1. Field of the Invention
This invention relates to method and apparatus for analyzing whole blood samples, and to methods and apparatus for evaluating constituents within a whole blood sample such as red blood cells, white blood cells, platelets, etc.
2. Description of the Prior Art
Physicians often utilize a blood test to determine the health of a patient. The complete Blood Count (CBC) is the most commonly performed clinical laboratory test in the United States and the world. Rapid identification and enumeration of the various components of biological fluids is an important diagnostic aim Minimal processing and handling of samples would contribute to the widespread use of such techniques.
Historically, a blood sample is taken from a patient and then sent to a laboratory for evaluation. Current CBC methods and instruments are highly evolved, using multi-channel, multi-detector flow system based technology. CBC instruments aspirate anticoagulated whole blood and divide it into several analysis streams to perform the different elements of the CBC. The elements include red blood cell count (RBC), hemoglobin (Hb), hematocrit (Hct) indices (MCV, MCH, MCHC), and red cell morphology; white blood cell count (WBC) and WBC differential count (enumeration of the different normal and abnormal white blood cell types; and platelet count.
The most common tests performed on blood samples taken from patients are the hematocrit (Hct), or the hemoglobin (Hb), which are often used interchangeably, depending upon the individual preference of the treating physician. They are used to determine anemia, to monitor conditions in which the blood loss occurs, chronic diseases, drug reactions, allergies, and the course of therapy.
The Hct of a sample of blood is defined as the ratio of the volume of erythrocytes (red blood cells) to that of the whole blood. It is expressed as a percentage or, preferably, as a decimal fraction. The units (L/L) are implied. The venous hematocrit agrees closely with the hematocrit obtained from a skin puncture; both are greater than the total body hematocrit.
The Hct and Hb are often provided along with the total red blood cell count (RBC) which is usually expressed in the form of a concentration—cells per unit volume of blood. Once these three values are known (Hct, Hb and RBC), three red blood cell indices are calculated. These indices are particularly useful in the morphologic characterization of anemias. These values include the mean cell volume (MCV) which is the average volume of red blood cells and is calculated from the Hct and the RBC. Utilizing the formula:
MCV=Hct×1,000/RBC(in millions per μl)
The mean cell hemoglobin (MCH) may also be calculated and is the content of Hb in the average red blood cell; it is calculated from the Hb concentration and the RBC utilizing the following formula:
Another index calculable from the Hb and Hct is the mean cell hemoglobin concentration (MCHC). This index is the average concentration of Hb in a given volume of packed red blood cells. It is calculated using the following formula:
Other characteristics of red blood cells which are available utilizing today's testing methods include values for the variability of the MCV about a mean value and estimates of abnormality in red blood cell morphology.
The above described indices are discussed in much greater detail in John Bernard Henry, M.D., Clinical Diagnosis And Management By Laboratory Methods, Part IV (17th edition 1984).
Modern clinical laboratory instrumentation has been built to make these primary analyses simultaneously in vitro on blood samples removed from the patient and the calculated indices are readily produced by these instruments. The calculated indices are often the preferred data on which physicians base their conclusions about a patient's condition.
A large number of testing methods, instrumentation, and techniques have been used in measuring and approximating values for Hct, Hb and RBC. The most common method used to determine the Hct (the ratio of packed red blood cells to volume of whole blood) involves centrifugation wherein a given blood sample is placed into a centrifuge for five minutes at approximately 10,000 to 12,000 g. The volume is then calculated by measuring the level of the red blood cells as a ratio of the total volume.
Methods used in the art to determine the Hb in a sample of blood include the cyanmethemoglobin method, the oxyhemoglobin method and the method of measuring iron content of the sample. Of the above three methods, the first (the cyanmethoglobin method) is recommended by the International Committee for Standardization in Hematology. That method involves diluting a sample of blood in a solution of potassium ferricyanide and potassium cyanide. The potassium ferricyanide oxidizes hemoglobins and potassium cyanide provides cyanide ions to form hemiglobincyanide which has a broad absorption maximum at a wavelength of approximately 540 nm. The absorbance of the overall solution can then be measured in a photometer or spectrophotometer at 540 nm and compared with that of a standard hemoglobincyanide solution.
A large number of testing methods techniques and instruments have also been used in measurement of WBC counts, WBC differential counts and platelet counts. Rather than attempting to review the entire filed, refer to Henry (Ibid.)
