructions preferably embodies all or part of the functionality previously described herein with respect to the system. Those skilled in the art should appreciate that such computer instructions can be written in a number of programming languages for use with many computer architectures or operating systems. Furthermore, such instructions may be stored in any memory device, such as semiconductor, magnetic, optical or other memory devices, and may be transmitted using any communications technology, such as optical, infrared, microwave, or other transmission technologies. It is expected that such a computer program product may be distributed as a removable medium with accompanying printed or electronic documentation (for example, shrink wrapped software), preloaded with a computer system (for example, on system ROM or fixed disk), or distributed from a server or electronic bulletin board over a network (for example, the Internet or World Wide Web). In addition, a computer system is further provided including derivative modules for deriving a first data set and a calibration profile data set.


The calibration profile data sets in graphical or tabular form, the associated databases, and the calculated index or derived algorithm, together with information extracted from the panels, the databases, the data sets or the indices or algorithms are commodities that can be sold together or separately for a variety of purposes as described in WO 01/25473.


Index construction

In combination, (i) the remarkable consistency of Gene Expression Profiles with respect to a biological condition across a population or set of subject or samples, or across a population of cells and (ii) the use of procedures that provide substantially reproducible measurement of constituents in a Gene Expression Panel giving rise to a Gene Expression Profile, under measurement conditions wherein specificity and efficiencies of amplification for all constituents of the panel are substantially similar, make possible the use of an index that characterizes a Gene Expression Profile, and which therefore provides a measurement of a biological condition.


An index may be constructed using an index function that maps values in a Gene Expression Profile into a single value that is pertinent to the biological condition at hand. The values in a Gene Expression Profile are the amounts of each constituent of the Gene Expression Panel that corresponds to the Gene Expression Profile. These constituent amounts form a profile data set, and the index function generates a single value—the index—from the members of the profile data set.


The index function may conveniently be constructed as a linear sum of terms, each term being what we call a “contribution function” of a member of the profile data set. For example, the contribution function may be a constant times a power of a member of the profile data set. So the index function would have the form






I=ΣC
i
M
i
P(i),


where I is the index, Mi is the value of the member i of the profile data set, Ci is a constant, and P(i) is a power to which Mi is raised, the sum being formed for all integral values of i up to the number of members in the data set. We thus have a linear polynomial expression.


The values Ci and P(i) may be determined in a number of ways, so that the index I is informative of the pertinent biological condition. One way is to apply statistical techniques, such as latent class modeling, to the profile data sets to correlate clinical data or experimentally derived data, or other data pertinent to the biological condition. In this connection, for example, may be employed the software from Statistical Innovations, Belmont, Mass., called Latent Gold®. See the web pages at www.statisticalinnovations.com/lg/, which are hereby incorporated herein by reference.


Alternatively, other simpler modeling techniques may be employed in a manner known in the art. The index function for inflammation may be constructed, for example, in a manner that a greater degree of inflammation (as determined by the a profile data set for the Inflammation Gene Expression Profile) correlates with a large value of the index function. In a simple embodiment, therefore, each P(i) may be +1 or −1, depending on whether the constituent increases or decreases with increasing inflammation. As discussed in further detail below, we have constructed a meaningful inflammation index that is proportional to the expression





¼{IL1A}+¼{IL1B}+¼{TNF}+¼{INFG}−1/{IL10},


where the braces around a constituent designate measurement of such constituent and the constituents are a subset of the Inflammation Gene Expression Panel of Table 1.


Just as a baseline profile data set, discussed above, can be used to provide an appropriate normative reference, and can even be used to create a Calibrated profile data set, as discussed above, based on the normative reference, an index that characterizes a Gene Expression Profile can also be provided with a normative value of the index function used to create the index. This normative value can be determined with respect to a relevant population or set of subjects or samples or to a relevant population of cells, so that the index may be interpreted in relation to the normative value. The relevant population or set of subjects or samples, or relevant population of cells may have in common a property that is at least one of age range, gender, ethnicity, geographic location, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure.


As an example, the index can be constructed, in relation to a normative Gene Expression Profile for a population or set of healthy subjects, in such a way that a reading of approximately 1 characterizes normative Gene Expression Profiles of healthy subjects. Let us further assume that the biological condition that is the subject of the index is inflammation; a reading of 1 in this example thus corresponds to a Gene Expression Profile that matches the norm for healthy subjects. A substantially higher reading then may identify a subject experiencing an inflammatory condition. The use of I as identifying a normative value, however, is only one possible choice; another logical choice is to use 0 as identifying the normative value. With this choice, deviations in the index from zero can be indicated in standard deviation units (so that values lying between −1 and +1 encompass 90% of a normally distributed reference population or set of subjects. Since we have found that Gene Expression Profile values (and accordingly constructed indices based on them) tend to be normally distributed, the 0-centered index constructed in this manner is highly informative. It therefore facilitates use of the index in diagnosis of disease and setting objectives for treatment. The choice of 0 for the normative value, and the use of standard deviation units, for example, are illustrated in FIG. 17B, discussed below.


EXAMPLES
Example 1
Acute Inflammatory Index to Assist in Analysis of Large, Complex Data Sets

In one embodiment of the invention the index value or algorithm can be used to reduce a complex data set to a single index value that is informative with respect to the inflammatory state of a subject. This is illustrated in FIGS. 1A and 1B.



FIG. 1A is entitled Source Precision Inflammation Profile Tracking of A Subject Results in a Large, Complex Data Set. The figure shows the results of assaying 24 genes from the Inflammation Gene Expression Panel (shown in Table 1) on eight separate days during the course of optic neuritis in a single male subject.



FIG. 1B shows use of an Acute Inflammation Index. The data displayed in FIG. 1A above is shown in this figure after calculation using an index function proportional to the following mathematical expression: (¼{IL1A}+¼{IL1B}+¼{TNF}+¼{INFG}−1/{IL10}).


Example 2
Use of Acute Inflammation Index or Algorithm to Monitor a Biological Condition of a Sample or a Subject

The inflammatory state of a subject reveals information about the past progress of the biological condition, future progress, response to treatment, etc. The Acute Inflammation Index may be used to reveal such information about the biological condition of a subject. This is illustrated in FIG. 2.


The results of the assay for inflammatory gene expression for each day (shown for 24 genes in each row of FIG. 1A) is displayed as an individual histogram after calculation. The index reveals clear trends in inflammatory status that may correlated with therapeutic intervention (FIG. 2).



FIG. 2 is a graphical illustration of the acute inflammation index calculated at 9 different, significant clinical milestones from blood obtained from a single patient treated medically with for optic neuritis. Changes in the index values for the Acute Inflammation Index correlate strongly with the expected effects of therapeutic intervention. Four clinical milestones have been identified on top of the Acute Inflammation Index in this figure including (1) prior to treatment with steroids, (2) treatment with IV solumedrol at 1 gram per day, (3) post-treatment with oral prednisone at 60 mg per day tapered to 10 mg per day and (4) post treatment. The data set is the same as for FIG. 1. The index is proportional to ¼{IL1A}+/4{IL1B}+¼{TNF}+¼{INFG}−1/{IL10}. As expected, the acute inflammation index falls rapidly with treatment with IV steroid, goes up during less efficacious treatment with oral prednisone and returns to the pre-treatment level after the steroids have been discontinued and metabolized completely.


Example 3

Use of the acute inflammatory index to set dose, including concentrations and timing, for compounds in development or for compounds to be tested in human and non-human subjects as shown in FIG. 3. The acute inflammation index may be used as a common reference value for therapeutic compounds or interventions without common mechanisms of action. The compound that induces a gene response to a compound as indicated by the index, but fails to ameliorate a known biological conditions may be compared to a different compounds with varying effectiveness in treating the biological condition.



FIG. 3 shows the effects of single dose treatment with 800 mg of ibuprofen in a single donor as characterized by the Acute Inflammation Index. 800 mg of over-the-counter ibuprofen were taken by a single subject at Time=0 and Time=48 hr. Gene expression values for the indicated five inflammation-related gene loci were determined as described below at times=2, 4, 6, 48, 50, 56 and 96 hours. As expected the acute inflammation index falls immediately after taking the non-steroidal anti-inflammatory ibuprofen and returns to baseline after 48 hours. A second dose at T=48 follows the same kinetics at the first dose and returns to baseline at the end of the experiment at T=96.


Example 4

Use of the acute inflammation index to characterize efficacy, safety, and mode of physiological action for an agent, which may be in development and/or may be complex in nature. This is illustrated in FIG. 4.



FIG. 4 shows that the calculated acute inflammation index displayed graphically for five different conditions including (A) untreated whole blood; (B) whole blood treated in vitro with DMSO, an non-active carrier compound; (C) otherwise unstimulated whole blood treated in vitro with dexamethasone (0.08 ug/ml): (D) whole blood stimulated in vitro with lipopolysaccharide, a known pro-inflammatory compound, (LPS, 1 ng/ml) and (E) whole blood treated in vitro with LPS (1 ng/ml) and dexamethasone (0.08 ug/ml). Dexamethasone is used as a prescription compound that is commonly used medically as an anti-inflammatory steroid compound. The acute inflammation index is calculated from the experimentally determined gene expression levels of inflammation-related genes expressed in human whole blood obtained from a single patient. Results of mRNA expression are expressed as Ct's in this example, but may be expressed as, e.g., relative fluorescence units, copy number or any other quantifiable, precise and calibrated form, for the genes IL1A, IL1B, TNF, IFNG and IL10. From the gene expression values, the acute inflammation values were determined algebraically according in proportion to the expression ¼{IL1A}+¼{IL1B}+¼{TNF}+¼{INFG}−1/{IL10}.


Example 5
Development and Use of Population Normative Values for Gene Expression Profiles


FIGS. 6 and 7 show the arithmetic mean values for gene expression profiles (using the 48 loci of the Inflammation Gene Expression Panel of Table 1) obtained from whole blood of two distinct patient populations (patient sets). These patient sets are both normal or undiagnosed. The first patient set, which is identified as Bonfils (the plot points for which are represented by diamonds), is composed of 17 subjects accepted as blood donors at the Bonfils Blood Center in Denver, Colo. The second patient set is 9 donors, for which Gene Expression Profiles were obtained from assays conducted four times over a four-week period. Subjects in this second patient set (plot points for which are represented by squares) were recruited from employees of Source Precision Medicine, Inc., the assignee herein. Gene expression averages for each population were calculated for each of 48 gene loci of the Gene Expression Inflammation Panel. The results for loci 1-24 (sometimes referred to below as the Inflammation 48A loci) are shown in FIG. 6 and for loci 25-48 (sometimes referred to below as the Inflammation 48B loci) are shown in FIG. 7.


The consistency between gene expression levels of the two distinct patient sets is dramatic. Both patient sets show gene expressions for each of the 48 loci that are not significantly different from each other. This observation suggests that there is a “normal” expression pattern for human inflammatory genes, that a Gene Expression Profile, using the Inflammation Gene Expression Panel of Table 1 (or a subset thereof) characterizes that expression pattern, and that a population-normal expression pattern can be used, for example, to guide medical intervention for any biological condition that results in a change from the normal expression pattern.


In a similar vein, FIG. 8 shows arithmetic mean values for gene expression profiles (again using the 48 loci of the Inflammation Gene Expression Panel of Table 1) also obtained from whole blood of two distinct patient populations (patient sets). One patient set, expression values for which are represented by triangular data points, is 24 normal, undiagnosed subjects (who therefore have no known inflammatory disease). The other patient set, the expression values for which are represented by diamond-shaped data points, is four patients with rheumatoid arthritis and who have failed therapy (who therefore have unstable rheumatoid arthritis).


As remarkable as the consistency of data from the two distinct normal patient sets shown in FIGS. 6 and 7 is the systematic divergence of data from the normal and diseased patient sets shown in FIG. 8. In 45 of the shown 48 inflammatory gene loci, subjects with unstable rheumatoid arthritis showed, on average, increased inflammatory gene expression (lower cycle threshold values; Ct), than subjects without disease. The data thus further demonstrate that is possible to identify groups with specific biological conditions using gene expression if the precision and calibration of the underlying assay are carefully designed and controlled according to the teachings herein.



