IDENTIFICATION OF GENE EXPRESSION AS A PREDICTIVE BIOMARKER FOR LKB1 STATUS

Abstract
Provided herein are methods for predicting the LKB1 status of a patient or a biological sample, comprising the measurement of particular gene expression levels relative to a set of reference levels that represent the gene expression level of a biological wild-type sample without LKB1 gene or protein loss or mutation and the gene expression level of a reference sample with LKB1 gene or protein loss or mutation. Further provided herein are methods for treating and/or preventing a cancer or a tumor syndrome in a patient, comprising administering an effective amount of a TOR kinase inhibitor to a patient having cancer or a tumor syndrome, characterized by particular gene expression levels.
Description
1. FIELD

Provided herein are methods for predicting the LKB1 status of a patient or a biological sample, comprising the measurement of particular gene expression levels relative to a set of reference levels that represent the gene expression level of a biological wild-type sample without LKB1 gene or protein loss or mutation and the gene expression level of a reference sample with LKB1 gene or protein loss or mutation. Further provided herein are methods for treating and/or preventing a cancer or a tumor syndrome in a patient, comprising administering an effective amount of a TOR kinase inhibitor to a patient having cancer or a tumor syndrome, characterized by particular gene expression levels.


2. BACKGROUND

The connection between abnormal protein phosphorylation and the cause or consequence of diseases has been known for over 20 years. Accordingly, protein kinases have become a very important group of drug targets. See Cohen, Nat. Rev. Drug Disc., 1:309-315 (2002), Grimmiger et al. Nat. Rev. Drug Disc. 9(12):956-970 (2010). Various protein kinase inhibitors have been used clinically in the treatment of a wide variety of diseases, such as cancer and chronic inflammatory diseases, including diabetes and stroke. See Cohen, Eur. J. Biochem., 268:5001-5010 (2001), Protein Kinase Inhibitors for the Treatment of Disease: The Promise and the Problems, Handbook of Experimental Pharmacology, Springer Berlin Heidelberg, 167 (2005).


The protein kinases belong to a large and diverse family of enzymes that catalyze protein phosphorylation and play a critical role in cellular signaling. Protein kinases may exert positive or negative regulatory effects, depending upon their target protein. Protein kinases are involved in specific signaling pathways which regulate cell functions such as, but not limited to, metabolism, cell cycle progression, cell adhesion, vascular function, apoptosis, and angiogenesis. Malfunctions of cellular signaling have been associated with many diseases, the most characterized of which include cancer and diabetes. The regulation of signal transduction by cytokines and the association of signal molecules with protooncogenes and tumor suppressor genes have been well documented. Similarly, the connection between diabetes and related conditions, and deregulated levels of protein kinases, has been demonstrated. See e.g., Sridhar et al. Pharm. Res. 17(11):1345-1353 (2000). Viral infections and the conditions related thereto have also been associated with the regulation of protein kinases. Park et al. Cell 101(7): 777-787 (2000).


Protein kinases can be divided into broad groups based upon the identity of the amino acid(s) that they target (serine/threonine, tyrosine, lysine, and histidine). For example, tyrosine kinases include receptor tyrosine kinases (RTKs), such as growth factors and non-receptor tyrosine kinases, such as the src kinase family. There are also dual-specific protein kinases that target both tyrosine and serine/threonine, such as cyclin dependent kinases (CDKs) and mitogen-activated protein kinases (MAPKs).


Because protein kinases regulate nearly every cellular process, including metabolism, cell proliferation, cell differentiation, and cell survival, they are attractive targets for therapeutic intervention for various disease states. For example, cell-cycle control and angiogenesis, in which protein kinases play a pivotal role are cellular processes associated with numerous disease conditions such as, but not limited to, cancer, inflammatory diseases, abnormal angiogenesis and diseases related thereto, atherosclerosis, macular degeneration, diabetes, obesity, and pain.


Protein kinases have become attractive targets for the treatment of cancers. Fabbro et al. Pharm. Ther. 93:79-98 (2002). It has been proposed that the involvement of protein kinases in the development of human malignancies may occur by: (1) genomic rearrangements (e.g., BCR-ABL in chronic myelogenous leukemia), (2) mutations leading to constitutively active kinase activity, such as acute myelogenous leukemia and gastrointestinal tumors, (3) deregulation of kinase activity by activation of oncogenes or loss of tumor suppressor functions, such as in cancers with oncogenic RAS, (4) deregulation of kinase activity by over-expression, as in the case of EGFR and (5) ectopic expression of growth factors that can contribute to the development and maintenance of the neoplastic phenotype. Fabbro et al., Pharm. Ther. 93:79-98 (2002).


The elucidation of the intricacy of protein kinase pathways and the complexity of the relationship and interaction among and between the various protein kinases and kinase pathways highlights the importance of developing pharmaceutical agents capable of acting as protein kinase modulators, regulators or inhibitors that have beneficial activity on multiple kinases or multiple kinase pathways. Accordingly, there remains a need for new kinase modulators.


The protein named mTOR (mammalian target of rapamycin), also called FRAP, RAFTI or RAPT1), is a 2549-amino acid Ser/Thr protein kinase, that has been shown to be one of the most critical proteins in the mTOR/PI3K/Akt pathway that regulates cell growth and proliferation. Georgakis and Younes Expert Rev. Anticancer Ther. 6(1):131-140 (2006). mTOR exists within two complexes, mTORC1 and mTORC2. While mTORC1 is sensitive to rapamycin analogs (such as temsirolimus or everolimus), mTORC2 is largely rapamycin-insensitive. Notably, rapamycin is not a TOR kinase inhibitor. Several mTOR inhibitors have been or are being evaluated in clinical trials for the treatment of cancer. Temsirolimus was approved for use in renal cell carcinoma in 2007 and everolimus was approved in 2009 for renal cell carcinoma patients that have progressed on vascular endothelial growth factor receptor inhibitors. In addition, sirolimus was approved in 1999 for the prophylaxis of renal transplant rejection. The interesting but limited clinical success of these mTORC1 inhibitory compounds demonstrates the usefulness of mTOR inhibitors in the treatment of cancer and transplant rejection, and the increased potential for compounds with both mTORC1 and mTORC2 inhibitory activity.


Somatic mutations affect key pathways in lung cancer. Accordingly, identification of specific mutations associated with lung cancer may lead to improved therapeutic protocols. Recent studies have uncovered a large number of somatic mutations of the LKB1 gene that are present in lung, cervical, breast, intestinal, testicular, pancreatic and skin cancer (Distribution of somatic mutations in STK11, Catalogue of Somatic Mutations in Cancer, Wellcome Trust Genome Campus, Hinxton, Cambridge).


Citation or identification of any reference in Section 2 of this application is not to be construed as an admission that the reference is prior art to the present application.


3. SUMMARY

Provided herein are methods for predicting the LKB1 status of a patient or a biological sample, comprising the measurement of a predictive gene expression level. Without being limited by theory, it is believed that certain gene expression levels are characteristic of LKB1 gene and/or protein mutation and/or loss.


Further provided herein are methods for treating or preventing a cancer, for example non-small cell lung carcinoma or cervical cancer, or treating a tumor syndrome, for example Peutz-Jeghers Syndrome, comprising administering an effective amount of a TOR kinase inhibitor to a patient having a cancer or a tumor syndrome characterized by a particular gene expression level, relative to that of wild type.


Further provided herein are methods for treating or preventing a cancer, for example non-small cell lung carcinoma or cervical cancer, comprising screening a patient's cancer for the presence of a particular gene expression level relative to that of wild type and administering an effective amount of a TOR kinase inhibitor to the patient having a cancer characterized by a particular gene expression level.


Further provided herein are methods for predicting LKB1 gene and/or protein loss and/or mutation in a patient's (“test patient”) cancer, for example non-small cell lung carcinoma or cervical cancer, comprising: a) obtaining a biological test sample from the patient's cancer; b) obtaining the gene expression level(s) of one or more genes selected from Table 1 in said biological sample; c) comparing said gene expression level(s) to a set of reference levels that represent the gene expression level(s) of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation, and the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation; wherein the gene expression level(s) of the biological test sample characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation, indicates an increased likelihood of an LKB1 gene or protein loss or mutation in the patient's cancer.