Fully automated blood analysis systems are usually flow based and can cost more that $300,000. The systems require extensive calibration and control, maintenance, skilled operators and they have substantial costs associated with reagents, consumables and disposables. A large proportion of blood specimens processed by the systems requires further testing, depending of the laboratory policy regarding “flagging” criteria for certain findings and typically is from 10 to 50% of the samples. Retesting most frequently is required for direct visualization by a technologist, of abnormal RBC morphology or of the WBC differential due to an abnormal distribution of cell types or cells whose origin could be from hematologic or other malignancies or viral diseases. The additional testing includes retrieving the blood tube, removing blood from the tube and preparing and staining a smear on a glass slide, followed by visualization and analysis of the cells by a skilled technologist. The follow-up tests costs up to three times that of the initial instrumental analysis.
For follow-up, the sample is evaluated by smearing a small amount of blood on a slide, drying, fixing and staining it and then examination of the smear under a microscope. Unfortunately, the accuracy and reliability of the results depends largely on the technician's experience and technique. Additionally, blood smears are labor intensive and costly. Although the preparation and staining can be automated, examination remains a manual task.
A known reference method for evaluating a whole blood sample involves diluting a volume of whole blood, placing it within a “counting chamber”, and manually evaluating the constituent cells within the diluted sample. Dilution is necessary because the number and concentration of the red blood cells (RBCs) in whole blood vastly outnumber other constituent cells. To determine a WBC count, the whole blood sample must be diluted within a range of about one part blood to twenty parts diluent (1:20) up to a dilution of approximately 1:256, depending upon the exact technique used, and it is also generally necessary to selectively lyse the RBCs with one or more reagents. Lysing the RBCs effectively removes them from view so that the WBCs can be seen. To determine a platelet count, the blood sample must be diluted within a range of about 1:100 to approximately 1:50,000. Platelet counts do not, however, require a lysis of the RBCs in the sample. A disadvantage of this method of evaluating a whole blood sample is that the dilution process is time consuming and expensive. In addition, adding diluents to the whole blood sample increases the error probability within the sample data.
A modern method for evaluating a blood sample is impedance or optical flow cytometry. Flow cytometry involves circulating a diluted blood sample through one or more small diameter orifices, some with reagent addition streams flowing into them, each adjacent to an impedance type or an optical type sensor which evaluates the constituent cells as they pass through the orifice in single file. Different constituents may require different flow streams for their detection and estimation. For example, the blood sample must be diluted to mitigate the overwhelming number of the RBCs relative to the WBCs and the platelets for counting of each of these constituents. Further, separate streams of flow may be required for differentiation of white blood cells in order to do WBC differential counts. Each such stream imposes requirements for stream separation by valves or other means, pumps and detection devices. There are many variations of such processes in different flow based CBC instruments but all add complexity, numbers of moving parts, opportunities for component failure, needs for maintenance and costs. In addition, fluidics are required for different reagents to be added to different streams. Although more expedient and consistent than the above described reference methods, flow cytometry also possesses numerous disadvantages. Some of those disadvantages stem from the plumbing required to carry the sample to, and the fluid controls necessary to control the fluid flow rate through, the sensor means. The precise control of the sample flow is essential to the operation of the flow cytometer. The plumbing within flow cytometers may leak, potentially compromising the accuracy and the safety of the equipment. The fluid flow controls and dilution equipment, on the other hand, require periodic recalibration. The need for recalibration illustrates the potential for inaccurate results and the undesirable operating costs that exist with many presently available hematology analyzers which use flow cytometers. Another disadvantage is the volume of reagents required. Because of the large dilution ratios employed, correspondingly large volumes of liquid reagents are necessary. The large reagent volume increases the cost of the testing and creates a waste disposal problem.
Another approach to cellular analysis is volumetric capillary scanning as outlined in U.S. Pat. Nos. 5,547,849 and 5,585,246 for example, wherein a relatively undiluted sample of whole blood is placed into a capillary of known volume and thickness and is examined while the blood is in a quiescent state. This technique deals with the presence of the RBCs by limiting the scanning wavelengths to those with which the RBCs appear relatively transparent, and it requires that the sample be treated so that the RBCs do not aggregate during the measurement process. Thus, this technique is limited to the use of longer wavelength fluorescence, and there is no provision for the examination of RBCs and platelets or the examination of any cellular morphology.