FIG. 9, in a manner analogous to FIG. 8, shows the shows arithmetic mean values for gene expression profiles using 24 loci of the Inflammation Gene Expression Panel of Table 1) also obtained from whole blood of two distinct patient sets. One patient set, expression values for which are represented by diamond-shaped data points, is 17 normal, undiagnosed subjects (who therefore have no known inflammatory disease) who are blood donors. The other patient set, the expression values for which are represented by square-shaped data points, is 16 subjects, also normal and undiagnosed, who have been monitored over six months, and the averages of these expression values are represented by the square-shaped data points. Thus the cross-sectional gene expression-value averages of a first healthy population match closely the longitudinal gene expression-value averages of a second healthy population, with approximately 7% or less variation in measured expression value on a gene-to-gene basis.



FIG. 10 shows the shows gene expression values (using 14 loci of the Inflammation Gene Expression Panel of Table 1) obtained from whole blood of 44 normal undiagnosed blood donors (data for 10 subjects of which is shown). Again, the gene expression values for each member of the population (set) are closely matched to those for the entire set, represented visually by the consistent peak heights for each of the gene loci. Other subjects of the set and other gene loci than those depicted here display results that are consistent with those shown here.


In consequence of these principles, and in various embodiments of the present invention, population normative values for a Gene Expression Profile can be used in comparative assessment of individual subjects as to biological condition, including both for purposes of health and/or disease. In one embodiment the normative values for a Gene Expression Profile may be used as a baseline in computing a “calibrated profile data set” (as defined at the beginning of this section) for a subject that reveals the deviation of such subject's gene expression from population normative values. Population normative values for a Gene Expression Profile can also be used as baseline values in constructing index functions in accordance with embodiments of the present invention. As a result, for example, an index function can be constructed to reveal not only the extent of an individual's inflammation expression generally but also in relation to normative values.


Example 6
Consistency of Expression Values, of Constituents in Gene Expression Panels, Over Time as Reliable Indicators of Biological Condition


FIG. 11 shows the expression levels for each of four genes (of the Inflammation Gene Expression Panel of Table 1), of a single subject, assayed monthly over a period of eight months. It can be seen that the expression levels are remarkably consistent over time.



FIGS. 12 and 13 similarly show in each case the expression levels for each of 48 genes (of the Inflammation Gene Expression Panel of Table 1), of distinct single subjects (selected in each case on the basis of feeling well and not taking drugs), assayed, in the case of FIG. 12 weekly over a period of four weeks, and in the case of FIG. 13 monthly over a period of six months. In each case, again the expression levels are remarkably consistent over time, and also similar across individuals.



FIG. 14 also shows the effect over time, on inflammatory gene expression in a single human subject, of the administration of an anti-inflammatory steroid, as assayed using the Inflammation Gene Expression Panel of Table 1. In this case, 24 of 48 loci are displayed. The subject had a baseline blood sample drawn in a PAX RNA isolation tube and then took a single 60 mg dose of prednisone, an anti-inflammatory, prescription steroid. Additional blood samples were drawn at 2 hr and 24 hr post the single oral dose. Results for gene expression are displayed for all three time points, wherein values for the baseline sample are shown as unity on the x-axis. As expected, oral treatment with prednisone resulted in the decreased expression of most of inflammation-related gene loci, as shown by the 2-hour post-administration bar graphs. However, the 24-hour post-administration bar graphs show that, for most of the gene loci having reduced gene expression at 2 hours, there were elevated gene expression levels at 24 hr.


Although the baseline in FIG. 14 is based on the gene expression values before drug intervention associated with the single individual tested, we know from the previous example, that healthy individuals tend toward population normative values in a Gene Expression Profile using the Inflammation Gene Expression Panel of Table 1 (or a subset of it). We conclude from FIG. 14 that in an attempt to return the inflammatory gene expression levels to those demonstrated in FIGS. 6 and 7 (normal or set levels), interference with the normal expression induced a compensatory gene expression response that over-compensated for the drug-induced response, perhaps because the prednisone had been significantly metabolized to inactive forms or eliminated from the subject.



FIG. 15, in a manner analogous to FIG. 14, shows the effect over time, via whole blood samples obtained from a human subject, administered a single dose of prednisone, on expression of 5 genes (of the Inflammation Gene Expression Panel of Table 1). The samples were taken at the time of administration (t=0) of the prednisone, then at two and 24 hours after such administration. Each whole blood sample was challenged by the addition of 0.1 ng/ml of lipopolysaccharide (a Gram-negative endotoxin) and a gene expression profile of the sample, post-challenge, was determined. It can seen that the two-hour sample shows dramatically reduced gene expression of the 5 loci of the Inflammation Gene Expression Panel, in relation to the expression levels at the time of administration (t=0). At 24 hours post administration, the inhibitory effect of the prednisone is no longer apparent, and at 3 of the 5 loci, gene expression is in fact higher than at t=0, illustrating quantitatively at the molecular level the well-known rebound effect.



FIG. 16 also shows the effect over time, on inflammatory gene expression in a single human subject suffering from rheumatoid arthritis, of the administration of a TNF-inhibiting compound, but here the expression is shown in comparison to the cognate locus average previously determined (in connection with FIGS. 6 and 7) for the normal (i.e., undiagnosed, healthy) patient set. As part of a larger international study involving patients with rheumatoid arthritis, the subject was followed over a twelve-week period. The subject was enrolled in the study because of a failure to respond to conservative drug therapy for rheumatoid arthritis and a plan to change therapy and begin immediate treatment with a TNF-inhibiting compound. Blood was drawn from the subject prior to initiation of new therapy (visit 1). After initiation of new therapy, blood was drawn at 4 weeks post change in therapy (visit 2), 8 weeks (visit 3), and 12 weeks (visit 4) following the start of new therapy. Blood was collected in PAX RNA isolation tubes, held at room temperature for two hours and then frozen at −30° C.


Frozen samples were shipped to the central laboratory at Source Precision Medicine, the assignee herein, in Boulder, Colo. for determination of expression levels of genes in the 48-gene Inflammation Gene Expression Panel of Table 1. The blood samples were thawed and RNA extracted according to the manufacturer's recommended procedure. RNA was converted to cDNA and the level of expression of the 48 inflammatory genes was determined. Expression results are shown for 11 of the 48 loci in FIG. 16. When the expression results for the 11 loci are compared from visit one to a population average of normal blood donors from the United States, the subject shows considerable difference. Similarly, gene expression levels at each of the subsequent physician visits for each locus are compared to the same normal average value. Data from visits 2, 3 and 4 document the effect of the change in therapy. In each visit following the change in the therapy, the level of inflammatory gene expression for 10 of the 11 loci is closer to the cognate locus average previously determined for the normal (i.e., undiagnosed, healthy) patient set.



FIG. 17A further illustrates the consistency of inflammatory gene expression, illustrated here with respect to 7 loci of (of the Inflammation Gene Expression Panel of Table 1), in a set of 44 normal, undiagnosed blood donors. For each individual locus is shown the range of values lying within ±2 standard deviations of the mean expression value, which corresponds to 95% of a normally distributed population. Notwithstanding the great width of the confidence interval (95%), the measured gene expression value (ΔCT)—remarkably—still lies within 10% of the mean, regardless of the expression level involved. As described in further detail below, for a given biological condition an index can be constructed to provide a measurement of the condition. This is possible as a result of the conjunction of two circumstances: (i) there is a remarkable consistency of Gene Expression Profiles with respect to a biological condition across a population and (ii) there can be employed procedures that provide substantially reproducible measurement of constituents in a Gene Expression Panel giving rise to a Gene Expression Profile, under measurement conditions wherein specificity and efficiencies of amplification for all constituents of the panel are substantially similar and which therefore provides a measurement of a biological condition. Accordingly, a function of the expression values of representative constituent loci of FIG. 17A is here used to generate an inflammation index value, which is normalized so that a reading of 1 corresponds to constituent expression values of healthy subjects, as shown in the right-hand portion of FIG. 17A.


In FIG. 17B, an inflammation index value was determined for each member of a set of 42 normal undiagnosed blood donors, and the resulting distribution of index values, shown in the figure, can be seen to approximate closely a normal distribution, notwithstanding the relatively small subject set size. The values of the index are shown relative to a 0-based median, with deviations from the median calibrated in standard deviation units. Thus 90% of the subject set lies within +1 and −1 of a 0 value. We have constructed various indices, which exhibit similar behavior.



FIG. 17C illustrates the use of the same index as FIG. 17B, where the inflammation median for a normal population of subjects has been set to zero and both normal and diseased subjects are plotted in standard deviation units relative to that median. An inflammation index value was determined for each member of a normal, undiagnosed population of 70 individuals (black bars). The resulting distribution of index values, shown in FIG. 17C, can be seen to approximate closely a normal distribution. Similarly, index values were calculated for individuals from two diseased population groups, (1) rheumatoid arthritis patients treated with methotrexate (MTX) who are about to change therapy to more efficacious drugs (e.g., TNF inhibitors)(hatched bars), and (2) rheumatoid arthritis patients treated with disease modifying anti-rheumatoid drugs (DMARDS) other than MTX, who are about to change therapy to more efficacious drugs (e.g., MTX). Both populations of subjects present index values that are skewed upward (demonstrating increased inflammation) in comparison to the normal distribution. This figure thus illustrates the utility of an index to derived from Gene Expression Profile data to evaluate disease status and to provide an objective and quantifiable treatment objective. When these two populations of subjects were treated appropriately, index values from both populations returned to a more normal distribution (data not shown here).



FIG. 18 plots, in a fashion similar to that of FIG. 17A, Gene Expression Profiles, for the same 7 loci as in FIG. 17A, two different 6-subject populations of rheumatoid arthritis patients. One population (called “stable” in the figure) is of patients who have responded well to treatment and the other population (called “unstable” in the figure) is of patients who have not responded well to treatment and whose therapy is scheduled for change. It can be seen that the expression values for the stable patient population, lie within the range of the 95% confidence interval, whereas the expression values for the unstable patient population for 5 of the 7 loci are outside and above this range. The right-hand portion of the figure shows an average inflammation index of 9.3 for the unstable population and an average inflammation index of 1.8 for the stable population, compared to I for a normal undiagnosed population of patients. The index thus provides a measure of the extent of the underlying inflammatory condition, in this case, rheumatoid arthritis. Hence the index, besides providing a measure of biological condition, can be used to measure the effectiveness of therapy as well as to provide a target for therapeutic intervention.



FIG. 19 thus illustrates use of the inflammation index for assessment of a single subject suffering from rheumatoid arthritis, who has not responded well to traditional therapy with methotrexate. The inflammation index for this subject is shown on the far right at start of a new therapy (a TNF inhibitor), and then, moving leftward, successively, 2 weeks, 6 weeks, and 12 weeks thereafter. The index can be seen moving towards normal, consistent with physician observation of the patient as responding to the new treatment.



FIG. 20 similarly illustrates use of the inflammation index for assessment of three subjects suffering from rheumatoid arthritis, who have not responded well to traditional therapy with methotrexate, at the beginning of new treatment (also with a TNF inhibitor), and 2 weeks and 6 weeks thereafter. The index in each case can again be seen moving generally towards normal, consistent with physician observation of the patients as responding to the new treatment.


Each of FIGS. 21-23 shows the inflammation index for an international group of subjects, suffering from rheumatoid arthritis, each of whom has been characterized as stable (that is, not anticipated to be subjected to a change in therapy) by the subject's treating physician. FIG. 21 shows the index for each of 10 patients in the group being treated with methotrexate, which known to alleviate symptoms without addressing the underlying disease. FIG. 22 shows the index for each of 10 patients in the group being treated with Enbrel (an TNF inhibitor), and FIG. 23 shows the index for each 10 patients being treated with Remicade (another TNF inhibitor). It can be seen that the inflammation index for each of the patients in FIG. 21 is elevated compared to normal, whereas in FIG. 22, the patients being treated with Enbrel as a class have an inflammation index that comes much closer to normal (80% in the normal range). In FIG. 23, it can be seen that, while all but one of the patients being treated with Remicade have an inflammation index at or below normal, two of the patients have an abnormally low inflammation index, suggesting an immunosuppressive response to this drug. (Indeed, studies have shown that Remicade has been associated with serious infections in some subjects, and here the immunosuppressive effect is quantified.) Also in FIG. 23, one subject has an inflammation index that is significantly above the normal range. This subject in fact was also on a regimen of an anti-inflammation steroid (prednisone) that was being tapered; within approximately one week after the inflammation index was sampled, the subject experienced a significant flare of clinical symptoms.


