This invention relates to the identification of biological samples for use in in vitro fertilisation processes.
In vitro fertilisation is a process which is intended to enable a woman, apparently unable to conceive naturally, to gestate and give birth by implantation, in the womb, of an externally-fertilised egg. During the process, unfertilised eggs are collected from the patient's ovaries and admixed with sperm from the woman's partner for fertilisation purposes, the fertilised egg then being re-implanted in the womb for gestation. Clearly, it is important for the procedure to be administered under a rigorous and carefully-controlled protocol to ensure that the eggs are fertilised with sperm from the intended partner; various instances have been reported in the media concerning unintended and highly distressing errors which become apparent following birth. To this end, the Human Fertilisation and Embryology Authority operates a so-called “locked in process”, in which the procedure is witnessed at every stage by a person additional to the operative to ensure, as far as possible, that mistakes such as have been made in the past are not repeated in the future. The procedure is consequently expensive to operate and administer and, in any event, the possibility of human error cannot entirely be eliminated.
It is an object of the present invention to provide a procedure and associated apparatus which enables samples to be coded and identified, especially for use in in vitro fertilisation procedures, in a way which falls within the requirements of the regulatory authority, in the UK this being the Human Fertilisation and Embryology Authority.
In one aspect, the invention provides a method for coding and identification of biological samples for in vitro fertilisation, the method comprising the steps of applying to receptacles intended for unfertilised eggs and sperm, respectively, an identification code characteristic of the patient; placing unfertilised eggs and sperm, respectively, in the receptacles; storing, transporting and admixing the respective samples in receptacles which each carry the same code; and implanting the resulting embryo in the patient. Preferably, the identification codes are computer-readable, for example via a bench top reader, and information relating to the vessels and the samples stored therein is maintained in a database which tracks the vessels and samples and can provide information concerning their location at any given time.
Preferably, the identification code is based on RFTD technology, in which sample vessels are codified by the application of write-on or printable adhesive labels having an RFTD tag permanently attached thereto or incorporated therein, identification being by means of activation by radiation in the form of radio frequency waves, the tag emitting identification signals which can be received by the reader and stored in the database. The RFID tag may alternatively be incorporated in the sample vessel itself. In alternative embodiments, ID tags utilising electromagnetic frequencies other than radio frequencies, such as microwave frequencies, may be used. The database may be controlled by software which includes an anti-collision protocol to discriminate between data received from a plurality of vessels having different identification codes attached thereto.
In another aspect, the invention provides apparatus for identification of biological samples for in vitro fertilisation, the apparatus comprising storage vessels associated with an identification code; and means to read the code and transmit information relating to the samples to a database.
In this specification, the term “vessels” is intended to cover vessels for use at any stage of the overall in vitro fertilisation procedure between initial collection of the egg and sperm samples, storage thereof, admixing thereof for fertilisation purposes and transmission of the embryo to the patient for implantation. Also in this specification, the term “patient” is to be understood, as the context requires, as applying either to the woman or to the male partner.
In operation of the process and as reassurance for the patient, the patient can observe and verify that the initial samples are placed in vessels which correctly identify the patient and that the embryo is also thus identified.
The method of the invention is preferably carried out on a laboratory bench beneath which is located an antenna for transmission of activation radiation and receiving signals emitted by the RFTD tag. It is necessary, in order for the samples to remain viable, for the bench surface to be heated to a controlled temperature, preferably in the range 37-42° C. When handling or manipulating samples using conventional techniques, bench surfaces are typically made from stainless steel and heating thereof is by means of pipes disposed under and spaced from the benchtop and through which hot water is circulated, a heat-conductive plate, typically of aluminium or an aluminium alloy, being provided between the pipes and the surface material to equilibrate the temperature differences between the pipes and their surroundings and result in a substantially uniform surface temperature. However, with the method of the present invention, signals between the antenna and samples will not transmit through a metal benchtop, nor will they communicate with an RFTD tag in close proximity, typically 1 mm or less, to a metal surface. It is therefore necessary to utilise an electrically non-conducting material for the benchtop, but this militates against the use of temperature control measures which rely on thermal conduction from beneath the surface.