U.S. Pat. No. 5,948,686 describes a method and apparatus for use in examining and obtaining information from a quiescent substantially undiluted anti-coagulated whole blood sample which is contained in a chamber having a top and bottom. Generally, the only reagents used were dyes, stains and anticoagulants, and these reagents were not added for the purpose of diluting the sample but rather were added to produce a reaction, an effect, or the like that facilitates the test at hand.
According to the invention, a method for evaluating constituents in undiluted anti-coagulated whole blood included the steps of: a) providing a sample chamber; b) admixing a sensible colorant with the sample of whole blood; c) inserting the admixed sample into the sample chamber; d) quiescently holding the admixed sample within the chamber until rouleaux and lacunae form within the sample; and e) evaluating a target constituent disposed within the lacunae.
The invention is directed to an improved method of identifying the elements of a blood sample. The method includes placing an aliquot of blood on a substrate such as a coverslip or another transparent support or platform. The blood is allowed to stand and cells to settle to form a layer or matrix and then using inverted microscopy to identify the elements in the sample. Various forms of illumination may be used alone or in multiple combinations. The method improves the accuracy due to homogenous distribution of formed elements in the wet drop or aliquot, simplifies the method, lowers the cost of the test and results in a shortened analytical cycle time.
An object of the present invention is to provide an improved method for identifying the elements in a blood sample using inverted microscopy.
It is a further object of the invention to use a darkfield (epi-illuminated) reflectance inverted microscopy by itself or in combination with angled brightfield or other systems of direct transmission illumination.
It is an object of this invention to provide lower cost instrumentation, which provides all the main parameters of the CBC and the WBC differential.
It is another object of the present invention to provide instrumentation, which lowers consumable and reagent costs, along with greater throughput, and less follow-up testing which in return requires less operator time and skill.
Other objects, features and advantages of the present invention will become more apparent as the description proceeds with reference to the accompanying drawings, wherein:
Generally, the invention includes a new straightforward method of preparing a whole blood sample, in which a homogeneous monolayer distribution of RBCs, WBCs, and platelets is obtained from an aliquot of blood. Basically, an aliquot of anticoagulated blood is diluted with a stain reagent or other diluent and the diluted aliquot is placed onto a transparent substrate such as a coverslip, which may be glass or plastic. A droplet forms naturally, but may be constrained by external forces. Within seconds, cells settle to the surface of the coverslip. The cells do not overlap, but form a layer which can be easily viewed on an inverted microscope. The microscopic appearance of these preparations is similar to that of a well-prepared “smear” for a manual WBC differential count. The drop method described herein should have an advantage over the “smear” in that a homogeneous distribution of the cells is visible as opposed to selective distribution of some cells at the feather edge and lateral margins of glass slide “wedge” preparations. Also the morphology of the white cells and red cells is not altered as it can be in a smearing process which leaves flattened and dried cells on the surface of the glass slide. The central pallor and natural shape of the red cells is readily observable as are features of certain white blood cells such as the vibrational motion of their granules, which are never seen in conventional smears.
As shown in
The invention involves employing inverted darkfield (epi-illuminated) reflectance microspectrophotometry and image analysis to analyze formed elements in various fluids. Other illumination can be employed separately or together with the above. This approach eliminates many of the problems that were intrinsic in the prior art methods including air drying and other steps in slide preparation, or steps in the staining and the viewing of the cells, etc. It further assures the homogeneous distribution of cells, a known deficiency of the conventional smears that adversely affects accuracy. For instance it avoids the irregular distribution of red cells and white cells of different sizes and densities that occur during preparation of an ordinary smear.
More specifically with reference to
An inverted microscope 20 is shown in
Several modes of illumination can be used to observe the components of the blood as shown in
In reflected darkfield illumination as shown in
In reflected illumination as illustrated in
When using transmitted light as shown in
There can be various combinations of the illumination modes described above. The optimal illumination condition for observing certain elements of the sample could, for example, consist of both a reflected mode and a transmitted mode turned on simultaneously. The angles of illumination can also be altered as best determined for each type of sample and each dilution. At times, it may be desired to add dispersing agents, colloidal agents, etc.
Specimen:
An anticoagulated blood specimen (using heparin or EDTA as anticoagulant) was collected from 1) a finger stick or 2) venous blood by phlebotomy into a Becton Dickenson vacutainer (such as BD #8002561).
Specimen Processing:
Before analyzing the specimen, it should be kept at ambient temperature with a gentle rocking action, as with conventional automated CBC instruments. An aliquot was aspirated from the blood sample. The aliquot is preferably 1 drop or about 25 microliters, from a range of 10 microliters to 200 microliters.