Remarkably, these examples show a measurement, derived from the assay of blood taken from a subject, pertinent to the subject's arthritic condition. Given that the measurement pertains to the extent of inflammation, it can be expected that other inflammation-based conditions, including, for example, cardiovascular disease, may be monitored in a similar fashion.



FIG. 24 illustrates use of the inflammation index for assessment of a single subject suffering from inflammatory bowel disease, for whom treatment with Remicade was initiated in three doses. The graphs show the inflammation index just prior to first treatment, and then 24 hours after the first treatment; the index has returned to the normal range. The index was elevated just prior to the second dose, but in the normal range prior to the third dose. Again, the index, besides providing a measure of biological condition, is here used to measure the effectiveness of therapy (Remicade), as well as to provide a target for therapeutic intervention in terms of both dose and schedule.



FIG. 25 shows Gene Expression Profiles with respect to 24 loci (of the Inflammation Gene Expression Panel of Table 1) for whole blood treated with Ibuprofen in vitro in relation to other non-steroidal anti-inflammatory drugs (NSAIDs). The profile for Ibuprofen is in front. It can be seen that all of the NSAIDs, including Ibuprofen share a substantially similar profile, in that the patterns of gene expression across the loci are similar. Notwithstanding these similarities, each individual drug has its own distinctive signature.



FIG. 26 illustrates how the effects of two competing anti-inflammatory compounds can be compared objectively, quantitatively, precisely, and reproducibly. In this example, expression of each of a panel of two genes (of the Inflammation Gene Expression Panel of Table 1) is measured for varying doses (0.08-250 μg/ml) of each drug in vitro in whole blood. The market leader drug shows a complex relationship between dose and inflammatory gene response. Paradoxically, as the dose is increased, gene expression for both loci initially drops and then increases in the case the case of the market leader. For the other compound, a more consistent response results, so that as the dose is increased, the gene expression for both loci decreases more consistently.



FIGS. 27 through 41 illustrate the use of gene expression panels in early identification and monitoring of infectious disease. These figures plot the response, in expression products of the genes indicated, in whole blood, to the administration of various infectious agents or products associated with infectious agents. In each figure, the gene expression levels are “calibrated”, as that term is defined herein, in relation to baseline expression levels determined with respect to the whole blood prior to administration of the relevant infectious agent. In this respect the figures are similar in nature to various figures of our below-referenced patent application WO 01/25473 (for example, FIG. 15 therein). The concentration change is shown ratiometrically, and the baseline level of 1 for a particular gene locus corresponds to an expression level for such locus that is the same, monitored at the relevant time after addition of the infectious agent or other stimulus, as the expression level before addition of the stimulus. Ratiometric changes in concentration are plotted on a logarithmic scale. Bars below the unity line represent decreases in concentration and bars above the unity line represent increases in concentration, the magnitude of each bar indicating the magnitude of the ratio of the change. We have shown in WO 01/25473 and other experiments that, under appropriate conditions, Gene Expression Profiles derived in vitro by exposing whole blood to a stimulus can be representative of Gene Expression Profiles derived in vivo with exposure to a corresponding stimulus.



FIG. 27 uses a novel bacterial Gene Expression Panel of 24 genes, developed to discriminate various bacterial conditions in a host biological system. Two different stimuli are employed: lipotechoic acid (LTA), a gram positive cell wall constituent, and lipopolysaccharide (LPS), a gram negative cell wall constituent. The final concentration immediately after administration of the stimulus was 100 ng/mL, and the ratiometric changes in expression, in relation to pre-administration levels, were monitored for each stimulus 2 and 6 hours after administration. It can be seen that differential expression can be observed as early as two hours after administration, for example, in the IFNA2 locus, as well as others, permitting discrimination in response between gram positive and gram negative bacteria.



FIG. 28 shows differential expression for a single locus, IFNG, to LTA derived from three distinct sources: S. pyogenes, B. subtilis, and S. aureus. Each stimulus was administered to achieve a concentration of 100 ng/mL, and the response was monitored at 1, 2, 4, 6, and 24 hours after administration. The results suggest that Gene Expression Profiles can be used to distinguish among different infectious agents, here different species of gram positive bacteria.



FIGS. 29 and 30 show the response of the Inflammation 48A and 48B loci respectively (discussed above in connection with FIGS. 6 and 7 respectively) in whole blood to administration of a stimulus of S. aureus and of a stimulus of E. coli (in the indicated concentrations, just after administration, of 107 and 106 CFU/mL respectively), monitored 2 hours after administration in relation to the pre-administration baseline. The figures show that many of the loci respond to the presence of the bacterial infection within two hours after infection.



FIGS. 31 and 32 correspond to FIGS. 29 and 30 respectively and are similar to them, with the exception that the monitoring here occurs 6 hours after administration. More of the loci are responsive to the presence of infection. Various loci, such as IL2, show expression levels that discriminate between the two infectious agents.



FIG. 33 shows the response of the Inflammation 48A loci to the administration of a stimulus of E. coli (again in the concentration just after administration of 106 CFU/mL) and to the administration of a stimulus of an E. coli filtrate containing E. coli bacteria by products but lacking E. coli bacteria. The responses were monitored at 2, 6, and 24 hours after administration. It can be seen, for example, that the responses over time of loci IL1B, IL18 and CSF3 to E. coli and to E. coli filtrate are different.



FIG. 34 is similar to FIG. 33, but here the compared responses are to stimuli from E. coli filtrate alone and from E. coli filtrate to which has been added polymyxin B, an antibiotic known to bind to lipopolysaccharide (LPS). An examination of the response of IL1B, for example, shows that presence of polymyxin B did not affect the response of the locus to E. coli filtrate, thereby indicating that LPS does not appear to be a factor in the response of IL1B to E. coli filtrate.



FIG. 35 illustrates the responses of the Inflammation 48A loci over time of whole blood to a stimulus of S. aureus (with a concentration just after administration of 107 CFU/mL) monitored at 2, 6, and 24 hours after administration. It can be seen that response over time can involve both direction and magnitude of change in expression. (See for example, IL5 and IL18.)



FIGS. 36 and 37 show the responses, of the Inflammation 48A and 48B loci respectively, monitored at 6 hours to stimuli from E. coli (at concentrations of 106 and 102 CFU/mL immediately after administration) and from S. aureus (at concentrations of 107 and 102 CFU/mL immediately after administration). It can be seen, among other things, that in various loci, such as B7 (FIG. 36), TACI, PLA2G7, and C1QA (FIG. 37), E. coli produces a much more pronounced response than S. aureus. The data suggest strongly that Gene Expression Profiles can be used to identify with high sensitivity the presence of gram negative bacteria and to discriminate against gram positive bacteria.



FIGS. 38 and 39 show the responses, of the Inflammation 48B and 48A loci respectively, monitored 2, 6, and 24 hours after administration, to stimuli of high concentrations of S. aureus and E. coli respectively (at respective concentrations of 107 and 106 CFU/mL immediately after administration). The responses over time at many loci involve changes in magnitude and direction. FIG. 40 is similar to FIG. 39, but shows the responses of the Inflammation 48B loci.



FIG. 41 similarly shows the responses of the Inflammation 48A loci monitored at 24 hours after administration to stimuli high concentrations of S. aureus and E. coli respectively (at respective concentrations of 107 and 106 CFU/mL immediately after administration). As in the case of FIGS. 20 and 21, responses at some loci, such as GRO1 and GRO2, discriminate between type of infection.



FIG. 42 illustrates application of a statistical T-test to identify potential members of a signature gene expression panel that is capable of distinguishing between normal subjects and subjects suffering from unstable rheumatoid arthritis. The grayed boxes show genes that are individually highly effective (t test P values noted in the box to the right in each case) in distinguishing between the two sets of subjects, and thus indicative of potential members of a signature gene expression panel for rheumatoid arthritis.



FIG. 43 illustrates, for a panel of 17 genes, the expression levels for 8 patients presumed to have bacteremia. The data are suggestive of the prospect that patients with bacteremia have a characteristic pattern of gene expression.



FIG. 44 illustrates application of a statistical T-test to identify potential members of a signature gene expression panel that is capable of distinguishing between normal subjects and subjects suffering from bacteremia. The grayed boxes show genes that are individually highly effective (t test P values noted in the box to the right in each case) in distinguishing between the two sets of subjects, and thus indicative of potential members of a signature gene expression panel for bacteremia.



FIG. 45 illustrates application of an algorithm (shown in the figure), providing an index pertinent to rheumatoid arthritis (RA) as applied respectively to normal subjects, RA patients, and bacteremia patients. The index easily distinguishes RA subjects from both normal subjects and bacteremia subjects.



FIG. 46 illustrates application of an algorithm (shown in the figure), providing an index pertinent to bacteremia as applied respectively to normal subjects, rheumatoid arthritis patients, and bacteremia patients. The index easily distinguishes bacteremia subjects from both normal subjects and rheumatoid arthritis subjects.


These data support our conclusion that Gene Expression Profiles with sufficient precision and calibration as described herein (1) can determine subsets of individuals with a known biological condition; (2) may be used to monitor the response of patients to therapy; (3) may be used to assess the efficacy and safety of therapy; and (4) may used to guide the medical management of a patient by adjusting therapy to bring one or more relevant Gene Expression Profiles closer to a target set of values, which may be normative values or other desired or achievable values. We have shown that Gene Expression Profiles may provide meaningful information even when derived from ex vivo treatment of blood or other tissue. We have also shown that Gene Expression Profiles derived from peripheral whole blood are informative of a wide range of conditions neither directly nor typically associated with blood.


Furthermore, in embodiments of the present invention, Gene Expression Profiles can also be used for characterization and early identification (including pre-symptomatic states) of infectious disease, such as sepsis. This characterization includes discriminating between infected and uninfected individuals, bacterial and viral infections, specific subtypes of pathogenic agents, stages of the natural history of infection (e.g., early or late), and prognosis. Use of the algorithmic and statistical approaches discussed above to achieve such identification and to discriminate in such fashion is within the scope of various embodiments herein.









TABLE 1







Master Infectious Disease or Inflammatory Conditions Related to Infectious Disease Gene


Expression Panel










Symbol
Name
Classification
Description





ABCC1
ATP-binding
membrane
AKA MRP1, ABC29: Multispecific organic



cassette, sub-family
transporter
anion membrane transporter; over expression



C, member 1

confers tissue protection against a wide variety





of xenobiotics due to their removal from the





cell.


ABL1
V-abl Abelson
oncogene
Cytoplasmic and nuclear protein tyrosine kinase



murine leukemia

implicated in cell differentiation, division,



viral oncogene

adhesion and stress response. Alterations of



homolog 1

ABL1 lead to malignant transformations.


ACPP
Acid phosphatase,
phosphatase
AKA PAP: Major phosphatase of the prostate;



prostate

synthesized under androgen regulation; secreted





by the epithelial cells of the prostrate


ACTB
Actin, beta
Cell Structure
Actins are highly conserved proteins that are





involved in cell motility, structure and integrity.





ACTB is one of two non-muscle cytoskeletal





actins. Site of action for cytochalasin B effects





on cell motility.