Further provided herein are methods for treating non-small cell lung carcinoma, cervical cancer or Peutz-Jeghers Syndrome, comprising administering an effective amount of a TOR kinase inhibitor to a patient having non-small cell lung carcinoma, cervical cancer or Peutz-Jeghers Syndrome, wherein the gene expression level(s) of a biological test sample from said patient is characterized by higher similarity to the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation than the gene expression level(s) of a wild type sample without LKB1 gene and/or r protein loss and/or mutation, and wherein the genes are selected from Table 1.


Further provided are methods for treating non-small cell lung carcinoma or cervical cancer, comprising screening a patient's carcinoma or cancer for the presence of LKB1 gene and/or protein loss and/or mutation, relative to wild type, and administering an effective amount of a TOR kinase inhibitor to the patient having non-small cell lung carcinoma or cervical cancer characterized by a gene expression level characterized by higher similarity to the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation than the gene expression level(s) of a wild type sample without LKB1 gene and/or protein loss and/or mutation, and wherein the genes are selected from Table 1.


Further provided herein are methods for predicting response to treatment with a TOR kinase inhibitor in a patient having cancer, for example non-small cell lung carcinoma or cervical cancer, the method comprising: a) obtaining a biological test sample from the patient's cancer; b) obtaining the gene expression level(s) of one or more genes selected from Table 1 in said biological test sample; c) comparing said gene expression level(s) to a set of reference levels that represent the gene expression level(s) of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation and the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation; wherein the gene expression level(s) of the biological test sample characterized by higher similarity to the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation, indicates an increased likelihood of response to TOR kinase inhibitor treatment of said patient's cancer.


Further provided herein are methods for predicting therapeutic efficacy of TOR kinase inhibitor treatment of a patient having cancer, for example non-small cell lung carcinoma or cervical cancer, with a TOR kinase inhibitor, the method comprising: a) obtaining a biological test sample from the patient's cancer; b) obtaining the gene expression level(s) of one or more genes selected from Table 1 in said biological test sample; c) comparing said gene expression level(s) to a set of reference levels that represent the gene expression level(s) of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation and the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation; wherein the gene expression level(s) of the biological test sample characterized by higher similarity to the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation, indicates an increased likelihood of therapeutic efficacy of said TOR kinase inhibitor treatment for said patient.


Further provided herein are methods of screening a patient having cancer, for example non-small cell lung carcinoma or cervical cancer, for LKB1 gene and/or protein loss and/or mutation, the method comprising: a) obtaining a biological test sample from the patient's cancer; b) obtaining the gene expression level(s) of one or more genes selected from Table 1 in said biological test sample; c) comparing said gene expression level(s) to a set of reference levels that represent the gene expression level(s) of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation and the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation; wherein the gene expression level(s) of the biological test sample characterized by higher similarity to the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation, indicates an increased likelihood of LKB1 gene and/or protein loss and/or mutation.


Further provided herein are methods for treating a tumor syndrome, for example Peutz-Jeghers Syndrome, comprising comparing a patient's gene expression level(s) to wild type, and administering an effective amount of a TOR kinase inhibitor to the patient having a tumor syndrome characterized by a gene expression level(s) characterized by higher similarity to the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation than the gene expression level(s) of a wild type sample without LKB1 gene and/or protein loss and/or mutation, and wherein the genes are selected from Table 1.


Further provided are methods for treating a tumor syndrome, for example Peutz-Jeghers Syndrome, comprising screening a patient for the presence of LKB1 gene and/or protein loss and/or mutation, relative to wild type, and administering an effective amount of a TOR kinase inhibitor to the patient having a tumor syndrome characterized by a gene expression level(s) characterized by higher similarity to the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation than the gene expression level(s) of a wild type sample without LKB1 gene and/or protein loss and/or mutation, and wherein the genes are selected from Table 1.


Further provided herein are methods for predicting LKB1 gene and/or protein loss and/or mutation in a patient having a tumor syndrome, for example, Peutz-Jeghers Syndrome, comprising: a) obtaining a biological test sample from the patient; b) obtaining the gene expression level(s) of one or more genes selected from Table 1 in said biological test sample; c) comparing said gene expression level(s) to a set of reference levels that represent the gene expression level(s) of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation and the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation; wherein the gene expression level(s) of the biological test sample characterized by higher similarity to the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation, indicates an increased likelihood of an LKB1 gene and/or protein loss and/or mutation in the patient.


Further provided herein are methods for predicting response to TOR kinase inhibitor therapy in a patient having a tumor syndrome, for example, Peutz-Jeghers Syndrome, comprising: a) obtaining a biological test sample from the patient; b) obtaining the gene expression level(s) of one or more genes selected from Table 1 in said biological test sample; c) comparing said gene expression level(s) to a set of reference levels that represent the gene expression level(s) of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation and the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation; wherein the gene expression level(s) of the biological test sample characterized by higher similarity to the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation, indicates an increased likelihood of response to TOR kinase inhibitor treatment of said patient's tumor syndrome.


Further provided herein are methods for predicting therapeutic efficacy of treatment of a patient having a tumor syndrome, for example, Peutz-Jeghers Syndrome, with a TOR kinase inhibitor, comprising: a) obtaining a biological test sample from the patient; b) obtaining the gene expression level(s) of one or more genes selected from Table 1 in said biological test sample; c) comparing said gene expression level(s) to a set of reference levels that represent the gene expression level(s) of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation and the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation; wherein the gene expression level(s) of the biological test sample characterized by higher similarity to the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation, indicates an increased likelihood of therapeutic efficacy of said TOR kinase inhibitor treatment for said patient.


Further provided herein are methods of screening a patient having a tumor syndrome, for example Peutz-Jeghers Syndrome, for LKB1 gene and/or protein loss and/or mutation, comprising: a) obtaining a biological test sample from the patient; b) obtaining the gene expression level(s) of one or more genes selected from Table 1 in said biological test sample; c) comparing said gene expression level(s) to a set of reference levels that represent the gene expression level(s) of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation and the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation; wherein the gene expression level(s) of the biological test sample characterized by higher similarity to the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation, indicates an increased likelihood for LKB1 gene and/or protein loss and/or mutation.


In certain embodiments provided herein, the gene expression level of the biological test sample is obtained using gene mRNA measurement. In certain of the methods and embodiments provided herein, the gene expression level of the biological test sample is obtained using RT-PCR or Affymetrix HGU133plus2. In some embodiments, comparison of gene expression levels is performed using Prediction Analysis of Microarrays for R (“PAMR”) (http://cran.r-project.org/web/packages/pamr/pamr.pdf).


Further provided herein are kits comprising one or more containers filled with a TOR kinase inhibitor or a pharmaceutical composition thereof, reagents for measuring gene expression levels of a patient's cancer or of a patient having a tumor syndrome and instructions for measuring gene expression levels of a patient's cancer or of a patient having a tumor syndrome.


In some embodiments, the TOR kinase inhibitor is a compound as described herein.


The present embodiments can be understood more fully by reference to the detailed description and examples, which are intended to exemplify non-limiting embodiments.





4. BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 provides a heatmap of the gene expression level of certain LKB1 positive (wild type) and negative (LKB1 gene and/or protein loss and/or mutation) non-small cell lung cancer cell types obtained using prediction analysis of microarrays (PAM) extraction.



FIG. 2 provides a list of enriched GeneOntology groups.



FIG. 3 lists the LKB1 mutation status of non small cell lung cancer (NSCLC) cell lines, based on reported DNA sequences, the reported mutation, the presence (positive) or absence (negative) of intact LKB1 protein (as determined by Western immunoblotting).