Any of the following can then be performed:
When mixing aliquots, the volume of blood to buffer/stain may be 1:1 to 1:20 or greater, preferably 1:9 (blood:buffer/stain). The mixture was maintained at room temperature with gentle rocking. When using stain, sufficient time (1-10 minutes) should be allowed for the stain to react with the cells, preferably about 1 minute.
Preparation of Sample on Substrate:
One drop (5 to 100 microliters, preferably 50 microliter) of mixture was transferred to an ultrathin glass substrate (for example a coverslip, No. 0 or No. 00 thickness, 22×40 mm, Erie Scientific, Portsmouth N.H.). A drop was maintained on a slide at constant ambient temperature and humidity. Sufficient time (10 seconds to 2 minutes) was allowed, preferably 30 seconds, for cells to form a layer at the base in which there is very little motion of cells, i.e. very slow addition of new cells to the monolayer, layer or matrix at the base of the drop.
There is a tradeoff between dilution and time for the formation of a monolayer or layer suitable for cell counting, due to the eventual forming of a confluent layer of cells. Less dilution means that a confluent layer will form more quickly on the bottom.
These images illustrate the time course in the settling of cells into the plane of focus. The time course will depend on the dilution. There will, for a given dilution, be an optimal time for the counting of the different cell types. In this set of images there is a clear distinction between the red 80 and white blood cells 82.
Using the above techniques and equipment,
In
Computing the Elements of a Complete Blood Count:
The images formed by the inverted microscope optics can be observed by a video camera (either color or black and white). The illumination source could be white light or one or more individual colors. The image from the video camera can be turned into a digital image. Multiple fields of view can be observed by moving the substrate. For example a motor controlled stage could move the substrate to observe a sufficient area of the drop to provide an analysis of sufficient numbers of each of the elements of the CBC. One or more images can be digitized from each field of view. For each image a single illumination mode, or a combination of modes can be applied while an image is digitized. One or more magnifications (i.e. objectives) can be used for each field of view. A single color, or multiple colors or white light can be applied while an image is digitized. Several images, using different illumination modes and colors (or in various combinations) could be digitized over time as the color or illumination mode is changed.
One mode of acquiring images would be transmitted angled illumination and reflected darkfield illumination, either separately, sequentially, or simultaneously depending upon the magnification, the volume and shape of the specimen drop, and the cell types or cell characteristics being analyzed. Using the resulting images, computer programs or human observers of the images can determine the elements of the CBC. Red blood cell and white blood cell counts can be determined. Platelet counts can be determined. The types of white blood cells can be determined. Other characteristics of the cells (such as hemoglobin content or granules in white blood cells) can be observed and analyzed.
Using these counts and cell characteristics, the following parameters could be determined:
Red Blood Cell (RBC) Parameters:
Same principle applies as with RBC, i.e. direct counting and the empirical relationship between the volume of the drop and the platelets in the layer.
From these basic parameter, several different embodiments are possible. Time is a factor in selecting a dilution. For example, a filed of view could be analyzed at a given time after a drop has been placed on the substrate, while using a lower dilution that would result in more than one cell layer forming. At a short time interval the cells would not yet be confluent, making the analysis easier. Knowing the time interval, the dilution, and the pattern of settling over time, total concentrations of the observed elements could be calculated.
In other embodiment multiple drops could be placed on a substrate. Each drop could have its own dilution; each drop could be stained or unstained, and each drop could be a different size.
In another embodiment, an aliquot could be lysed to eliminate the red blood cell elements. This would allow for the formation of a droplet of the substrate that would have a high density of white blood cells per unit area.
In another embodiment, a dilution factor could be chosen so that a droplet would never attain confluence after the elements settled on the substrate. Knowing the dilution and aliquot sizes, the most accurate possible calculation of the various elements of the blood sample could be calculated.
The foregoing description has been limited to a few embodiments of the invention. It will be apparent, however, that variations and modifications can be made to the invention, with the attainment of some or all of the advantages. Therefore, it is the object of the claims to cover all such variations and modifications as come within the true spirit and scope of the invention.