ADAMTS1
Disintegrin-like and
Protease
AKA METH1; Inhibits endothelial cell



metalloprotease

proliferation; may inhibit angiogenesis;



(reprolysin type)

expression may be associated with development



with

of cancer cachexia.



thrombospondin



type 1 motif, 1


AHR
Aryl hydrocarbon
Metabolism
Increases expression of xenobiotic metabolizing



receptor
Receptor/Transcription
enzymes (ie P450) in response to binding of




Factor
planar aromatic hydrocarbons


ALB
Albumin
Liver Health
Carrier protein found in blood serum,




Indicator
synthesized in the liver, downregulation linked





to decreased liver function/health


APAF1
Apoptotic Protease
protease activating
Cytochrome c binds to APAF1, triggering



Activating Factor 1
peptide
activation of CASP3, leading to apoptosis. May





also facilitate procaspase 9 auto activation.


ARG2
Arginase II
Enzyme/redox
Catalyzes the hydrolysis of arginine to ornithine





and urea; may play a role in down regulation of





nitric oxide synthesis


B7
B7 protein
cell signaling and
Regulatory protein that may be associated with




activation
lupus


BAD
BCL2 Agonist of
membrane protein
Heterodimerizes with BCLX and counters its



Cell Death

death repressor activity. This displaces BAX





and restores its apoptosis-inducing activity.


BAK1
BCL2-
membrane protein
In the presence of an appropriate stimulus BAK



antagonist/killer 1

1 accelerates programmed cell death by binding





to, and antagonizing the repressor BCL2 or its





adenovirus homolog e1b 19k protein.


BAX
BCL2 associated X
apoptosis
Accelerates programmed cell death by binding



protein
induction-germ
to and antagonizing the apoptosis repressor




cell development
BCL2; may induce caspase activation


BCL2
B-cell CLL/
apoptosis Inhibitor-
Blocks apoptosis by interfering with the



lymphoma 2
cell cycle control-
activation of caspases




oncogenesis


BCL2L1
BCL2-like 1 (long
membrane protein
Dominant regulator of apoptotic cell death. The



form)

long form displays cell death repressor activity,





whereas the short isoform promotes apoptosis.





BCL2L1 promotes cell survival by regulating





the electrical and osmotic homeostasis of





mitochondria.


BID
BH3-Interacting

Induces ice-like proteases and apoptosis.



Death Domain

Counters the protective effect of bcl-2 (by



Agonist

similarity). Encodes a novel death agonist that





heterodimerizes with either agonists (BAX) or





antagonists (BCL2).


BIK
BCL2-Interacting

Accelerates apoptosis. Binding to the apoptosis



Killer

repressors BCL2L1, bhrf1, BCL2 or its





adenovirus homolog e1b 19k protein suppresses





this death-promoting activity.


BIRC2
Baculoviral IAP
apoptosis
May inhibit apoptosis by regulating signals



Repeat-Containing 2
suppressor
required for activation of ICE-like proteases.





Interacts with TRAF1 and TRAF2. Cytoplasmic


BIRC3
Baculoviral IAP
apoptosis
Apoptotic suppressor. Interacts with TRAF1



Repeat-Containing 3
suppressor
and TRAF2. Cytoplasmic


BIRC5
Baculoviral IAP
apoptosis Inhibitor
AKA Survivin; API4: May counteract a default



repeat-containing 5

induction of apoptosis in G2/M phase of cell





cycle; associates with microtubules of the





mitotic spindle during apoptosis


BSG
Basignin
signal
Member of Ig superfamily; tumor cell-derived




transduction-
collagenase stimulatory factor; stimulates




peripheral plasma
matrix metalloproteinase synthesis in fibroblasts




membrane protein


BPI
Bactericidal/permeability-
Membrane-bound
LPS binding protein; cytotoxic for many gram



increasing
protease
negative organisms; found in myeloid cells



protein


C1QA
Complement
Proteinase/
Serum complement system; forms C1 complex



component 1, q
Proteinase
with the proenzymes c1r and c1s



subcomponent,
Inhibitor



alpha polypeptide


CALCA
Calcitonin/calcitonin-
Cell-signaling and
AKA CALC1; Promotes rapid incorporation of



related
activation
calcium into bone



polypeptide, alpha


CASP1
Caspase 1
proteinase
Activates IL1B; stimulates apoptosis


CASP3
Caspase 3
Proteinase/
Involved in activation cascade of caspases




Proteinase
responsible for apoptosis - cleaves CASP6,




Inhibitor
CASP7, CASP9


CASP9
Caspase 9
proteinase
Binds with APAF1 to become activated; cleaves





and activates CASP3


CCL3
Chemokine (C-C
Cytokines-
AKA: MIP1-alpha; monkine that binds to



motif) ligand 3
chemokines-
CCR1, CCR4 and CCR5; major HIV-




growth factors
suppressive factor produced by CD8 cells.


CCNA2
Cyclin A2
cyclin
Drives cell cycle at G1/S and G2/M phase;





interacts with cdk2 and cdc2


CCNB1
Cyclin B1
cyclin
Drives cell cycle at G2/M phase; complexes





with cdc2 to form mitosis promoting factor


CCND1
Cyclin D1
cyclin
Controls cell cycle at G1/S (start) phase;





interacts with cdk4 and cdk6; has oncogene





function


CCND3
Cyclin D3
cyclin
Drives cell cycle at G1/S phase; expression





rises later in G1 and remains elevated in S





phase; interacts with cdk4 and cdk6


CCNE1
Cyclin E1
cyclin
Drives cell cycle at G1/S transition; major





downstream target of CCND1; cdk2-CCNE1





activity required for centrosome duplication





during S phase; interacts with RB


CCR1
chemokine (C-C
Chemokine
A member of the beta chemokine receptor



motif) receptor 1
receptor
family (seven transmembrane proteins). Binds





SCYA3/MIP-1a, SCYA5/RANTES, MCP-3,





HCC-1, 2, and 4, and MPIF-1. Plays role in





dendritic cell migration to inflammation sites





and recruitment of monocytes.


CCR3
chemokine (C-C
Chemokine
C-C type chemokine receptor (Eotaxin receptor)



motif) receptor 3
receptor
binds to Eotaxin, Eotaxin-3, MCP-3, MCP-4,





SCYA5/RANTES and mip-1 delta thereby





mediating intracellular calcium flux.





Alternative co-receptor with CD4 for HIV-1





infection. Involved in recruitment of





eosinophils. Primarily a Th2 cell chemokine





receptor.


CCR5
chemokine (C-C
Chemokine
Member of the beta chemokine receptor family



motif) receptor 5
receptor
(seven transmembrane proteins). Binds to





SCYA3/MIP-1a and SCYA5/RANTES.





Expressed by T cells and macrophages, and is





an important co-receptor for macrophage-tropic





virus, including HIV, to enter host cells. Plays a





role in Th1 cell migration. Defective alleles of





this gene have been associated with the HIV





infection resistance.


CD14
CD14 antigen
Cell Marker
LPS receptor used as marker for monocytes


CD19
CD19 antigen
Cell Marker
AKA Leu 12; B cell growth factor


CD34
CD34 antigen
Cell Marker
AKA: hematopoietic progenitor cell antigen.





Cell surface antigen selectively expressed on





human hematopoietic progenitor cells.





Endothelial marker.


CD3Z
CD3 antigen, zeta
Cell Marker
T-cell surface glycoprotein



polypeptide


CD4
CD4 antigen (p55)
Cell Marker
Helper T-cell marker


CD44
CD44 antigen
Cell Marker
Cell surface receptor for hyaluronate. Probably





involved in matrix adhesion, lymphocyte





activation and lymph node homing.


CD86
CD 86 Antigen (cD
Cell signaling and
AKA B7-2; membrane protein found in B



28 antigen ligand)
activation
lymphocytes and monocytes; co-stimulatory





signal necessary for T lymphocyte proliferation





through IL2 production.


CD8A
CD8 antigen, alpha
Cell Marker
Suppressor T cell marker



polypeptide


CDH1
Cadherin 1, type 1,
cell-cell adhesion/
AKA ECAD, UVO: Calcium ion-dependent cell



E-cadherin
interaction
adhesion molecule that mediates cell to cell





interactions in epithelial cells


CDH2
Cadherin 2, type 1,
cell-cell adhesion/
AKA NCAD, CDHN: Calcium-dependent



N-cadherin
interaction
glycoprotein that mediates cell-cell interactions;





may be involved in neuronal recognition





mechanism


cdk2
Cyclin-dependent
kinase
Associated with cyclins A, D and E; activity



kinase 2

maximal during S phase and G2; CDK2





activation, through caspase-mediated cleavage





of CDK inhibitors, may be instrumental in the





execution of apoptosis following caspase





activation


cdk4
Cyclin-dependent
kinase
cdk4 and cyclin-D type complexes are



kinase 4

responsible for cell proliferation during G1;





inhibited by CDKN2A (p16)


CDKN1A
Cyclin-Dependent
tumor suppressor
May bind to and inhibit cyclin-dependent kinase



Kinase Inhibitor 1A

activity, preventing phosphorylation of critical



(p21)

cyclin-dependent kinase substrates and blocking





cell cycle progression; activated by p53; tumor





suppressor function


CDKN2A
Cyclin-dependent
cell cycle control-
AKA p16, MTS1, INK4: Tumor suppressor



kinase inhibitor 2A
tumor suppressor
gene involved in a variety of malignancies;





arrests normal diploid cells in late G1


CDKN2B
Cyclin-Dependent
tumor suppressor
Interacts strongly with cdk4 and cdk6; role in



Kinase Inhibitor 2B

growth regulation but limited role as tumor



(p15)

suppressor


CHEK1
Checkpoint,

Involved in cell cycle arrest when DNA damage



S. pombe

has occurred, or unligated DNA is present;





prevents activation of the cdc2-cyclin b





complex


CLDN14
Claudin 14

AKA DFNB29; Component of tight junction





strands


COL1A1
Collagen, type 1,
Tissue
AKA Procollagen; extracellular matrix protein;



alpha 1
Remodeling
implicated in fibrotic processes of damaged





liver


COL7A1
Type VII collagen,
collagen-
alpha 1 subunit of type VII collagen; may link



alpha 1
differentiation-
collagen fibrils to the basement membrane




extracellular




matrix


CRABP2
Cellular Retinoic
retinoid binding-
Low molecular weight protein highly expressed



Acid Binding
signal
in skin; thought to be important in RA-mediated



Protein
transduction-
regulation of skin growth & differentiation




transcription




regulation


CRP
C-reactive protein
Acute phase
Acute phase protein




protein


CSF2
Granulocyte-
cytokines-
AKA GM-CSF; Hematopoietic growth factor;



monocyte colony
chemokines-
stimulates growth and differentiation of



stimulating factor
growth factors
hematopoietic precursor cells from various





lineages, including granulocytes, macrophages,





eosinophils, and erythrocytes


CSF3
Colony stimulating
cytokines-
AKA GCSF controls production ifferentiation



factor 3
chemokines-
and function of granulocytes.



(granulocyte)
growth factors


CTGF
Connective Tissue
insulin-like
Member of family of peptides including serum-



Growth Factor
growth factor-
induced immediate early gene products




differentiation-
expressed after induction by growth factors;




wounding
over expressed in fibrotic disorders




response


CTNNA1
Catenin, alpha 1
cell adhesion
Binds cadherins and links them with the actin





cytoskeleton


CX3CR1
chemokine (C—X3—C)
Chemokine
CX3CR1 is an HIV coreceptor as well as a



receptor 1
receptor
leukocyte chemotactic/adhesion receptor for





fractalkine. Natural killer cells predominantly





express CX3CR1 and respond to fractalkine in





both migration and adhesion.


CXCR4
chemokine (C—X—C
Chemokine
Receptor for the CXC chemokine SDF1. Acts



motif), receptor 4
receptor
as a co-receptor with CD4 for lymphocyte-



(fusin)

tropic HIV-1 viruses. Plays role in B cell, Th2





cell and naive T cell migration.