FIG. 4. FIG. 4 provides a list of enriched pathway groups.





5. DETAILED DESCRIPTION
5.1 Definitions

An “alkyl” group is a saturated, partially saturated, or unsaturated straight chain or branched non-cyclic hydrocarbon having from 1 to 10 carbon atoms, typically from 1 to 8 carbons or, in some embodiments, from 1 to 6, 1 to 4, or 2 to 6 or carbon atoms. Representative alkyl groups include -methyl, -ethyl, -n-propyl, -n-butyl, -n-pentyl and -n-hexyl; while saturated branched alkyls include -isopropyl, -sec-butyl, -isobutyl, -tert-butyl, -isopentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2,3-dimethylbutyl and the like. Examples of unsaturated alkyl groups include, but are not limited to, vinyl, allyl, —CH═CH(CH3), —CH═C(CH3)2, —C(CH3)═CH2, —C(CH3)═CH(CH3), —C(CH2CH3)═CH2, —C≡CH, —C≡C(CH3), —C≡C(CH2CH3), —CH2C≡CH, —CH2C≡C(CH3) and —CH2C≡C(CH7CH3), among others. An alkyl group can be substituted or unsubstituted. Unless otherwise indicated, when the alkyl groups described herein are said to be “substituted,” they may be substituted with any substituent or substituents as those found in the exemplary compounds and embodiments disclosed herein, as well as halogen (chloro, iodo, bromo, or fluoro); alkyl; hydroxyl; alkoxy; alkoxyalkyl; amino; alkylamino; carboxy; nitro; cyano; thiol; thioether; imine; imide; amidine; guanidine; enamine; aminocarbonyl; acylamino; phosphonato; phosphine; thiocarbonyl; sulfonyl; sulfone; sulfonamide; ketone; aldehyde; ester; urea; urethane; oxime; hydroxylamine; alkoxyamine; aralkoxyamine; N-oxide; hydrazine; hydrazide; hydrazone; azide; isocyanate; isothiocyanate; cyanate; thiocyanate; oxygen (═O); B(OH)2, or O(alkyl)aminocarbonyl.


An “alkenyl” group is a straight chain or branched non-cyclic hydrocarbon having from 2 to 10 carbon atoms, typically from 2 to 8 carbon atoms, and including at least one carbon-carbon double bond. Representative straight chain and branched (C2-C8)alkenyls include -vinyl, -allyl, -1-butenyl, -2-butenyl, -isobutylenyl, -1-pentenyl, -2-pentenyl, -3-methyl-1-butenyl, -2-methyl-2-butenyl, -2,3-dimethyl-2-butenyl, -1-hexenyl, -2-hexenyl, -3-hexenyl, -1-heptenyl, -2-heptenyl, -3-heptenyl, -1-octenyl, -2-octenyl, -3-octenyl and the like. The double bond of an alkenyl group can be unconjugated or conjugated to another unsaturated group. An alkenyl group can be unsubstituted or substituted.


A “cycloalkyl” group is a saturated, partially saturated, or unsaturated cyclic alkyl group of from 3 to 10 carbon atoms having a single cyclic ring or multiple condensed or bridged rings which can be optionally substituted with from 1 to 3 alkyl groups. In some embodiments, the cycloalkyl group has 3 to 8 ring members, whereas in other embodiments the number of ring carbon atoms ranges from 3 to 5, 3 to 6, or 3 to 7. Such cycloalkyl groups include, by way of example, single ring structures such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, 1-methylcyclopropyl, 2-methylcyclopentyl, 2-methylcyclooctyl, and the like, or multiple or bridged ring structures such as adamantyl and the like. Examples of unsaturared cycloalkyl groups include cyclohexenyl, cyclopentenyl, cyclohexadienyl, butadienyl, pentadienyl, hexadienyl, among others. A cycloalkyl group can be substituted or unsubstituted. Such substituted cycloalkyl groups include, by way of example, cyclohexanone and the like.


An “aryl” group is an aromatic carbocyclic group of from 6 to 14 carbon atoms having a single ring (e.g., phenyl) or multiple condensed rings (e.g., naphthyl or anthryl). In some embodiments, aryl groups contain 6-14 carbons, and in others from 6 to 12 or even 6 to 10 carbon atoms in the ring portions of the groups. Particular aryls include phenyl, biphenyl, naphthyl and the like. An aryl group can be substituted or unsubstituted. The phrase “aryl groups” also includes groups containing fused rings, such as fused aromatic-aliphatic ring systems (e.g., indanyl, tetrahydronaphthyl, and the like).


A “heteroaryl” group is an aryl ring system having one to four heteroatoms as ring atoms in a heteroaromatic ring system, wherein the remainder of the atoms are carbon atoms. In some embodiments, heteroaryl groups contain 5 to 6 ring atoms, and in others from 6 to 9 or even 6 to 10 atoms in the ring portions of the groups. Suitable heteroatoms include oxygen, sulfur and nitrogen. In certain embodiments, the heteroaryl ring system is monocyclic or bicyclic. Non-limiting examples include but are not limited to, groups such as pyrrolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, thiazolyl, pyrolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiophenyl, benzothiophenyl, furanyl, benzofuranyl (for example, isobenzofuran-1,3-diimine), indolyl, azaindolyl (for example, pyrrolopyridyl or 1H-pyrrolo[2,3-b]pyridyl), indazolyl, benzimidazolyl (for example, 1H-benzo[d]imidazolyl), imidazopyridyl (for example, azabenzimidazolyl, 3H-imidazo[4,5-b]pyridyl or 1H-imidazo[4,5-b]pyridyl), pyrazolopyridyl, triazolopyridyl, benzotriazolyl, benzoxazolyl, benzothiazolyl, benzothiadiazolyl, isoxazolopyridyl, thianaphthalenyl, purinyl, xanthinyl, adeninyl, guaninyl, quinolinyl, isoquinolinyl, tetrahydroquinolinyl, quinoxalinyl, and quinazolinyl groups.


A “heterocyclyl” is an aromatic (also referred to as heteroaryl) or non-aromatic cycloalkyl in which one to four of the ring carbon atoms are independently replaced with a heteroatom from the group consisting of O, S and N. In some embodiments, heterocyclyl groups include 3 to 10 ring members, whereas other such groups have 3 to 5, 3 to 6, or 3 to 8 ring members. Heterocyclyls can also be bonded to other groups at any ring atom (i.e., at any carbon atom or heteroatom of the heterocyclic ring). A heterocyclylalkyl group can be substituted or unsubstituted. Heterocyclyl groups encompass unsaturated, partially saturated and saturated ring systems, such as, for example, imidazolyl, imidazolinyl and imidazolidinyl groups. The phrase heterocyclyl includes fused ring species, including those comprising fused aromatic and non-aromatic groups, such as, for example, benzotriazolyl, 2,3-dihydrobenzo[1,4]dioxinyl, and benzo[1,3]dioxolyl. The phrase also includes bridged polycyclic ring systems containing a heteroatom such as, but not limited to, quinuclidyl. Representative examples of a heterocyclyl group include, but are not limited to, aziridinyl, azetidinyl, pyrrolidyl, imidazolidinyl, pyrazolidinyl, thiazolidinyl, tetrahydrothiophenyl, tetrahydrofuranyl, dioxolyl, furanyl, thiophenyl, pyrrolyl, pyrrolinyl, imidazolyl, imidazolinyl, pyrazolyl, pyrazolinyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiazolinyl, isothiazolyl, thiadiazolyl, oxadiazolyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl, tetrahydropyranyl (for example, tetrahydro-2H-pyranyl), tetrahydrothiopyranyl, oxathiane, dioxyl, dithianyl, pyranyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, dihydropyridyl, dihydrodithiinyl, dihydrodithionyl, homopiperazinyl, quinuclidyl, indolyl, indolinyl, isoindolyl, azaindolyl (pyrrolopyridyl), indazolyl, indolizinyl, benzotriazolyl, benzimidazolyl, benzofuranyl, benzothiophenyl, benzthiazolyl, benzoxadiazolyl, benzoxazinyl, benzodithiinyl, benzoxathiinyl, benzothiazinyl, benzoxazolyl, benzothiazolyl, benzothiadiazolyl, benzo[1,3]dioxolyl, pyrazolopyridyl, imidazopyridyl (azabenzimidazolyl; for example, 1H-imidazo[4,5-b]pyridyl, or 1H-imidazo[4,5-b]pyridin-2(3H)-onyl), triazolopyridyl, isoxazolopyridyl, purinyl, xanthinyl, adeninyl, guaninyl, quinolinyl, isoquinolinyl, quinolizinyl, quinoxalinyl, quinazolinyl, cinnolinyl, phthalazinyl, naphthyridinyl, pteridinyl, thianaphthalenyl, dihydrobenzothiazinyl, dihydrobenzofuranyl, dihydroindolyl, dihydrobenzodioxinyl, tetrahydroindolyl, tetrahydroindazolyl, tetrahydrobenzimidazolyl, tetrahydrobenzotriazolyl, tetrahydropyrrolopyridyl, tetrahydropyrazolopyridyl, tetrahydroimidazopyridyl, tetrahydrotriazolopyridyl, and tetrahydroquinolinyl groups. Representative substituted heterocyclyl groups may be mono-substituted or substituted more than once, such as, but not limited to, pyridyl or morpholinyl groups, which are 2-, 3-, 4-, 5-, or 6-substituted, or disubstituted with various substituents such as those listed below.