This application claims priority to U.S. Patent Appln. Ser. No. 60/544,377, filed on Feb. 13, 2004 which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3437395 | Rosenberger et al. | Apr 1969 | A |
3454337 | Wein et al. | Jul 1969 | A |
3503684 | Norgren et al. | Mar 1970 | A |
3770349 | Legorreta-Sanchez | Nov 1973 | A |
3888206 | Faulkner | Jun 1975 | A |
3916205 | Kleinerman | Oct 1975 | A |
3997838 | Shamos et al. | Dec 1976 | A |
4125828 | Resnick et al. | Nov 1978 | A |
4207554 | Resnick et al. | Jun 1980 | A |
4596035 | Gershman et al. | Jun 1986 | A |
4891364 | Kubodera et al. | Jan 1990 | A |
5114350 | Hewett | May 1992 | A |
5378633 | von Behrens et al. | Jan 1995 | A |
5407794 | Kass | Apr 1995 | A |
5578709 | Woiszwillo | Nov 1996 | A |
5585246 | Dubrow et al. | Dec 1996 | A |
5742380 | Ronn | Apr 1998 | A |
5948686 | Wardlaw | Sep 1999 | A |
6055060 | Bolduan et al. | Apr 2000 | A |
6151405 | Douglass et al. | Nov 2000 | A |
6201607 | Roth et al. | Mar 2001 | B1 |
6235536 | Wardlaw | May 2001 | B1 |
6249344 | Virag | Jun 2001 | B1 |
6251615 | Oberhardt | Jun 2001 | B1 |
6350613 | Wardlaw et al. | Feb 2002 | B1 |
6819484 | Aono et al. | Nov 2004 | B2 |
6869570 | Wardlaw | Mar 2005 | B2 |
7270801 | Weber et al. | Sep 2007 | B2 |
20020041371 | Shepherd et al. | Apr 2002 | A1 |
20020055178 | Wardlaw | May 2002 | A1 |
20020061602 | Buechler et al. | May 2002 | A1 |
20020077536 | Diab et al. | Jun 2002 | A1 |
20020122168 | Garcia-Rubio et al. | Sep 2002 | A1 |
20020167668 | Voelkel | Nov 2002 | A1 |
20040029213 | Callahan et al. | Feb 2004 | A1 |
20040058311 | Fletcher et al. | Mar 2004 | A1 |
20040156037 | Mawhirt et al. | Aug 2004 | A1 |
20060276411 | Simard et al. | Dec 2006 | A1 |
20070248976 | Harding | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
63-073149 | Apr 1988 | JP |
07-020650 | Jan 1995 | JP |
H08-507806 | Aug 1996 | JP |
09-033411 | Feb 1997 | JP |
2009-033411 | Feb 1997 | JP |
09-089774 | Apr 1997 | JP |
10-185803 | Jul 1998 | JP |
H10-185803 | Jul 1998 | JP |
11-326208 | Nov 1999 | JP |
H 11-515095 | Dec 1999 | JP |
2000-500573 | Jan 2000 | JP |
2005-00573 | Jan 2000 | JP |
2000500573 | Jan 2000 | JP |
2001-174456 | Jun 2001 | JP |
2001-518186 | Oct 2001 | JP |
2002-516982 | Jun 2002 | JP |
2002516982 | Jun 2002 | JP |
9420856 | Sep 1994 | WO |
WO 9709616 | Mar 1997 | WO |
WO 9844333 | Oct 1998 | WO |
Entry |
---|
Sanders et al. “A High Yield Technique for Preparing Cells Fixed in Suspension for Scanning Electron Microscopy”, The Journal of Cell Biology, vol. 67, 1975, pp. 476-480. |
M. Joan Dunlop et al., “Kinetics of Adhesive Interaction In-Vitro of Human Erythrocytes in Plasma,” Microvascular Research, 28(1): 62-74 (1984). |
H. M. Aus et al., “Bone Marrow Cell Scene Segmentation by Computer-Aided Color Cytophotometry,” The Journal of Histochemistry and Cytochemistry, vol. 25, No. 7, pp. 662-667 (1977). |
James E. Green, “A Practical Application of Computer Pattern Recognition Research the Abbott ADC-500 Differential Classifier,” The Journal of Histochemistry and Cytochemistry, vol. 27, No. 1, pp. 160-173 (1979). |
John F. Brenner et al., “An Automated Microscope for Cytologic Research a Preliminary Evaluation,” The Journal of Histochemistry and Cytochemistry, vol. 24, No. 1, pp. 100-111 (1976). |
Judith L. Larosa and James D. Cawley, Fractal Dimension of Alumina Aggregates Grown in Two Dimensions, Journal of the American Ceramic Society, vol. 75, No. 7, Jul. 1992. |
Rogers, C., “Blood Sample Preparation for Automated Differential Systems,” American Journal of Medical Technology, 39(11):435-442 (1973). |
Dunlop et al., “Kinetics of Adhesive Interaction In-Vitro of Human Erythrocytes in Plasma,” Microvascular Research 28(1): 62-74 (1984). |