CYP1A1
Cytochrome P450
Metabolism
Polycyclic aromatic hydrocarbon metabolism;



1A1
Enzyme
monooxygenase


CYP1A2
Cytochrome P450
Metabolism
Polycyclic aromatic hydrocarbon metabolism;



1A2
Enzyme
monooxygenase


CYP2C19
Cytochrome P450
Metabolism
Xenobiotic metabolism; monooxygenase



2C19
Enzyme


CYP2D6
Cytochrome P450
Metabolism
Xenobiotic metabolism; monooxygenase



2D6
Enzyme


CYP2E
Cytochrome P450
Metabolism
Xenobiotic metabolism; monooxygenase;



2E1
Enzyme
catalyzes formation of reactive intermediates





from small organic molecules (i.e. ethanol,





acetaminophen, carbon tetrachloride)


CYP3A4
Cytochrome P450
Metabolism
Xenobiotic metabolism; broad catalytic



3A4
Enzyme
specificity, most abundantly expressed liver





P450


CXCL10
Chemokine (C—X—C
Cytokines-
AKA: Gamma IP10; interferon inducible



moif) ligand 10
chemokines-
cytokine IP10; SCYB10; Ligand for CXCR3;




growth factors
binding causes stimulation of monocytes, NK





cells; induces T cell migration


DAD1
Defender Against
membrane protein
Loss of DAD1 protein triggers apoptosis



Cell Death


DC13
DC13 protein

unknown function


DFFB
DNA Fragmentation
nuclease
Induces DNA fragmentation and chromatin



Factor, 40-KD,

condensation during apoptosis; can be activated



Beta Subunit

by CASP3


DSG1
Desmoglein 1
membrane protein
Calcium-binding transmembrane glycoprotein





involved in the interaction of plaque proteins





and intermediate filaments mediating cell-cell





adhesion. Interact with cadherins.


DTR
Diphtheria toxin
Cell signaling,
Thought to be involved in macrophage-



receptor (heparin-
mitogen
mediated cellular proliferation. DTR is a potent



binding epidermal

mitogen and chemotactic factor for fibroblasts



growth factor-like

and smooth muscle cells, but not endothelial



growth factor)

cells.


DUSP1
Dual Specificity
oxidative stress
Induced in human skin fibroblasts by



Phosphatase
response-tyrosine
oxidative/heat stress & growth factors; de-




phosphatase
phosphorylates MAP kinase erk2; may play a





role in negative regulation of cellular





proliferation


ECE1
Endothelin
Metalloprotease
Cleaves big endothelin 1 to endothelin 1



converting enzyme 1


EDN1
Endothelin 1
Peptide hormone
AKA ET1; Endothelium-derived peptides;





potent vasoconstrictor


EDR2
Early Development

The specific function in human cells has not yet



Regulator 2

been determined. May be part of a complex





that may regulate transcription during





embryonic development.


EGR1
Early growth
Transcription
AKA NGF1A; Regulates the transcription of



response 1
factor
genes involved in mitogenesis and





differentiation


ELA2
Elastase 2,
Protease
Modifies the functions of NK cells, monocytes



neutrophil

and granulocytes


EPHX1
Epoxide hydrolase
Metabolism
Catalyzes hydrolysis of reactive epoxides to



1, microsomal
Enzyme
water soluble dihydrodiols



(xenobiotic)


ERBB2
v-erb-b2
Oncogene
Oncogene. Over expression of ERBB2 confers



erythroblastic

Taxol resistance in breast cancers. Belongs to



leukemia viral

the EGF tyrosine kinase receptor family. Binds



oncogene homolog 2

gp130 subunit of the IL6 receptor in an IL6





dependent manner. An essential component of





IL-6 signaling through the MAP kinase





pathway.


ERBB3
v-erb-b2
Oncogene
Oncogene. Over expressed in mammary



Erythroblastic

tumors. Belongs to the EGF tyrosine kinase



Leukemia Viral

receptor family. Activated through neuregulin



Oncogene Homolog 3

and ntak binding.


ESR1
Estrogen Receptor 1
Receptor/
ESR1 is a ligand-activated transcription factor




Transcription
composed of several domains important for




Factor
hormone binding, DNA binding, and activation





of transcription.


F3
F3
Enzyme/Redox
AKA thromboplastin, Coagulation Factor 3; cell





surface glycoprotein responsible for coagulation





catalysis


FADD
Fas (TNFRSF6)-
co-receptor
Apoptotic adaptor molecule that recruits



associated via death

caspase-8 or caspase-10 to the activated fas



domain

(cd95) or tnfr-1 receptors; this death-inducing





signaling complex performs CASP8 proteolytic





activation


FAP
Fibroblast activation
Liver Health
Expressed in cancer stroma and wound healing



protein, □
Indicator


FCGR1A
Fc fragment of lgG,
Membrane protein
Membrane receptor of CD64; found in



high affinity

monocytes, macrophages and neutrophils



receptor IA


FGF18
Fibroblast Growth
Growth Factor
Involved in a variety of biological processes,



Factor 18

including embryonic development, cell growth,





morphogenesis, tissue repair, tumor growth, and





invasion.


FGF7
Fibroblast growth
growth factor-
aka KGF; Potent mitogen for epithelial cells;



factor 7
differentiation-
induced after skin injury




wounding




response-signal




transduction


FLT1
Fms-related tyrosine

AKA VEGFR1; FRT; Receptor for VEGF;



kinase 1 (vascular

involved in vascular development and



endothelial growth

regulation of vascular permeability



factor/vascular



permeability factor



receptor)


FN1
Fibronectin
cell adhesion-
Major cell surface glycoprotein of many




motility-signal
fibroblast cells; thought to have a role in cell




transduction
adhesion, morphology, wound healing & cell





motility


FTL
Ferritin, light
Iron Chelator
Intracellular, iron storage protein



polypeptide


FOLH1
Folate Hydrolase
hydrolase
AKA PSMA, GCP2: Expressed in normal and





neoplastic prostate cells; membrane bound





glycoprotein; hydrolyzes folate and is an N-





acetylated a-linked acidic dipeptidase


FOS
v-fos FBJ murine
transcription
Proto-oncoprotein acting with JUN, stimulates



osteosarcoma virus
factor-
transcription of genes with AP-1 regulatory



oncogene homolog
inflammatory
sites; in some cases FOS expression is




response-cell
associated with apoptotic cell death




growth &




maintenance


G6PC
glucose-6-
Glucose-6-
Catalyzes the final step in the gluconeogenic



phosphatase,
phosphatase/Glycogen
and glycogenolytic pathways. Stimulated by



catalytic
metabolism
glucocorticoids and strongly inhibited by





insulin. Over expression (in conjunction with





PCK1 over expression) leads to increased





hepatic glucose production.


GADD45A
Growth Arrest and
cell cycle-DNA
Transcriptionally induced following stressful



DNA-damage-
repair-apoptosis
growth arrest conditions & treatment with DNA



inducible alpha

damaging agents; binds to PCNA affecting it's





interaction with some cell division protein





kinase


GCG
glucagon
pancreatic/peptide
Pancreatic hormone which counteracts the




hormone
glucose-lowering action of insulin by





stimulating glycogenolysis and





gluconeogenesis. Under expression of glucagon





is preferred. Glucagon-like peptide (GLP-1)





proposed for type 2 diabetes treatment inhibits





glucag


GCGR
glucagon receptor
glucagon receptor
Expression of GCGR is strongly unregulated by





glucose. Deficiency or imbalance could play a





role in NIDDM. Has been looked as a potential





for gene therapy.


GFPT1
glutamine-fructose-
Glutamine
The rate limiting enzyme for glucose entry into



6-phosphate
amidotransferase
the hexosamine biosynthetic pathway (HBP).



transaminase 1

Over expression of GFA in muscle and adipose





tissue increases products of the HBP which are





thought to cause insulin resistance (possibly





through defects to glucose


GJA1
gap junction protein,

AKA CX43; Protein component of gap



alpha 1, 43 kD

junctions; major component of gap junctions in





the heart; may be important in synchronizing





heart contractions and in embryonic





development


GPR9
G protein-coupled
Chemokine
CXC chemokine receptor binds to SCYB10/IP-



receptor 9
receptor
10, SCYB9/MIG, and SCYB11/I-TAC.





Binding of chemokines to GPR9 results in





integrin activation, cytoskeletal changes and





chemotactic migration. Prominently expressed





in in vitro cultured effector/memory T cells and





plays a role in Th1 cell migration.


GRO1
GRO1 oncogene
cytokines-
AKA SCYB1; chemotactic for neutrophils



(melanoma growth
chemokines-



stimulating activity,
growth factors



alpha)


GRO2
GRO2 oncogene
cytokines-
AKA MIP2, SCYB2; Macrophage




chemokines-
inflammatory protein produced by monocytes




growth factors
and neutrophils


GSR
Glutathione
Oxidoreductase
AKA GR; GRASE; Maintains high levels of



reductase 1

reduced glutathione in the cytosol


GST
Glutathione S-
Metabolism
Catalyzes glutathione conjugation to metabolic



transferase
Enzyme
substrates to form more water-soluble,





excretable compounds; primer-probe set





nonspecific for all members of GST family


GSTA1 and
Glutathione S-
Metabolism
Catalyzes glutathione conjugation to metabolic


A2
transferase 1A1/2
Enzyme
substrates to form more water-soluble,





excretable compounds


GSTM1
Glutathione S-
Metabolism
Catalyzes glutathione conjugation to metabolic



transferase M1
Enzyme
substrates to form more water-soluble,





excretable compounds


GSTT1
Glutathione-S-
metabolism
Catalyzes the conjugation of reduced



Transferase, theta 1

glutathione to a wide number of exogenous and





endogenous hydrophobic electrophiles; has an





important role in human carcinogenesis


GYS1
glycogen synthase 1
Transferase/Glycogen
A key enzyme in the regulation of glycogen



(muscle)
metabolism
synthesis in the skeletal muscles of humans.





Typically stimulated by insulin, but in NIDDM





individuals GS is shown to be completely





resistant to insulin stimulation (decreased





activity and activation in muscle)


GZMB
Granzyme B
Proteinase/Proteinase
AKA CTLA1; Necessary for target cell lysis in




Inhibitor
cell-mediated immune responses. Crucial for





the rapid induction of target cell apoptosis by





cytotoxic T cells. Inhibition of the GZMB-





IGF2R (receptor for GZMB) interaction





prevented GZMB cell surface binding, uptake,





and the induction of apoptosis.


HIF1A
Hypoxia-inducible
Transcription
AKA MOP1; ARNT interacting protein;



factor 1, alpha
factor
mediates the transcription of oxygen regulated



subunit

genes; induced by hypoxia


HK2
hexokinase 2
hexokinase
Phosphorylates glucose into glucose-6-





phosphate. NIDDM patients have lower HK2





activity which may contribute to insulin





resistance. Similar action to GCK.


HLA-DRB1
Major
Histocompatibility
Binds antigen for presentation to CD4+ cells



histocompatibility



complex, class II,



DR beta 1


HMGIY
High mobility group
DNA binding-
Potential oncogene with MYC binding site at



protein, isoforms I
transcriptional
promoter region; involved in the transcription



and Y
regulation-
regulation of genes containing, or in close




oncogene
proximity to a+t-rich regions


HMOX1
Heme oxygenase
Enzyme/Redox
Endotoxin inducible



(decycling) 1


HSPA1A
Heat shock protein
Cell Signaling and
heat shock protein 70 kDa; Molecular



70
activation
chaperone, stabilizes AU rich mRNA


ICAM1
Intercellular
Cell Adhesion/
Endothelial cell surface molecule; regulates cell



adhesion molecule 1
Matrix Protein
adhesion and trafficking, unregulated during





cytokine stimulation


IFI16
gamma interferon
cell signaling and
Transcriptional repressor



inducible protein
activation



16


IFNA2
Interferon, alpha 2
cytokines-
interferon produced by macrophages with




chemokines-growth
antiviral effects




factors


IFNG
Interferon, Gamma
Cytokines/
Pro- and anti-inflammatory activity; TH1




Chemokines/
cytokine; nonspecific inflammatory mediator;




Growth Factors
produced by activated T-cells.