An “cycloalkylalkyl” group is a radical of the formula: -alkyl-cycloalkyl, wherein alkyl and cycloalkyl are defined above. Substituted cycloalkylalkyl groups may be substituted at the alkyl, the cycloalkyl, or both the alkyl and the cycloalkyl portions of the group. Representative cycloalkylalkyl groups include but are not limited to cyclopentylmethyl, cyclopentylethyl, cyclohexylmethyl, cyclohexylethyl, and cyclohexylpropyl. Representative substituted cycloalkylalkyl groups may be mono- substituted or substituted more than once.


An “aralkyl” group is a radical of the formula: -alkyl-aryl, wherein alkyl and aryl are defined above. Substituted aralkyl groups may be substituted at the alkyl, the aryl, or both the alkyl and the aryl portions of the group. Representative aralkyl groups include but are not limited to benzyl and phenethyl groups and fused (cycloalkylaryl)alkyl groups such as 4-ethyl-indanyl.


A “heterocyclylalkyl” group is a radical of the formula: -alkyl-heterocyclyl, wherein alkyl and heterocyclyl are defined above. Substituted heterocyclylalkyl groups may be substituted at the alkyl, the heterocyclyl, or both the alkyl and the heterocyclyl portions of the group. Representative heterocylylalkyl groups include but are not limited to 4-ethyl-morpholinyl, 4-propylmorpholinyl, furan-2-yl methyl, furan-3-yl methyl, pyrdine-3-yl methyl, (tetrahydro-2H-pyran-4-yl)methyl, (tetrahydro-2H-pyran-4-yl)ethyl, tetrahydrofuran-2-yl methyl, tetrahydrofuran-2-yl ethyl, and indol-2-yl propyl.


A “halogen” is fluorine, chlorine, bromine or iodine.


A “hydroxyalkyl” group is an alkyl group as described above substituted with one or more hydroxy groups.


An “alkoxy” group is —O-(alkyl), wherein alkyl is defined above.


An “alkoxyalkyl” group is -(alkyl)-O-(alkyl), wherein alkyl is defined above.


An “amino” group is a radical of the formula: —NH2.


An “alkylamino” group is a radical of the formula: —NH-alkyl or —N(alkyl)2, wherein each alkyl is independently as defined above.


A “carboxy” group is a radical of the formula: —C(O)OH.


An “aminocarbonyl” group is a radical of the formula: —C(O)N(R#)2, —C(O)NH(R#) or —C(O)NH2, wherein each R# is independently a substituted or unsubstituted alkyl, cycloalkyl, aryl, aralkyl, heterocyclyl or heterocyclyl group as defined herein.


An “acylamino” group is a radical of the formula: —NHC(O)(R#) or —N(alkyl)C(O)(R#), wherein each alkyl and R# are independently as defined above.


An “alkylsulfonylamino” group is a radical of the formula: —NHSO2(R#) or —N(alkyl)SO2(R#), wherein each alkyl and R# are defined above.


A “urea” group is a radical of the formula: —N(alkyl)C(O)N(R#)2, —N(alkyl)C(O)NH(R#), —N(alkyl)C(O)NH2, —NHC(O)N(R#)2, —NHC(O)NH(R#), or —NH(CO)NHR#, wherein each alkyl and R# are independently as defined above.


When the groups described herein, with the exception of alkyl group, are said to be “substituted,” they may be substituted with any appropriate substituent or substituents. Illustrative examples of substituents are those found in the exemplary compounds and embodiments disclosed herein, as well as halogen (chloro, iodo, bromo, or fluoro); alkyl; hydroxyl; alkoxy; alkoxyalkyl; amino; alkylamino; carboxy; nitro; cyano; thiol; thioether; imine; imide; amidine; guanidine; enamine; aminocarbonyl; acylamino; phosphonato; phosphine; thiocarbonyl; sulfonyl; sulfone; sulfonamide; ketone; aldehyde; ester; urea; urethane; oxime; hydroxylamine; alkoxyamine; aralkoxyamine; N-oxide; hydrazine; hydrazide; hydrazone; azide; isocyanate; isothiocyanate; cyanate; thiocyanate; oxygen (═O); B(OH)2, O(alkyl)aminocarbonyl; cycloalkyl, which may be monocyclic or fused or non-fused polycyclic (e.g., cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl), or a heterocyclyl, which may be monocyclic or fused or non-fused polycyclic (e.g., pyrrolidyl, piperidyl, piperazinyl, morpholinyl, or thiazinyl); monocyclic or fused or non-fused polycyclic aryl or heteroaryl (e.g., phenyl, naphthyl, pyrrolyl, indolyl, furanyl, thiophenyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridinyl, quinolinyl, isoquinolinyl, acridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, benzimidazolyl, benzothiophenyl, or benzofuranyl) aryloxy; aralkyloxy; heterocyclyloxy; and heterocyclyl alkoxy.


As used herein, the term “pharmaceutically acceptable salt(s)” refers to a salt prepared from a pharmaceutically acceptable non-toxic acid or base including an inorganic acid and base and an organic acid and base. Suitable pharmaceutically acceptable base addition salts of the TOR kinase inhibitors include, but are not limited to metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from lysine, N,N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. Suitable non-toxic acids include, but are not limited to, inorganic and organic acids such as acetic, alginic, anthranilic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethenesulfonic, formic, fumaric, furoic, galacturonic, gluconic, glucuronic, glutamic, glycolic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phenylacetic, phosphoric, propionic, salicylic, stearic, succinic, sulfanilic, sulfuric, tartaric acid, and p-toluenesulfonic acid. Specific non-toxic acids include hydrochloric, hydrobromic, phosphoric, sulfuric, and methanesulfonic acids. Examples of specific salts thus include hydrochloride and mesylate salts. Others are well-known in the art, see for example, Remington's Pharmaceutical Sciences, 18th eds., Mack Publishing, Easton Pa. (1990) or Remington: The Science and Practice of Pharmacy, 19th eds., Mack Publishing, Easton Pa. (1995).


As used herein and unless otherwise indicated, the term “clathrate” means a TOR kinase inhibitor, or a salt thereof, in the form of a crystal lattice that contains spaces (e.g., channels) that have a guest molecule (e.g., a solvent or water) trapped within or a crystal lattice wherein a TOR kinase inhibitor is a guest molecule.


As used herein and unless otherwise indicated, the term “solvate” means a TOR kinase inhibitor, or a salt thereof, that further includes a stoichiometric or non-stoichiometric amount of a solvent bound by non-covalent intermolecular forces. In one embodiment, the solvate is a hydrate.