The reading means comprises an antenna and a reader for reading RFID tags. The antenna forms part of an electrical circuit that is configured to optimise the reading of RFTD tags on or over the surface. The circuit includes a transformer for providing power to the antenna and also an adjustable capacitor and an adjustable resistor. The transformer is configured to minimise any impedance mismatch between the reader and the antenna to improve the prospect of an RFID tag being readable on or over the entire surface. The adjustable capacitor is set to tune to resonance the coupling between the antenna and the RFTD tag over the surface. The adjustable resistor is set' to dampen the magnetic field that the antenna produces over the surface so that RFTD tags placed over the surface are not “swamped”.
According to another aspect, the invention provides a work station providing a warmed surface for supporting biological samples and comprising RFID tag reading means located beneath the surface for reading RFTD tags on or over the surface, wherein the station is structured such that warming of the surface is achieved without preventing reading by the reading means of an RFID tag associated with an item placed on the surface.
In one embodiment, the work station comprises a work area defined by an electrically-insulating or resistive plate beneath which in use is located an antenna for transmitting electromagnetic signals to sample receptacles placed on the work area and receiving identification signals therefrom, in which the plate is thermally conducting from one face to the other, the lower surface being in thermal contact with a temperature-controlled heating medium. The work area may be set in a workbench which may be made or example from stainless steel, the work area providing a discrete working zone for the antenna and manipulation operations carried out on the upper surface.
The plate may comprise glass coated on its lower surface with an electrically-conducting heating layer such as indium tin oxide as the heating medium. Alternatively, the plate may comprise upper and lower plate elements defining a cavity between them for containing a liquid heating medium, for example water at a thermostatically-controlled temperature. Preferably, the water is pumped and recirculated through the cavity at a sufficiently high flowrate to minimise the temperature drop across the work area; preferably also, the flow is laminar.
Embodiments of invention will now be described by way of example with reference to the accompanying drawings, of which:
With reference firstly to
In use, the antenna coil transmits activation signals to the RFID tag (13) which itself transmits identification signals back to the antenna, the signals being processed in the test equipment (17). The power supply (15) supplies energy to the indium tin oxide layer (14) for heating purposes; the heat generated is transmitted through the plate (11) to maintain the upper surface of the plate at the desired temperature.
With reference to
Number | Date | Country | Kind |
---|---|---|---|
0411577.0 | May 2004 | GB | national |
This application is a continuation of and claims priority to U.S. application Ser. No. 14/950,665, filed on Nov. 24, 2015, which is a division of U.S. application Ser. No. 11,597,532, filed on Nov. 24, 2006, now U.S. Pat. No. 9,211,540, which is a 371 of PCT International Application No. PCT/GB2005/002048, filed on May 24, 2005, which claims priority to United Kingdom Application No. 0411577.0, filed on May 24, 2004, the contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5036308 | Fockens | Jul 1991 | A |