IGF1R
Insulin-like growth
cytokines-
Mediates insulin stimulated DNA synthesis;



factor 1 receptor
chemokines-
mediates IGF1 stimulated cell proliferation and




growth factors
differentiation


IGFBP3
Insulin-like growth

AKA IBP3; Expressed by vascular endothelial



factor binding

cells; may influence insulin-like growth factor



protein 3

activity


IL10
Interleukin 10
cytokines-
Anti-inflammatory; TH2; suppresses production




chemokines-growth
of proinflammatory cytokines




factors


IL12B
Interleukin 12 p40
cytokines-
Proinflammatory; mediator of innate immunity,




chemokines-growth
TH1 cytokine, requires co-stimulation with IL-




factors
18 to induce IFN-g


IL13
Interleukin 13
Cytokines/
Inhibits inflammatory cytokine production




Chemokines/




Growth Factors


IL15
Interleukin 15
Cytokines/
Proinflammatory; mediates T-cell activation,




Chemokines/
inhibits apoptosis, synergizes with IL-2 to




Growth Factors
induce IFN-g and TNF-a


IL18
Interleukin 18
cytokines-
Proinflammatory, TH1, innate and acquired




chemokines-growth
immunity, promotes apoptosis, requires co-




factors
stimulation with IL-1 or IL-2 to induce TH1





cytokines in T- and NK-cells


IL18BP
IL-18 Binding
cytokines-
Implicated in inhibition of early TH1 cytokine



Protein
chemokines-growth
responses




factors


IL18RI
Interleukin 19
Membrane protein
Receptor for interleukin 18; binding the agonist



receptor 1

leads to activation of NFKB-B; belongs to IL1





family but does not bind IL1A or IL1B.


IL1A
Interleukin 1, alpha
cytokines-
Proinflammatory; constitutively and inducibly




chemokines-growth
expressed in variety of cells. Generally




factors
cytosolic and released only during severe





inflammatory disease


IL1B
Interleukin 1, beta
cytokines-
Proinflammatory; constitutively and inducibly




chemokines-growth
expressed by many cell types, secreted




factors


IL1R1
interleukin 1
Cell signaling and
AKA: CD12 or IL1R1RA; Binds all three forms



receptor, type I
activation
of interleukin-1 (IL1A, IL1B and IL1RA).





Binding of agonist leads to NFKB activation


IL1RN
Interleukin 1
Cytokines/
IL1 receptor antagonist; Anti-inflammatory;



Receptor
Chemokines/
inhibits binding of IL-1 to IL-1 receptor by



Antagonist
Growth Factors
binding to receptor without stimulating IL-1-





like activity


IL2
Interleukin 2
Cytokines/
T-cell growth factor, expressed by activated T-




Chemokines/
cells, regulates lymphocyte activation and




Growth Factors
differentiation; inhibits apoptosis, TH1 cytokine


IL4
Interleukin 4
Cytokines/
Anti-inflammatory; TH2; suppresses




Chemokines/
proinflammatory cytokines, increases




Growth Factors
expression of IL-1RN, regulates lymphocyte





activation


IL5
Interleukin 5
Cytokines/
Eosinophil stimulatory factor; stimulates late B




Chemokines/
cell differentiation to secretion of Ig




Growth Factors


IL6
Interleukin 6
cytokines-
Pro- and anti-inflammatory activity, TH2



(interferon, beta 2)
chemokines-growth
cytokine, regulates hematopoietic system and




factors
activation of innate response


IL8
Interleukin 8
cytokines-
Proinflammatory, major secondary




chemokines-growth
inflammatory mediator, cell adhesion, signal




factors
transduction, cell-cell signaling, angiogenesis,





synthesized by a wide variety of cell types


INS
insulin
Insulin receptor
Decreases blood glucose concentration and




ligand
accelerates glycogen synthesis in the liver. Not





as critical in NIDDM as in IDDM.


IRF5
Interferon
Transcription
Regulates transcription of interferon genes



regulatory factor 5
Factor
through DNA sequence-specific binding.





Diverse roles include virus-mediated activation





of interferon, and modulation of cell growth,





differentiation, apoptosis, and immune system





activity.


IRS1
insulin receptor
signal
Positive regulation of insulin action. This



substrate 1
transduction/transmembrane
protein is activated when insulin binds to




receptor
insulin receptor - binds 85-kDa subunit of PI 3-




protein
K. decreased in skeletal muscle of obese





humans.


ITGAM
Integrin, alpha M;
Integrin
AKA; Complement receptor, type 3, alpha



complement

subunit; neutrophil adherence receptor; role in



receptor

adherence of neutrophils and monocytes to





activate endothelium


IVL
Involucrin
structural protein-
Component of the keratinocyte cross linked




peripheral plasma
envelope; first appears in the cytosol becoming




membrane protein
cross linked to membrane proteins by





transglutaminase


JUN
v-jun avian
transcription factor-
Proto-oncoprotein; component of transcription



sarcoma virus 17
DNA binding
factor AP-1 that interacts directly with target



oncogene homolog

DNA sequences to regulate gene expression


KAI1
Kangai 1
tumor suppressor
AKA SAR2, CD82, ST6: suppressor of





metastatic ability of prostate cancer cells


K-ALPHA-1
Alpha Tubulin,
microtubule
Major constituent of microtubules; binds 2



ubiquitous
peptide
molecules of GTP


KITLG
KIT ligand
Growth Factor
AKA Stem cell factor (SCF); mast cell growth





factor, implicated in fibrosis/cirrhosis due to





chronic liver inflammation


KLK2
Kallikrein 2,
protease-
AKA hGK-1: Glandular kallikrein; expression



prostatic
kallikrein
restricted mainly to the prostate.


KLK3
Kallikrein 3
protease-
AKA PSA: Kallikrein-like protease which




kallikrein
functions normally in liquefaction of seminal





fluid. Elevated in prostate cancer.


KRT14
Keratin 14
structural protein-
Type I keratin; associates with keratin 5;




differentiation-cell
component of intermediate filaments; several




shape
autosomal dominant blistering skin disorders





caused by gene defects


KRT16
Keratin 16
structural protein-
Type I keratin; component of intermediate




differentiation-cell
filaments; induced in skin conditions favoring




shape
enhanced proliferation or abnormal





differentiation


KRT19
Keratin 19
structural protein-
AKA K19: Type I epidermal keratin; may form




differentiation
intermediate filaments


KRT5
Keratin 5
structural protein-
AKA EBS2: 58 kD Type II keratin co-




differentiation
expressed with keratin 14, a 50 kD Type I





keratin, in stratified epithelium. KRT5





expression is a hallmark of mitotically active





keratinocytes and is the primary structural





component of the 10 nm intermediate filaments





of the mitotic epidermal basal cells.


KRT8
Keratin 8
structural protein-
AKA K8, CK8: Type II keratin; coexpressed




differentiation
with Keratin 18; involved in intermediate





filament formation


LGALS3
Lectin, galactoside-
Liver Health
AKA galectin 3; Cell growth regulation



binding, soluble, 3
Indicator


LGALS8
Lectin,
cell adhesion-
AKA PCTA-1: binds to beta galactoside;



Galactoside-
growth and
involved in biological processes such as cell



binding, soluble 8
differentiation
adhesion, cell growth regulation, inflammation,





immunomodulation, apoptosis and metastasis


LBP
Lipopolysaccharide
Membrane protein
Acute phase protein; membrane protein that



binding protein

binds to Lipid a moity of bacterial LPS


MADD
MAP-kinase
co-receptor
Associates with TNFR1 through a death



activating death

domain-death domain interaction; Over



domain

expression of MADD activates the MAP kinase





ERK2, and expression of the MADD death





domain stimulates both the ERK2 and JNK1





MAP kinases and induces the phosphorylation





of cytosolic phospholipase A2


MAP3K14
Mitogen-activated
kinase
Activator of NFKB1



protein kinase



kinase kinase 14


MAPK1
mitogen-activated
Transferase
AKA ERK2; May promote entry into the cell



protein kinase 1

cycle, growth factor responsive


MAPK8
Mitogen
kinase-stress
aka JNK1; mitogen activated protein kinase



Activated Protein
response-signal
regulates c-Jun in response to cell stress; UV



Kinase 8
transduction
irradiation of skin activates MAPK8


MDM2
Mdm2,
Oncogene/
Inhibits p53- and p73-mediated cell cycle arrest



transformed 3T3
Transcription
and apoptosis by binding its transcriptional



cell double minute
Factor
activation domain, resulting in tumorigenesis.



2, p53 binding

Permits the nuclear export of p53 and targets it



protein

for proteasome-mediated proteolysis.


MIF
Macrophage
Cell signaling and
AKA; GIF; lymphokine, regulators macrophage



migration
growth factor
functions through suppression of anti-



inhibitory factor

inflammatory effects of glucocorticoids


MMP1
Matrix
Proteinase/
aka Collagenase; cleaves collagens types I-III;



Metalloproteinase 1
Proteinase Inhibitor
plays a key role in remodeling occurring in both





normal & diseased conditions; transcriptionally





regulated by growth factors, hormones,





cytokines & cellular transformation


MMP2
Matrix
Proteinase/
aka Gelatinase; cleaves collagens types IV, V,



Metalloproteinase 2
Proteinase Inhibitor
VII and gelatin type I; produced by normal skin





fibroblasts; may play a role in regulation of





vascularization & the inflammatory response


MMP3
Matrix
Proteinase/
AKA stromelysin; degrades fibronectin, laminin



metalloproteinase 3
Proteinase Inhibitor
and gelatin


MMP9
Matrix
Proteinase/
AKA gelatinase B; degrades extracellular



metalloproteinase 9
Proteinase Inhibitor
matrix molecules, secreted by IL-8-stimulated





neutrophils


MP1
Metalloprotease 1
Proteinase/
Member of the pitrilysin family. A




Proteinase Inhibitor
metalloendoprotease. Could play a broad role





in general cellular regulation.


MRE11A
Meiotic
nuclease
Exonuclease involved in DNA double-strand



recombination (S. cerevisiae)

breaks repair



11



homolog A


MYC
V-myc avian
transcription factor-
Transcription factor that promotes cell



myelocytomatosis
oncogene
proliferation and transformation by activating



viral oncogene

growth-promoting genes; may also repress gene



homolog

expression


N33
Putative prostate
Tumor Suppressor
Integral membrane protein. Associated with



cancer tumor

homozygous deletion in metastatic prostate



suppressor

cancer.


NFKB1
Nuclear factor of
Transcription
p105 is the precursor of the p50 subunit of the



kappa light
Factor
nuclear factor NFKB, which binds to the kappa-



polypeptide gene

b consensus sequence located in the enhancer



enhancer in B-

region of genes involved in immune response



cells 1 (p105)

and acute phase reactions; the precursor does





not bind DNA itself


NFKBIB
Nuclear factor of
Transcription
Inhibits/regulates NFKB complex activity by



kappa light
Regulator
trapping NFKB in the cytoplasm.



polypeptide gene

Phosphorylated serine residues mark the



enhancer in B-

NFKBIB protein for destruction thereby



cells inhibitor,

allowing activation of the NFKB complex.



beta


NOS1
Mitric oxide
Enzyme/redox
Synthesizes nitric oxide from L-arginine and



synthase 1

molecular oxygen, regulates skeletal muscle



(neuronal)

vasoconstriction, body fluid homeostasis,





neuroendocrine physiology, smooth muscle





motility, and sexual function


NOS2A
Nitric oxide
Enzyme/Redox
AKA iNOS; produces NO which is



synthase 2A

bacteriocidal/tumoricidal


NOS3
Nitric oxide
Enzyme/redox
Enzyme found in endothelial cells mediating



synthase 3

smooth muscle relation; promotes clotting





through the activation of platelets.


NR1I2
Nuclear receptor
transcription
aka PAR2; Member of nuclear hormone



subfamily 1
activation factor-
receptor family of ligand-activated transcription




signal transduction-
factors; activates transcription of cytochrome P-




xenobiotic
450 genes




metabolism


NR1I3
Nuclear receptor
Metabolism
AKA Constitutive androstane receptor beta



subfamily 1,
Receptor/Transcription
(CAR); heterodimer with retinoid X receptor



group I, family 3
Factor
forms nuclear transcription factor; mediates





P450 induction by Phenobarbital-like inducers.