As used herein and unless otherwise indicated, the term “hydrate” means a TOR kinase inhibitor, or a salt thereof, that further includes a stoichiometric or non-stoichiometric amount of water bound by non-covalent intermolecular forces.


As used herein and unless otherwise indicated, the term “prodrug” means a TOR kinase inhibitor derivative that can hydrolyze, oxidize, or otherwise react under biological conditions (in vitro or in vivo) to provide an active compound, particularly a TOR kinase inhibitor. Examples of prodrugs include, but are not limited to, derivatives and metabolites of a TOR kinase inhibitor that include biohydrolyzable moieties such as biohydrolyzable amides, biohydrolyzable esters, biohydrolyzable carbamates, biohydrolyzable carbonates, biohydrolyzable ureides, and biohydrolyzable phosphate analogues. In certain embodiments, prodrugs of compounds with carboxyl functional groups are the lower alkyl esters of the carboxylic acid. The carboxylate esters are conveniently formed by esterifying any of the carboxylic acid moieties present on the molecule. Prodrugs can typically be prepared using well-known methods, such as those described by Burger's Medicinal Chemistry and Drug Discovery 6th ed. (Donald J. Abraham ed., 2001, Wiley) and Design and Application of Prodrugs (H. Bundgaard ed., 1985, Harwood Academic Publishers Gmfh).


As used herein and unless otherwise indicated, the term “stereoisomer” or “stereomerically pure” means one stereoisomer of a TOR kinase inhibitor that is substantially free of other stereoisomers of that compound. For example, a stereomerically pure compound having one chiral center will be substantially free of the opposite enantiomer of the compound. A stereomerically pure compound having two chiral centers will be substantially free of other diastereomers of the compound. A typical stereomerically pure compound comprises greater than about 80% by weight of one stereoisomer of the compound and less than about 20% by weight of other stereoisomers of the compound, greater than about 90% by weight of one stereoisomer of the compound and less than about 10% by weight of the other stereoisomers of the compound, greater than about 95% by weight of one stereoisomer of the compound and less than about 5% by weight of the other stereoisomers of the compound, or greater than about 97% by weight of one stereoisomer of the compound and less than about 3% by weight of the other stereoisomers of the compound. The TOR kinase inhibitors can have chiral centers and can occur as racemates, individual enantiomers or diastereomers, and mixtures thereof. All such isomeric forms are included within the embodiments disclosed herein, including mixtures thereof. The use of stereomerically pure forms of such TOR kinase inhibitors, as well as the use of mixtures of those forms are encompassed by the embodiments disclosed herein. For example, mixtures comprising equal or unequal amountsv of the enantiomers of a particular TOR kinase inhibitor may be used in methods and compositions disclosed herein. These isomers may be asymmetrically synthesized or resolved using standard techniques such as chiral columns or chiral resolving agents. See, e.g., Jacques, J., et al., Enantiomers, Racemates and Resolutions (Wiley-Interscience, New York, 1981); Wilen, S. H., et al., Tetrahedron 33:2725 (1977); Eliel, E. L., Stereochemistry of Carbon Compounds (McGraw-Hill, NY, 1962); and Wilen, S. H., Tables of Resolving Agents and Optical Resolutions p. 268 (E. L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, Ind., 1972).


It should also be noted the TOR kinase inhibitors can include E and Z isomers, or a mixture thereof, and cis and trans isomers or a mixture thereof. In certain embodiments, the TOR kinase inhibitors are isolated as either the cis or trans isomer. In other embodiments, the TOR kinase inhibitors are a mixture of the cis and trans isomers.


“Tautomers” refers to isomeric forms of a compound that are in equilibrium with each other. The concentrations of the isomeric forms will depend on the environment the compound is found in and may be different depending upon, for example, whether the compound is a solid or is in an organic or aqueous solution. For example, in aqueous solution, pyrazoles may exhibit the following isomeric forms, which are referred to as tautomers of each other:




embedded image


As readily understood by one skilled in the art, a wide variety of functional groups and other structures may exhibit tautomerism and all tautomers of the TOR kinase inhibitors are within the scope of the present invention.


It should also be noted the TOR kinase inhibitors can contain unnatural proportions of atomic isotopes at one or more of the atoms. For example, the compounds may be radiolabeled with radioactive isotopes, such as for example tritium (3H), iodine-125 (125I), sulfur-35 (35S), or carbon-14) or may be isotopically enriched, such as with deuterium (2H), carbon-13 (13C), or nitrogen-15 (15N). As used herein, an “isotopologue” is an isotopically enriched compound. The term “isotopically enriched” refers to an atom having an isotopic composition other than the natural isotopic composition of that atom. “Isotopically enriched” may also refer to a compound containing at least one atom having an isotopic composition other than the natural isotopic composition of that atom. The term “isotopic composition” refers to the amount of each isotope present for a given atom. Radiolabeled and isotopically encriched compounds are useful as therapeutic agents, e.g., cancer and inflammation therapeutic agents, research reagents, e.g., binding assay reagents, and diagnostic agents, e.g., in vivo imaging agents. All isotopic variations of the TOR kinase inhibitors as described herein, whether radioactive or not, are intended to be encompassed within the scope of the embodiments provided herein. In some embodiments, there are provided isotopologues of the TOR kinase inhibitors, for example, the isotopologues are deuterium, carbon-13, or nitrogen-15 enriched TOR kinase inhibitors.


“Treating” as used herein, means an alleviation, in whole or in part, of symptoms associated with a disorder or disease (e.g., cancer or a tumor syndrome), or slowing, or halting of further progression or worsening of those symptoms.


“Preventing” as used herein, means the prevention of the onset, recurrence or spread, in whole or in part, of the disease or disorder (e.g., cancer), or a symptom thereof.


The term “effective amount” in connection with an TOR kinase inhibitor means an amount capable of alleviating, in whole or in part, symptoms associated with cancer, for example non-small cell lung carcinoma or cervical cancer, or a tumor syndrome, for example Peutz-Jeghers Syndrome, or slowing or halting further progression or worsening of those symptoms, or preventing or providing prophylaxis for cancer, for example non-small cell lung carcinoma or cervical cancer, or a tumor syndrome, for example Peutz-Jeghers Syndrome in a subject at risk for cancer, for example non-small cell lung carcinoma or cervical cancer, or a tumor syndrome, for example Peutz-Jeghers Syndrome. The effective amount of the TOR kinase inhibitor, for example in a pharmaceutical composition, may be at a level that will exercise the desired effect; for example, about 0.005 mg/kg of a subject's body weight to about 100 mg/kg of a patient's body weight in unit dosage for both oral and parenteral administration. As will be apparent to those skilled in the art, it is to be expected that the effective amount of a TOR kinase inhibitor disclosed herein may vary depending on the severity of the indication being treated.


As used herein “wild type” refers to the typical or most common form of a characteristic (for example, gene sequence or presence, or protein sequence, presence, level or activity), as it occurs in nature, and the reference against which all others are compared. As will be understood by one skilled in the art, when used herein, wild type refers to the typical gene expression levels as they most commonly occur in nature. Similarly, a “control patient”, as used herein, is a patient who exhibits the wild type gene expression levels. In certain embodiments, the gene expression level is comprised of the gene expression level of one or more of the genes set forth in Table 1.


As used herein “LKB1 gene or protein mutation” refers to, for example, a LKB1 gene mutation resulting in a decrease in LKB1 mRNA expression, a decrease in LKB1 protein production or a non-functional LKB1 protein, as compared to wild type. As used herein “LKB1 gene or protein loss” refers to a reduced level of LKB1 protein or the absence of LKB1 protein, as compared to wild type levels. The phrase “LKB1 gene and/or protein loss and/or mutation” includes each of the following, alone or in combination with one or more of the others: (1) LKB1 gene loss; (2) LKB1 gene mutation; (3) LKB1 protein loss; and (4) LKB1 protein mutation.