5912622 | Endo et al. | Jun 1999 | A |
6184846 | Myers | Feb 2001 | B1 |
6677852 | Landt | Jan 2004 | B1 |
6817522 | Brignone | Nov 2004 | B2 |
6827279 | Teraura | Dec 2004 | B2 |
6838278 | Fortino | Jan 2005 | B2 |
7016325 | Beasley et al. | Mar 2006 | B2 |
7049961 | Maloney | May 2006 | B2 |
7072377 | Douglas-Hamilton | Jul 2006 | B2 |
7091864 | Veitch et al. | Aug 2006 | B2 |
7151757 | Beasley et al. | Dec 2006 | B2 |
7187286 | Morris et al. | Mar 2007 | B2 |
7194010 | Beasley et al. | Mar 2007 | B2 |
7251489 | Beasley et al. | Jul 2007 | B2 |
7299981 | Hickle et al. | Nov 2007 | B2 |
7359116 | Kenny | Apr 2008 | B2 |
7382258 | Oldham et al. | Jun 2008 | B2 |
7390648 | Palacios-Boyce | Jun 2008 | B1 |
7468161 | Reinhardt et al. | Dec 2008 | B2 |
7501947 | Youn | Mar 2009 | B2 |
7546126 | Beasley et al. | Jun 2009 | B2 |
7564356 | Youn | Jul 2009 | B1 |
7663487 | Morris et al. | Feb 2010 | B2 |
7699232 | Koyama et al. | Apr 2010 | B2 |
7746229 | Gräter et al. | Jun 2010 | B2 |
7825821 | Luechinger et al. | Nov 2010 | B2 |
7826938 | Kato et al. | Nov 2010 | B2 |
7848905 | Troxler et al. | Dec 2010 | B2 |
7880617 | Morris et al. | Feb 2011 | B2 |
7946503 | Koyama et al. | May 2011 | B2 |
7958791 | Zimmermann et al. | Jun 2011 | B2 |
7962544 | Torok et al. | Jun 2011 | B2 |
7991157 | Rhoads | Aug 2011 | B2 |
8003268 | Smith | Aug 2011 | B2 |
8049623 | Morris et al. | Nov 2011 | B2 |
8280345 | Twitchell, Jr. | Oct 2012 | B2 |
8301473 | Leslie | Oct 2012 | B2 |
8325637 | Salsbury et al. | Dec 2012 | B2 |
8360904 | Oleson et al. | Jan 2013 | B2 |
8430326 | Koyama et al. | Apr 2013 | B2 |
8451138 | Zimmermann | May 2013 | B2 |
8587286 | Inoue et al. | Nov 2013 | B2 |
8599011 | Schantz et al. | Dec 2013 | B2 |
8608535 | Weston et al. | Dec 2013 | B2 |
8665071 | Morris et al. | Mar 2014 | B2 |
8669848 | Morris et al. | Mar 2014 | B2 |
8669849 | Morris et al. | Mar 2014 | B2 |
8704634 | Fantana et al. | Apr 2014 | B2 |
8705423 | Salsbury et al. | Apr 2014 | B2 |
8706325 | Friedlander et al. | Apr 2014 | B2 |
8881231 | Barrus | Nov 2014 | B2 |
8922587 | Smyth | Dec 2014 | B2 |
8957778 | Adams et al. | Feb 2015 | B2 |
8983426 | Cermak et al. | Mar 2015 | B2 |
9019079 | Morris et al. | Apr 2015 | B2 |
9039533 | Barney et al. | May 2015 | B2 |
9058552 | Aubert et al. | Jun 2015 | B2 |
9143843 | De Luca et al. | Sep 2015 | B2 |
9154966 | Bennett et al. | Oct 2015 | B2 |
9211540 | Lansdowne | Dec 2015 | B2 |
9547782 | Lansdowne | Jan 2017 | B2 |
20020186968 | Tanaka | Dec 2002 | A1 |
20020196146 | Moore | Dec 2002 | A1 |
20060057555 | Damari | Mar 2006 | A1 |
20060199196 | O'Banion | Sep 2006 | A1 |
20060217185 | Cavagna | Sep 2006 | A1 |
20070196909 | Showalter et al. | Aug 2007 | A1 |
20080026807 | Moshal et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
1 467 620 | May 2010 | EP |
WO 0194016 | Dec 2001 | WO |
Entry |
---|
Magus Nilsson, “Vitrolife acquires IVF Limited and starts direct sales of fertility media in UK and Ireland”, Vitrolife Press Release, Nov. 2, 2009. |
Number | Date | Country | |
---|---|---|---|
20170087554 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11597532 | US | |
Child | 14950665 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14950665 | Nov 2015 | US |
Child | 15374607 | US |