NRP1
Neuropilin 1
cell adhesion
AKA NRP, VEGF165R: A novel VEGF





receptor that modulates VEGF binding to KDR





(VEGF receptor) and subsequent bioactivity





and therefore may regulate VEGF-induced





angiogenesis; calcium-independent cell





adhesion molecule that function during the





formation of certain neuronal circuits


ORM1
Orosomucoid 1
Liver Health
AKA alpha 1 acid glycoprotein (AGP), acute




Indicator
phase inflammation protein


OXCT
3-oxoacid CoA
Transferase
OXCT catalyzes the reversible transfer of



transferase

coenzyme A from succinyl-CoA to acetoacetate





as the first step of ketolysis (ketone body





utilization) in extrahepatic tissues.


PART1
Prostate

Exhibits increased expression in LNCaP cells



androgen-

upon exposure to androgens



regulated



transcript 1


PCA3
Prostate cancer

AKA DD3: prostate specific; highly expressed



antigen 3

in prostate tumors


PCANAP7
Prostate cancer

AKA IPCA7: unknown function; co-expressed



associated protein 7

with known prostate cancer genes


PCK1
phosphoenolpyruvate
rate-limiting
Rate limiting enzyme for gluconeogenesis -



carboxykinase 1
gluconeogenic
plays a key role in the regulation of hepatic




enzyme
glucose output by insulin and glucagon. Over





expression in the liver results in increased





hepatic glucose production and hepatic insulin





resistance to glycogen synthe


PCNA
Proliferating Cell
DNA binding-DNA
Required for both DNA replication & repair;



Nuclear Antigen
replication-DNA
processivity factor for DNA polymerases delta




repair-cell
and epsilon




proliferation


PCTK1
PCTAIRE protein

Belongs to the SER/THR family of protein



kinase 1

kinases; CDC2/CDKX subfamily. May play a





role in signal transduction cascades in





terminally differentiated cells.


PDCD8
Programmed Cell
enzyme, reductase
The principal mitochondrial factor causing



Death 8

nuclear apoptosis. Independent of caspase



(apoptosis-

apoptosis.



inducing factor)


PDEF
Prostate
transcription factor
Acts as an androgen-independent transcriptional



epithelium

activator of the PSA promoter; directly interacts



specific Ets

with the DNA binding domain of androgen



transcription

receptor and enhances androgen-mediated



factor

activation of the PSA promoter


PF4
Platelet Factor 4
Chemokine
PF4 is released during platelet aggregation and



(SCYB4)

is chemotactic for neutrophils and monocytes.





PF4's major physiologic role appears to be





neutralization of heparin-like molecules on the





endothelial surface of blood vessels, thereby





inhibiting local antithrombin III activity and





promoting coagulation.


PI3
Proteinase
proteinase
aka SKALP; Proteinase inhibitor found in



inhibitor 3 skin
inhibitor-protein
epidermis of several inflammatory skin



derived
binding-
diseases; it's expression can be used as a marker




extracellular matrix
of skin irritancy


PIK3R1
phosphoinositide-
regulatory enzyme
Positive regulation of insulin action. Docks in



3-kinase,

IRS proteins and Gab1 - activity is required for



regulatory

insulin stimulated translocation of glucose



subunit,

transporters to the plasma membrane and



polypeptide 1

activation of glucose uptake.



(p85 alpha)


PLA2G7
Phospholipase A2,
Enzyme/Redox
Platelet activating factor



group VII (platelet



activating factor



acetylhydrolase,



plasma)


PLAT
Plasminogen
Protease
AKA TPA; Converts plasminogin to plasmin;



activator, tissue

involved in fibrinolysis and cell migration


PLAU
Plasminogen
Proteinase/
AKA uPA; cleaves plasminogen to plasmin (a



activator,
Proteinase Inhibitor
protease responsible for nonspecific



urokinase

extracellular matrix degradation)


PNKP
Polynucleotide
phosphatase
Catalyzes the 5-prime phosphorylation of



kinase 3′-

nucleic acids and can have associated 3-prime



phosphatase

phosphatase activity, predictive of an important





function in DNA repair following ionizing





radiation or oxidative damage


POV1
Prostate cancer

RNA expressed selectively in prostate tumor



overexpressed

samples



gene 1


PPARA
Peroxisome
Metabolism
Binds peroxisomal proliferators (ie fatty acids,



proliferator
Receptor
hypolipidemic drugs) & controls pathway for



activated receptor □

beta-oxidation of fatty acids


PPARG
peroxisome
transcription
The primary pharmacological target for the



proliferator-
factor/Ligand-
treatment of insulin resistance in NIDDM.



activated receptor,
dependent nuclear
Involved in glucose and lipid metabolism in



gamma
receptor
skeletal muscle.


PRKCB1
protein kinase C,
protein kinase
Negative regulation of insulin action. Activated



beta 1
C/protein
by hyperglycemia - increases phosphorylation




phosphorylation
of IRS-1 and reduces insulin receptor kinase





activity. Increased PKC activation may lead to





oxidative stress causing over expression of





TGF-beta and fibronectin


PSCA
Prostate stem cell
antigen
Prostate-specific cell surface antigen expressed



antigen

strongly by both androgen-dependent and -





independent tumors


PTEN
Phosphatase and
tumor suppressor
Tumor suppressor that modulates G1 cell cycle



tensin homolog

progression through negatively regulating the



(mutated in

PI3-kinase/Akt signaling pathway; one critical



multiple advanced

target of this signaling process is the cyclin-



cancers 1)

dependent kinase inhibitor p27 (CDKN1B).


PTGIS
Prostaglandin I2
Isomerase
AKA PGIS; PTGI; CYP8; CYP8A1; Converts



(prostacyclin)

prostaglandin h2 to prostacyclin (vasodilator);



synthase

cytochrome P450 family; imbalance of





prostacyclin may contribute to myocardial





infarction, stroke, atherosclerosis


PTGS2
Prostaglandin-
Enzyme/Redox
AKA COX2; Proinflammatory, member of



endoperoxide

arachidonic acid to prostanoid conversion



synthase 2

pathway; induced by proinflammatory





cytokines


PTPRC
protein tyrosine
Cell Marker
AKA CD45; mediates T-cell activation



phosphatase,



receptor type, C


PTX3
pentaxin-related

AKA TSG-14; Pentaxin 3; Similar to the



gene, rapidly

pentaxin subclass of inflammatory acute-phase



induced by IL-1

proteins; novel marker of inflammatory



beta

reactions


RAD52
RAD52 (S. cerevisiae)
DNA binding
Involved in DNA double-stranded break repair



homolog
proteinsor
and meiotic/mitotic recombination


RB1
Retinoblastoma 1
tumor suppressor
Regulator of cell growth; interacts with E2F-



(including

like transcription factor; a nuclear



osteosarcoma)

phosphoprotein with DNA binding activity;





interacts with histone deacetylase to repress





transcription


S100A7
S100 calcium-
calcium binding-
Member of S100 family of calcium binding



binding protein 7
epidermal
proteins; localized in the cytoplasm &/or




differentiation
nucleus of a wide range of cells; involved in the





regulation of cell cycle progression &





differentiation; markedly overexpressed in skin





lesions of psoriatic patients


SCYA2
Small inducible
Cytokine/Chemokine
AKA Monocyte chemotactic protein 1 (MCP1);



cytokine A2

recruits monocytes to areas of injury and





infection, unregulated in liver inflammation


SCYA3
small inducible
Chemokine
A “monokine” involved in the acute



cytokine A3

inflammatory state through the recruitment and



(MIP1a)

activation of polymorphonuclear leukocytes. A





major HIV-suppressive factor produced by





CD8-positive T cells.


SCYA5
small inducible
Chemokine
Binds to CCR1, CCR3, and CCR5 and is a



cytokine A5

Chemoattractant for blood monocytes, memory



(RANTES)

t helper cells and eosinophils. A major HIV-





suppressive factor produced by CD8-positive T





cells.


SCYB10
small inducible
Chemokine
A CXC subfamily chemokine. Binding of



cytokine

SCYB10 to receptor CXCR3/GPR9 results in



subfamily B (Cys-

stimulation of monocytes, natural killer and T-



X-Cys), member

cell migration, and modulation of adhesion



10

molecule expression. SCYB10 is Induced by





IFNg and may be a key mediator in IFNg





response.


SDF1
stromal cell-
Chemokine
Belongs to the CXC subfamily of the intercrine



derived factor 1

family, which activates leukocytes. SDF1 is the





primary ligand for CXCR4, a coreceptor with





CD4 for human immunodeficiency virus type 1





(HIV-1). SDF1 is a highly efficacious





lymphocyte Chemoattractant.


SELE
selectin E
Cell Adhesion
AKA ELAM; Expressed by cytokine-stimulated



(endothelial

endothelial cells; mediates adhesion of



adhesion molecule

neutrophils to the vascular lining



1)


SERPINB5
Serine proteinase
Proteinase/
Protease Inhibitor; Tumor suppressor,



inhibitor, clade B,
Proteinase Inhibitor/
especially for metastasis. Inhibits tumor



member 5
Tumor Suppressor
invasion by inhibiting cell motility.


SERPINE1
Serine (or
Proteinase/
Plasminogen activator inhibitor-1/PAI-1



cysteine) protease
Proteinase Inhibitor



inhibitor, clade B



(ovalbumin),



member 1


SFTPD
Surfactant,
Extracellular
AKA; PSPD; mannose-binding protein



pulmonary
Lipoprotein
associated with pulmonary surfactant



associated protein D


SLC2A2
solute carrier
glucose transporter
Glucose transporters expressed uniquely in b-



family 2

cells and liver. Transport glucose into the b-



(facilitated

cell. Typically under expressed in pancreatic



glucose

islet cells of individuals with NIDDM.



transporter),



member 2


SLC2A4
solute carrier
glucose transporter
Glucose transporter protein that is final



family 2

mediator in insulin-stimulated glucose uptake



(facilitated

(rate limiting for glucose uptake). Under



glucose

expression not important, but over expression in



transporter),

muscle and adipose tissue consistently shown to



member 4

increase glucose transport.


SMAC
Second
mitochondrial
Promotes caspase activation in cytochrome c/



mitochondria-
peptide
APAF-1/caspase 9 pathway of apoptosis



derived activator



of caspase


SOD2
superoxide
Oxidoreductase
Enzyme that scavenges and destroys free



dismutase 2,

radicals within mitochondria



mitochondrial


SRP19
Signal recognition

Responsible for signal-recognition-particle



particle 19 kD

assembly. SRP mediates the targeting of





proteins to the endoplasmic reticulum.


STAT1
Signal transducer
DNA-Binding
Binds to the IFN-Stimulated Response Element



and activator of
Protein
(ISRE) and to the GAS element; specifically



transcription 1,

required for interferon signaling. STAT1 can



91 kD

be activated by IFN-alpha, IFN-gamma, EGF,





PDGF and IL6. BRCA1-regulated genes





overexpressed in breast tumorigenesis included





STAT1 and JAK1.


STAT3
Signal
transcription factor
AKA APRF: Transcription factor for acute



transduction and

phase response genes; rapidly activated in



activator of

response to certain cytokines and growth



transcription 3

factors; binds to IL6 response elements


TACI
Tumor necrosis
cytokines-
T cell activating factor and calcium cyclophilin



factor receptor
chemokines-growth
modulator



superfamily,
factors



member 13b


TEK
tyrosine kinase,
Transferase
AKA TIE2, VMCM; Receptor for angiopoietin-



endothelial
Receptor
1; may regulate endothelial cell proliferation





and differentiation; involved in vascular





morphogenesis; TEK defects are associated





with venous malformations


TERT
Telomerase
transcriptase
Ribonucleoprotein which in vitro recognizes a



reverse

single-stranded G-rich telomere primer and



transcriptase

adds multiple telomeric repeats to its 3-prime





end by using an RNA template


TGFA
Transforming
Transferase/
Proinflammatory cytokine that is the primary



Growth Factor,
Signal
mediator of immune response and regulation,



Alpha
Transduction
Associated with TH1 responses, mediates host





response to bacterial stimuli, regulates cell





growth & differentiation; Negative regulation of





insulin action


TGFB1
Transforming
cytokines-
Pro- and anti-inflammatory activity, anti-



growth factor,
chemokines-growth
apoptotic; cell-cell signaling, can either inhibit



beta 1
factors
or stimulate cell growth


TGFB3
Transforming
Cell Signaling
Transmits signals through transmembrane



growth factor,

serine/threonine kinases. Increased expression



beta 3

of TGFB3 may contribute to the growth of





tumors.