As used herein “reduced level” or “loss” means a reduction in level relative to levels observed in wild type. In one embodiment the reduction is 10%-50% or 50%-100%. In some embodiments, the reduction is 20%, 30%, 40%, 50%, 60%, 70%, 80%. 90% or 100% (complete loss) relative to wild type.


As used herein in connection with the comparison of gene expression level(s) of a biological test sample with wild-type samples and/or reference samples, “similarity” is determined using the Nearest Shrunken Centroid Method (see Tibsharani et al., PNAS 99: 6567-6572 (2002). The Nearest Shrunken Centroid Method computes a standardized centroid for each class of samples, for example, wild type samples and reference samples. This centroid is the average gene expression level for each gene in each class divided by the within-class standard deviation for that gene. Nearest centroid classification then takes the gene expression profile of a new sample (e.g., biological test sample) and compares it to each of these class centroids. The class (e.g., the reference sample or the wild-type sample) whose centroid that the gene expression profile of the new sample is closest to, in squared distance, is the predicted class or the class the new sample has the higher similarity to. As used herein, “higher similarity” of the biological test sample means that the gene expression level(s) of the biological sample is determined to be more similar to either the reference levels that represent the gene expression level(s) of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation (LKB1 positive, or wild type) or the gene expression level(s) of a reference sample with LKB1 gene and/or protein loss and/or mutation (LKB1 negative).


The terms “patient” and “subject” as used herein include an animal, including, but not limited to, an animal such as a cow, monkey, horse, sheep, pig, chicken, turkey, quail, cat, dog, mouse, rat, rabbit or guinea pig, in one embodiment a mammal, in another embodiment a human.


In one embodiment, a “patient” or “subject” is a human whose cancer DNA comprises a LKB1 gene mutation, relative to that of a control patient or wild type. In another embodiment, a “patient” or “subject” is a human whose cancer DNA contains a LKB1 gene mutation, relative to that of a control patient or wild type. In another embodiment, a “patient” or “subject” is a human having a cancer, for example non-small cell lung carcinoma or cervical cancer, characterized by LKB1 gene and/or protein loss and/or mutation, relative to that of a control patient or wild type. In particular embodiments, the LKB1 gene and/or protein loss and/or mutation is identified by certain gene expression levels, measured using RT-PCR or the Affymetrix HGU133plus2 platform, and compared to wild type using the statistical package PAMR. In certain embodiments, the gene expression level is comprised of the gene expression levels of one or more of the genes set forth in Table 1.


In another embodiment, a “patient” or “subject” is a human whose DNA comprises a LKB1 gene mutation, relative to that of a control patient or wild type. In another embodiment, a “patient” or “subject” is a human whose DNA contains a LKB1 gene mutation, relative to that of a control patient or wild type. In another embodiment, a “patient” or “subject” is a human having LKB1 gene and/or protein loss and/or mutation, relative to that of a control patient or wild type. In another embodiment, a “patient” or “subject” is a human having LKB1 gene and/or protein loss and/or mutation, relative to that of a control patient or wild type, and also having a tumor syndrome, for example Peutz-Jeghers Syndrome. In particular embodiments, the LKB1 gene and/or protein loss and/or mutation is identified by certain gene expression levels measured using RT-PCR or the Affymetrix HGU133plus2 platform and compared to wild type using the statistical package PAMR. In certain embodiments, the gene expression level is comprised of the gene expression levels of one or more of the genes set forth in Table 1.


The term “expression” as used herein refers to the transcription from a gene to give an RNA nucleic acid molecule at least complementary in part to a region of one of the two nucleic acid strands of the gene. The term “expression” as used herein also refers to the translation from the RNA molecule to give a protein, a polypeptide or a portion thereof.


The expression of a gene that is “upregulated” is generally “increased” relative to wild type. The expression of a gene that is “downregulated” is generally “decreased” relative to wild type. In certain embodiments, a gene from a patient sample can be “upregulated,” i.e., gene expression can be increased, for example, by about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 90%, 100%, 200%, 300%, 500%, 1,000%, 5,000% or more of a comparative control, such as wild type. In other embodiments, a gene from a patient sample can be “downregulated,” i.e., gene expression can be decreased, for example, by about 99%, 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 1% or less of a comparative control, such as wild type.


The term “likelihood” generally refers to an increase in the probability of an event. The term “likelihood” when used in reference to the effectiveness of a patient response generally contemplates an increased probability that a cancer or tumor syndrome, or symptom thereof, will be lessened or decreased.


The term “predict” generally means to determine or tell in advance. When used to “predict” the effectiveness of a cancer or tumor syndrome treatment, for example, the term “predict” can mean that the likelihood of the outcome of the treatment can be determined at the outset, before the treatment has begun, or before the treatment period has progressed substantially.


The terms “determining”, “measuring”, “evaluating”, “assessing” and “assaying” as used herein generally refer to any form of measurement, and include determining if an element is present or not. These terms include both quantitative and/or qualitative determinations.


In the context of cancer, for example non-small cell lung carcinoma or cervical cancer, or a tumor syndrome, for example Peutz-Jeghers Syndrome, inhibition may be assessed by delayed appearance of primary or secondary tumors, slowed development of primary or secondary tumors, decreased occurrence of primary or secondary tumors, slowed or decreased severity of secondary effects of disease, arrested tumor growth and regression of tumors, among others. In the extreme, complete inhibition, is referred to herein as prevention or chemoprevention. In this context, the term “prevention” includes either preventing the onset of clinically evident cancer, carcinoma or tumor altogether or preventing the onset of a preclinically evident stage of cancer, carcinoma or tumor in individuals at risk. Also intended to be encompassed by this definition is the prevention of transformation into malignant cells or to arrest or reverse the progression of premalignant cells to malignant cells. This includes prophylactic treatment of those at risk of developing the cancer, carcinoma or tumor.


5.2 Gene Expression Profile

Table 1 sets forth the genes for which the gene expression compared to wild type, indicate a higher likelihood of LKB1 gene and/or protein loss and/or mutation.


















Fold Change





(LKB1 Pos/


Probe
Symbol
Gene Name
LKB1 Neg)


















229839_at
SCARA5
scavenger receptor class A, member 5
−120.683




(putative)



219612_s_at
FGG
fibrinogen gamma chain
−67.798


235849_at
SCARA5
scavenger receptor class A, member 5
−35.633




(putative)



205649_s_at
FGA
fibrinogen alpha chain
−30.292


206549_at
INSL4
insulin-like 4 (placenta)
−24.589


230830_at
OSTbeta
organic solute transporter beta
−24.265


205650_s_at
FGA
fibrinogen alpha chain
−22.98


231213_at
PDE1A
phosphodiesterase 1A, calmodulin-
−20.621




dependent



217564_s_at
CPS1
carbamoyl-phosphate synthetase 1,
−19.299




mitochondrial



241535_at
NA
NA
−17.5


219764_at
FZD10
frizzled homolog 10 (Drosophila)
−16.83


214303_x_at
MUCSAC
mucin 5AC, oligomeric mucus/gel-forming
−16.35


204920_at
CPS1
carbamoyl-phosphate synthetase 1,
−15.906




mitochondrial



244567_at
NA
NA
−15.493


205009_at
TFF1
trefoil factor 1
−15.383


206528_at
TRPC6
transient receptor potential cation channel,
−14.276




subfamily C, member 6



205403_at
IL1R2
interleukin 1 receptor, type II
−12.759


216238_s_at
FGB
fibrinogen beta chain
−12.071


229778_at
C12orf39
chromosome 12 open reading frame 39
−11.705


1569378_at
FLJ33297
hypothetical gene supported by AK090616
−10.97


228186_s_at
RSPO3
R-spondin 3 homolog (Xenopus laevis)
−10.185


204988_at
FGB
fibrinogen beta chain
−10.144


211372_s_at
IL1R2
interleukin 1 receptor, type II
−10.037


213432_at
MUC5B
mucin 5B, oligomeric mucus/gel-forming
−9.855


222712_s_at
MUC13
mucin 13, cell surface associated
−9.374


214385_s_at
MUC5AC
mucin 5AC, oligomeric mucus/gel-forming
−9.346


206153_at
CYP4F11
cytochrome P450, family 4, subfamily F,
−8.054




polypeptide 11



228969_at
AGR2
anterior gradient homolog 2 (Xenopus
−8.022





laevis)