International Search Report for PCT Application No. PCT/US2005/004597, dated Jun. 27, 2005. |
Written Opinion of the International Searching Authority for PCT Application No. PCT/US2005/004597. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2005/004597, dated Aug. 14, 2006. |
Translation of Notice of Allowance issued in Japanese application No. 2010-118064, drafted on Jun. 13, 2012. |
De Bault, L.E., “Evaluation of a Cytocentrifuge Technique Effects on Quantitative Determination of Feulgen-Deoxyribonucleic Acid and Total Dry Mass of Human Leukemic Cells,” Journal of Histochemisty and Cytochemistry 20(9), pp. 703-709 (1972). |
Simmons, Arthur, “Erythrocytes,” Technical Hematology (J.B. Lippincott, 1980), pp. 48-52. |
Koss, Leopold G., Diagnostic Cytology and Its Histopathologic Bases, vol. 2 (J.B. Lippincott, 1992, 4th Ed.), pp. 1463-1469. |
LaRosa et al., “Fractal Dimension of Alumina Aggregates Grown in Two Dimensions,” Journal of the American Ceramic Society 75(7), pp. 1981-1984 (1992). |
McClatchey, Kenneth D. (ed.), Clinical Laboratory Medicine (Williams & Wilkins, 1994), p. 1723. |
StatSpin, CytoFuge 2 Cytocentrifuge System Operator's Manual, 1998. |
Collarini et al., “A novel method for depositing erythroid cells onto glass slides for fetal cell analysis,” Cytometry 45(4), pp. 304-309 (2001). |
Seiter, C., et al., “Contact Angles: New Methods and Measurements”, American Laboratory, p. 26 (Feb. 2002). |
National Clinical Target Validation Laboratory, Standard Operating Procedures (SOP)for the Preparation of Cytospin Slides of Peripheral Blood Mononuclear Cells (PBMCs)Isolated from Venous Blood, 2006. |
Hanes, Heidi, “Cytomorphology Smears for Body Fluids Cytospin Method,” 2009, downloaded from internet address http://www.docstoc.com/docs/90095311/Cytomorphology-smears-for-body-fluids. |
“Csf Information and Courses from MediaLab, Inc.,” document downloaded from internet address http://www.medialabinc.net/csf-keyword.aspx on Feb. 24, 2012. |
“Shandon Cytospin 4 Cytocentrifuge,” document downloaded from internet address https://www.harlowscientific.com/userfiles/file/Equipment%20Brochures/Thermo%20Shandon%20Cytospin%204%20cytofuge%20clinical%20centrifuge%20brochure%20harlowscientific.pdf on Feb. 24, 2012. |
Translation of Office Action in JP Patent Application No. 2006-553311, dated Feb. 28, 2009. |
Translation of Office Action in JP Patent Application No. 2006-553311, dated Oct. 24, 2009. |
Translation of Office Action in JP Patent Application No. 2006-553311, dated Jul. 6, 2010. |
Translation of Office Action in JP Patent Application No. 2010-118604, dated Apr. 19, 2011. |
Translation of Office Action in JP Patent Application No. 2010-118604, dated Nov. 29, 2011. |
Bacus, J. et al., “Image Processing for Automated Erythrocyte Classification”, The Journal of Histochemistry and Cytochemistry, 24: 195-201 (1976). |
Bacus, J. et al., “An Automated Method of Differential Red Blood Cell Classification with Application to the Diagnosis of Anemia”, The Journal of Histochemistry and Cytochemistry 25: 614-32 (1977). |
Bacus, J., “Quantitative Morphological Analysis of Red Blood Cells,” Blood Cells 6: 295-314 (1980). |
Bacus, J., “Digital Image Processing Measurements of Red Blood Cell Size and Hemoglobin Content,” Advances in Hematological Methods: The Blood Count, Ch. 14, pp. 157-81 (1982). |
Bacus, J., “Quantitative Red Cell Morphology,” Monogr. Clin. Cytol. 9: 1-27 (1984). |
Bacus, J., “Cytometric approaches to red blood cells,” Pure & Appl. Chem. 57: 593-98 (1985). |
Number | Date | Country | |
---|---|---|---|
20080138852 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
60544377 | Feb 2004 | US |