TGFBR2
Transforming
Membrane protein
AKA: TGFR2; membrane protein involved in



growth factor,

cell signaling and activation, ser/thr protease;



beta receptor II

binds to DAXX.


TIMP1
tissue inhibitor of
Proteinase/
Irreversibly binds and inhibits



metalloproteinase 1
Proteinase Inhibitor
metalloproteinases, such as collagenase


TLR2
toll-like receptor 2
cell signaling and
mediator of petidoglycan and lipotechoic acid




activation
induced signaling


TLR4
toll-like receptor 4
cell signaling and
mediator of LPS induced signaling




activation


TLX3
T-cell leukemia,
Transcription
Member of the homeodomain family of DNA



homeobox 3
Factor
binding proteins. May be activated in T-ALL





leukomogenesis.


TNF
tumor necrosis
cytokine/tumor
Negative regulation of insulin action. Produced



factor
necrosis factor
in excess by adipose tissue of obese individuals -




receptor ligand
increases IRS-1 phosphorylation and





decreases insulin receptor kinase activity.


TNFA
Tumor Necrosis
Cytokines/
Pro-inflammatory; TH1 cytokine; Mediates host



Factor, Alpha
Chemokines/
response to bacterial stimulus; Regulates cell




Growth factors
growth & differentiation


TNFRSF11A
Tumor necrosis
receptor
Activates NFKB1; Important regulator of



factor receptor

interactions between T cells and dendritic cells



superfamily,



member 11a,



activator of NFKB


TNFRSF12
Tumor necrosis
receptor
Induces apoptosis and activates NF-kappaB;



factor receptor

contains a cytoplasmic death domain and



superfamily,

transmembrane domains



member 12



(translocating



chain-association



membrane



protein)


TNFSF13B
Tumor necrosis
cytokines-
B cell activating factor, TNF family



factor (ligand)
chemokines-growth



superfamily,
factors



member 13b


TNFSF5
Tumor necrosis
cytokines-
Ligand for CD40; expressed on the surface of T



factor (ligand)
chemokines-growth
cells. It regulates B cell function by engaging



superfamily,
factors
CD40 on the B cell surface.



member 5


TNFSF6
Tumor necrosis
cytokines-
AKA FasL; Ligand for FAS antigen; transduces



factor (ligand)
chemokines-growth
apoptotic signals into cells



superfamily,
factors



member 6


TOSO
Regulator of Fas-
receptor
Potent inhibitor of Fas induced apoptosis;



induced apoptosis

expression of TOSO, like that of FAS and





FASL, increases after T-cell activation,





followed by a decline and susceptibility to





apoptosis; hematopoietic cells expressing





TOSO resist anti-FAS-, FADD-, and TNF-





induced apoptosis without increasing expression





of the inhibitors of apoptosis BCL2 and





BCLXL; cells expressing TOSO and activated





by FAS have reduced CASP8 and increased





CFLAR expression, which inhibits CASP8





processing


TP53
Tumor protein 53
DNA binding
AKA P53: Activates expression of genes that




protein-cell cycle-
inhibit tumor growth and/or invasion; involved




tumor suppressor
in cell cycle regulation (required for growth





arrest at G1); inhibits cell growth through





activation of cell-cycle arrest and apoptosis


TRADD
TNFRSF1A-
co-receptor
Over expression of TRADD leads to 2 major



associated via

TNF-induced responses, apoptosis and



death domain

activation of NF-kappa-B


TRAF1
TNF receptor-
co-receptor
Interact with cytoplasmic domain of TNFR2



associated factor 1


TRAF2
TNF receptor-
co-receptor
Interact with cytoplasmic domain of TNFR2



associated factor 2


TREM1
Triggering
cell signaling and
Member of the lg superfamily; receptor



receptor expressed
activation
exclusively expressed on myeloid cells.



on myeloid cells 1

TREM1 mediates activation of neutrophils and





monocytes and may have a predominant role in





inflammatory responses.


UCP2
Uncoupling
Liver Health
Decouples oxidative phosphorylation from ATP



protein 2
Indicator
synthesis, linked to diabetes, obesity


UGT
UDP-
Metabolism
Catalyzes glucuronide conjugation to metabolic



Glucuronosyltransferase
Enzyme
substrates, primer-probe set nonspecific for all





members of UGT1 family


VCAM1
vascular cell
Cell Adhesion/
AKA L1CAM; CD106; INCAM-100; Cell



adhesion molecule 1
Matrix Protein
surface adhesion molecule specific for blood





leukocytes and some tumor cells; mediates





signal transduction; may be linked to the





development of atherosclerosis, and rheumatoid





arthritis


VDAC1
Voltage-
membrane protein
Functions as a voltage-gated pore of the outer



dependent anion

mitochondrial membrane; proapoptotic proteins



channel 1

BAX and BAK accelerate the opening of





VDAC allowing cytochrome c to enter, whereas





the antiapoptotic protein BCL2L1 closes VDAC





by binding directly to it


VEGF
vascular
cytokines-
VPF: Induces vascular permeability, endothelial



endothelial
chemokines-growth
cell proliferation, and angiogenesis. Produced



growth factor
factors
by monocytes


VWF
Von Willebrand
Coagulation Factor
Multimeric plasma glycoprotein active in the



factor

blood coagulation system as an antihemophilic





factor (VIIIC) carrier and platelet-vessel wall





mediator. Secreted by endothelial cells.


XRCC5
X-ray repair
helicase
Functions together with the DNA ligase IV-



complementing

XRCC4 complex in the repair of DNA double-



defective repair in

strand breaks



Chinese hamster



cells 5








Claims
  • 1.-195. (canceled)
  • 196. A method for evaluating infectious disease or inflammatory conditions related to infectious disease of a target population of cells affected by a first agent in relation to the infectious disease or inflammatory conditions related to infectious disease of the target population of cells affected by a second agent, based on a first sample from the target population cells to which the first agent has been administered and a second sample from the target population of cells to which the second agent has been administered, the samples providing a source of RNAs, the method comprising: deriving from the first sample a first profile data set and from the second sample a second profile data set, the first and second profile data sets each including a plurality of members, each member being a quantitative measure of the amount of a distinct RNA constituent in a panel of constituents selected so that measurement of the constituents enables evaluation of the infectious disease or inflammatory conditions related to infectious disease affected by the first agent in relation to the second agent, wherein such measure for each constituent is obtained under measurement conditions that are substantially repeatable; andproducing a first calibrated profile data set and a second calibrated profile data set for the panel, wherein (i) each member of the first calibrated profile data set is a function of a corresponding member of the first profile data set and a corresponding member of a baseline profile data set for the panel, and (ii) each member of the second calibrated profile data set is a function of a corresponding member of the second profile data set and a corresponding member of the baseline profile data set, wherein each member of the baseline data set is a normative measure, determined with respect to a relevant set of subjects, of the amount of one of the constituents in the panel, and wherein the baseline profile data set is related to the infectious disease or inflammatory conditions related to infectious disease to be evaluated, the first and second calibrated profile data sets being a comparison between the first profile data set and the baseline profile set and a comparison between the second profile data set and the baseline profile data set, thereby providing an evaluation of the infectious disease or inflammatory conditions related to infectious disease of the target population of cells affected by the first agent in relation to the infectious disease or inflammatory conditions related to infectious disease of the target population of cells affected by the second agent.
  • 197. A method according to claim 196, wherein the target population of cells has presumptive signs of a systemic infection including at least one of: elevated white blood cell count, elevated temperature, elevated heart rate, and elevated or reduced blood pressure, relative to medical standards.
  • 198. A method according to claim 196, wherein the target population of cells has presumptive signs of a systemic infection that are related to inflammatory conditions arising from at least one of: blunt or penetrating trauma, surgery, endocarditis, urinary tract infection, pneumonia, or dental or gynecological examinations or treatments.
  • 199. A method according to claim 196, wherein the first agent is a first drug and the second agent is a second drug.
  • 200. A method according to claim 196, wherein the first agent is a drug and the second agent is a complex mixture.
  • 201. A method according to claim 196, wherein the first agent is a drug and the second agent is a nutriceutical.
  • 202. A method according to claim 196, wherein the quantitative measure is determined by amplification, and the measurement conditions are such that efficiencies of amplification for all constituents differ by less than approximately 2 percent.
  • 203. A method according to claim 196, wherein the quantitative measure is determined by amplification, and the measurement conditions are such that efficiencies of amplification for all constituents differ by less than approximately 1 percent.
  • 204. A method according to claim 196, wherein the measurement conditions that are substantially repeatable are within a degree of repeatability of better than five percent.
  • 205. A method according to claim 196, wherein the measurement conditions that are substantially repeatable are within a degree of repeatability of better than three percent.
  • 206. A method according to claim 196, wherein the infectious disease or inflammatory conditions related to infectious disease being evaluated is with respect to a localized tissue of the subject and the first sample is derived from tissue or fluid of a type distinct from that of the localized tissue.
  • 207. A method according to claim 196, wherein the infectious disease or inflammatory conditions related to infectious disease is a microbial infection.
  • 208. A method according to claim 196, wherein the infectious disease or inflammatory conditions related to infectious disease is a bacterial infection.
  • 209. A method according to claim 196, wherein the infectious disease or inflammatory conditions related to infectious disease is a eukaryotic parasitic infection.
  • 210. A method according to claim 196, wherein the infectious disease or inflammatory conditions related to infectious disease is a viral infection.
  • 211. A method according to claim 196, wherein the infectious disease or inflammatory conditions related to infectious disease is a fungal infection.
  • 212. A method according to claim 196, wherein the infectious disease or inflammatory conditions related to infectious disease is systemic inflammatory response syndrome (SIRS).
  • 213. A method according to claim 196, wherein the infectious disease or inflammatory conditions related to infectious disease is bacteremia, viremia, or fungemia.
  • 214. A method according to claim 196, wherein the infectious disease or inflammatory conditions related to infectious disease is septicemia due to any class of microbe.
  • 215.-216. (canceled)
  • 217. A method according to claim 196, wherein the baseline profile data set is derived from one or more other samples from the same subject taken under circumstances different from those of the first sample.
  • 218. A method according to claim 196, wherein the baseline profile data set is derived from one or more other samples from the same subject taken under circumstances different from those of the second sample.
  • 219.-262. (canceled)
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/110,714 filed May 18, 2011, which is a continuation of U.S. application Ser. No. 10/742,458 filed Dec. 19, 2003, now abandoned, which claims priority benefit to U.S. Provisional Application No. 60/435,257 filed Dec. 19, 2002 and is a continuation-in-part of U.S. application Ser. No. 10/291,225 filed Nov. 8, 2002 (now U.S. Pat. No. 6,960,439), which is a continuation-in-part of U.S. application Ser. No. 09/821,850 filed Mar. 29, 2001 (now U.S. Pat. No. 6,692,916), which is continuation-in-pan of U.S. application Ser. No. 09/605,581 filed Jun. 28, 2000, now abandoned which claims priority benefit to U.S. application No. 60/141,542 filed Jun. 28, 1999 and 60/195,522 filed Apr. 7, 2000, which disclosures are herein incorporated by reference in their entirety.

Provisional Applications (3)
Number Date Country
60435257 Dec 2002 US
60141542 Jun 1999 US
60195522 Apr 2000 US
Continuations (2)
Number Date Country
Parent 13110714 May 2011 US
Child 14685373 US
Parent 10742458 Dec 2003 US
Child 13110714 US
Continuation in Parts (3)
Number Date Country
Parent 10291225 Nov 2002 US
Child 10742458 US
Parent 09821850 Mar 2001 US
Child 10291225 US
Parent 09605581 Jun 2000 US
Child 09821850 US