207052_at
HAVCR1
hepatitis A virus cellular receptor 1
−7.623


205305_at
FGL1
fibrinogen-like 1
−7.594


232687_at
NA
NA
−7.471


212224_at
ALDH1A1
aldehyde dehydrogenase 1 family, member A1
−7.208


230251_at
C6orf176
chromosome 6 open reading frame 176
−7.171


212935_at
MCF2L
MCF.2 cell line derived transforming
−6.718




sequence-like



226992_at
NOSTRIN
nitric oxide synthase trafficker
−6.706


215189_at
KRT86
keratin 86
−6.706


228507_at
NA
NA
−6.645


220479_at
LOC29034
hypothetical LOC29034
−6.621


232267_at
GPR133
G protein-coupled receptor 133
−6.25


205137_x_at
USH1C
Usher syndrome 1C (autosomal recessive,
−6.104




severe)



206515_at
CYP4F3
cytochrome P450, family 4, subfamily F,
−5.965




polypeptide 3



205221_at
HGD
homogentisate 1,2-dioxygenase
−5.952




(homogentisate oxidase)



233413_at
NA
NA
−5.911


229655_at
FAM19A5
family with sequence similarity 19
−5.616




(chemokine (C-C motif)-like), member A5



239650_at
NCKAP5
NCK-associated protein 5
−5.516


236300_at
NA
NA
−5.51


209616_s_at
CES1
carboxylesterase 1 (monocyte/macrophage
−5.483




serine esterase 1)



226248_s_at
KIAA1324
KIAA1324
−5.47


218541_s_at
C8orf4
chromosome 8 open reading frame 4
−5.395


242426_at
NRG4
neuregulin 4
−5.273


209959_at
NR4A3
nuclear receptor subfamily 4, group A,
−5.267




member 3



232608_x_at
CARD14
caspase recruitment domain family, member 14
−5.249


228057_at
DDIT4L
DNA-damage-inducible transcript 4-like
−5.175


206155_at
ABCC2
ATP-binding cassette, sub-family C
−5.122




(CFTR/MRP), member 2



201884_at
CEACAM5
carcinoembryonic antigen-related cell
−5.04




adhesion molecule 5



228962_at
PDE4D
phosphodiesterase 4D, cAMP-specific
−4.976




(phosphodiesterase E3 dunce homolog,






Drosophila)




237471_at
tcag7.1307
hypothetical LOC154822
−4.847


206389_s_at
PDE3A
phosphodiesterase 3A, cGMP-inhibited
−4.798


233076_at
JAKMIP3
Janus kinase and microtubule interacting
−4.794




protein 3



206645_s_at
NR0B1
nuclear receptor subfamily 0, group B,
−4.779




member 1



210663_s_at
KYNU
kynureninase (L-kynurenine hydrolase)
−4.746


210662_at
KYNU
kynureninase (L-kynurenine hydrolase)
−4.689


202023_at
EFNA1
ephrin-A1
−4.639


238755_at
NA
NA
−4.622


234563_at
NA
NA
−4.521


238029_s_at
SLC16A14
solute carrier family 16, member 14
−4.489




(monocarboxylic acid transporter 14)



1556331_a_at
NA
NA
−4.391


205234_at
SLC16A4
solute carrier family 16, member 4
−4.378




(monocarboxylic acid transporter 5)



236741_at
WDR72
WD repeat domain 72
−4.351


214308_s_at
HGD
homogentisate 1,2-dioxygenase
−4.346




(homogentisate oxidase)



219049_at
CSGALNACT1
chondroitin sulfate N-
−4.339




acetylgalactosaminyltransferase 1



204385_at
KYNU
kynureninase (L-kynurenine hydrolase)
−4.325


220393_at
LGSN
lengsin, lens protein with glutamine
−4.273




synthetase domain



206644_at
NR0B1
nuclear receptor subfamily 0, group B,
−4.259




member 1



204491_at
PDE4D
phosphodiesterase 4D, cAMP-specific
−4.236




(phosphodiesterase E3 dunce homolog,






Drosophila)




219508_at
GCNT3
glucosaminyl (N-acetyl) transferase 3,
−4.17




mucin type



211184_s_at
USH1C
Usher syndrome 1C (autosomal recessive,
−4.135




severe)



204014_at
DUSP4
dual specificity phosphatase 4
−4.114


229280_s_at
FLJ22536
hypothetical locus LOC401237
−4.077


219300_s_at
CNTNAP2
contactin associated protein-like 2
−3.97


203963_at
CA12
carbonic anhydrase XII
−3.96


204351_at
Sl00P
S100 calcium binding protein P
−3.95


203238_s_at
NOTCH3
Notch homolog 3 (Drosophila)
−3.945


214307_at
HGD
homogentisate 1,2-dioxygenase
−3.942




(homogentisate oxidase)



206561_s_at
AKR1B10
aldo-keto reductase family 1, member B10
−3.937




(aldose reductase)



226034_at
NA
NA
−3.935


205477_s_at
AMBP
alpha-1-microglobulin/bikunin precursor
−3.897


1555854_at
NA
NA
−3.893


217626_at
NA
NA
−3.871


205501_at
PDE10A
phosphodiesterase 10A
−3.741


217388 _s_at
KYNU
kynureninase (L-kynurenine hydrolase)
−3.734


220540_at
KCNK15
potassium channel, subfamily K, member 15
−3.669


209173_at
AGR2
anterior gradient homolog 2 (Xenopus
−3.657





laevis)




211840_s_at
PDE4D
phosphodiesterase 4D, cAMP-specific
−3.646




(phosphodiesterase E3 dunce homolog,






Drosophila)




219429_at
FA2H
fatty acid 2-hydroxylase
−3.627


227614_at
HKDC1
hexokinase domain containing 1
−3.615


206643_at
HAL
histidine ammonia-lyase
−3.593


204105_s_at
NRCAM
neuronal cell adhesion molecule
−3.567


205460_at
NPAS2
neuronal PAS domain protein 2
−3.548


39248_at
AQP3
aquaporin 3 (Gill blood group)
−3.544


216248_s_at
NR4A2
nuclear receptor subfamily 4, group A,
−3.519




member 2



212906_at
GRAMD1B
GRAM domain containing 1B
−3.514


227202_at
CNTN1
contactin 1
−3.498


221577_x_at
GDF15
growth differentiation factor 15
−3.484


240173_at
NA
NA
−3.466


242871_at
PAQR5
progestin and adipoQ receptor family
−3.432




member V



242626_at
SAMD5
sterile alpha motif domain containing 5
−3.379


222784_at
SMOC1
SPARC related modular calcium binding 1
−3.34


1562102_at
AKR1C1
aldo-keto reductase family 1, member C1
−3.314




(dihydrodiol dehydrogenase 1; 20-alpha (3-





alpha)-hydroxysteroid dehydrogenase)



204622_x_at
NR4A2
nuclear receptor subfamily 4, group A,
−3.313




member 2



202388_at
RGS2
regulator of G-protein signaling 2, 24 kDa
−3.312


226192_at
NA
NA
−3.283


202889_x_at
MAP7
microtubule-associated protein 7
−3.26


227209_at
CNTN1
contactin 1
−3.244


204621_s_at
NR4A2
nuclear receptor subfamily 4, group A,
−3.233




member 2



227174_at
WDR72
WD repeat domain 72
−3.199


1556698_a_at
GPRIN3
GPRIN family member 3
−3.199


233177_s_at
PNKD
paroxysmal nonkinesigenic dyskinesia
−3.193


210837_s_at
PDE4D
phosphodiesterase 4D, cAMP-specific
−3.117




(phosphodiesterase E3 dunce homolog,






Drosophila)




243438_at
PDE7B
phosphodiesterase 7B
−3.081


205698_s_at
MAP2K6
mitogen-activated protein kinase kinase 6
−3.077


203708_at
PDE4B
phosphodiesterase 4B, cAMP-specific
−3.069




(phosphodiesterase E4 dunce homolog,






Drosophila)




241726_at
NA
NA
−3.047


202986_at
ARNT2
aryl-hydrocarbon receptor nuclear
−3.045




translocator 2



222783_s_at
SMOC1
SPARC related modular calcium binding 1
−3.026


1554717_a_at
PDE4D
phosphodiesterase 4D, cAMP-specific
−2.97




(phosphodiesterase E3 dunce homolog,






Drosophila)




244387_at
NA
NA
−2.964


218631_at
AVPI1
arginine vasopressin-induced 1
−2.938


228653_at
SAMD5
sterile alpha motif domain containing 5
−2.92


1569433_at
SAMD5
sterile alpha motif domain containing 5
−2.903


221667_s_at
HSPB8
heat shock 22 kDa protein 8
−2.886


214240_at
GAL
galanin prepropeptide
−2.886


237029_at
HGD
homogentisate 1,2-dioxygenase
−2.868




(homogentisate oxidase)



225516_at
SLC7A2
solute carrier family 7 (cationic amino acid
−2.845




transporter, y+ system), member 2



230563_at
RASGEF1A
RasGEF domain family, member 1A
−2.843


222073_at
COL4A3
collagen, type IV, alpha 3 (Goodpasture
−2.83




antigen)



236610_at
NA
NA
−2.819


205311_at
DDC
dopa decarboxylase (aromatic L-amino acid
−2.809




decarboxylase)



206017_at
KIAA0319
KIAA0319
−2.801


221067_s_at
C12orf39
chromosome 12 open reading frame 39
−2.765


238498_at
NA
NA
−2.762


204015_s_at
DUSP4
dual specificity phosphatase 4
−2.757


215471_s_at
MAP7
microtubule-associated protein 7
−2.736


237031_at
NA
NA
−2.719


203747_at
AQP3
aquaporin 3 (Gill blood group)
−2.718


210836_x_at
PDE4D
phosphodiesterase 4D, cAMP-specific
−2.711




(phosphodiesterase E3 dunce homolog,






Drosophila)




240180_at
NA
NA
−2.703


208078_s_at
NA
NA
−2.691


202890_at
MAP7
microtubule-associated protein 7
−2.687


214602_at
COL4A4
collagen, type IV, alpha 4
−2.655


223721_s_at
DNAJC12
DnaJ (Hsp40) homolog, subfamily C,
−2.652




member 12



209772_s_at
CD24
CD24 molecule
−2.62


228825_at
PTGR1
prostaglandin reductase 1
−2.616


214234_s_at
NA
NA
−2.597


219194_at
SEMA4G
sema domain, immunoglobulin domain (Ig),
−2.581




transmembrane domain (TM) and short





cytoplasmic domain, (semaphorin) 4G



238441_at
PRKAA2
protein kinase, AMP-activated, alpha 2
−2.579




catalytic subunit



218326_s_at
LGR4
leucine-rich repeat-containing G protein-
−2.574




coupled receptor 4



208284_x_at
GGT1
gamma-glutamyltransferase 1
−2.549


239067_s_at
PANX2
pannexin 2
−2.546


240349_at
PRKAA2
protein kinase, AMP-activated, alpha 2
−2.534




catalytic subunit



204567_s_at
ABCG1
ATP-binding cassette, sub-family G
−2.525




(WHITE), member 1



235924_at
NA
NA
−2.504


227210_at
NA
NA
−2.501


211653_x_at
AKR1C2
aldo-keto reductase family 1, member C2
−2.497




(dihydrodiol dehydrogenase 2; bile acid





binding protein; 3-alpha hydroxysteroid





dehydrogenase, type III)



225330_at
IGF1R
insulin-like growth factor 1 receptor
−2.497


1557147_a_at
NA
NA
−2.496


209160_at
AKR1C3
aldo-keto reductase family 1, member C3
−2.49




(3-alpha hydroxysteroid dehydrogenase,





type II)



209699_x_at
AKR1C2
aldo-keto reductase family 1, member C2
−2.477




(dihydrodiol dehydrogenase 2; bile acid





binding protein; 3-alpha hydroxysteroid





dehydrogenase, type III)



211417_x_at
GGT1
gamma-glutamyltransferase 1
−2.459


241764_at
NA
NA
−2.458


214235_at
NA
NA
−2.451


39249_at
AQP3
aquaporin 3 (Gill blood group)
−2.444


232921_at
KIAA1549
KIAA1549
−2.44


203192_at
ABCB6
ATP-binding cassette, sub-family B
−2.428




(MDR/TAP), member 6



212327_at
LIMCH1
LIM and calponin homology domains 1
−2.423


212328_at
LIMCH1
LIM and calponin homology domains 1
−2.42


242794_at
MAML3
mastermind-like 3 (Drosophila)
−2.416


227892_at
PRKAA2
protein kinase, AMP-activated, alpha 2
−2.401




catalytic subunit



200731_s_at
PTP4A1
protein tyrosine phosphatase type IVA,
−2.393




member 1



214434_at
HSPA12A
heat shock 70 kDa protein 12A
−2.384


39549_at
NPAS2
neuronal PAS domain protein 2
−2.374


213462_at
NPAS2
neuronal PAS domain protein 2
−2.348


213155_at
WSCD1
WSC domain containing 1
−2.341


218416_s_at
SLC48A1
solute carrier family 48 (heme transporter),
−2.33




member 1



242917_at
RASGEF1A
RasGEF domain family, member 1A
−2.31


224937_at
PTGFRN
prostaglandin F2 receptor negative regulator
−2.308


205850_s_at
GABRB3
gamma-aminobutyric acid (GABA) A
−2.307




receptor, beta 3



210263_at
KCNF1
potassium voltage-gated channel, subfamily
−2.29




F, member 1



226448_at
FAM89A
family with sequence similarity 89, member A
−2.288


225056_at
SIPA1L2
signal-induced proliferation-associated 1
−2.278




like 2



210964_s_at
GYG2
glycogenin 2
−2.262


238537_at
NA
NA
−2.26


208322_s_at
ST3GAL1
ST3 beta-galactoside alpha-2,3-
−2.256




sialyltransferase 1



218417_s_at
SLC48A1
solute carrier family 48 (heme transporter),
−2.255




member 1



204151_x_at
AKR1C1
aldo-keto reductase family 1, member C1
−2.251




(dihydrodiol dehydrogenase 1; 20-alpha (3-





alpha)-hydroxysteroid dehydrogenase)



243586_at
NA
NA
−2.239


208650_s_at
CD24
CD24 molecule
−2.229


223575_at
KIAA1549
KIAA1549
−2.229


210558_at
AKR1C4
aldo-keto reductase family 1, member C4
−2.228




(chlordecone reductase; 3-alpha





hydroxysteroid dehydrogenase, type I;





dihydrodiol dehydrogenase 4)



216594_x_at
AKR1C1
aldo-keto reductase family 1, member C1
−2.224




(dihydrodiol dehydrogenase 1; 20-alpha (3-





alpha)-hydroxysteroid dehydrogenase)



219475_at
OSGIN1
oxidative stress induced growth inhibitor 1
−2.219


203615_x_at
SULT1A1
sulfotransferase family, cytosolic, 1A,
−2.209




phenol-preferring, member 1



217590_s_at
TRPA1
transient receptor potential cation channel,
−2.202




subfamily A, member 1



223633_s_at
BCAN
brevican
−2.199


200965_s_at
ABLIM1
actin binding LIM protein 1
−2.194


221802_s_at
KIAA1598
KIAA1598
−2.184


215695_s_at
GYG2
glycogenin 2
−2.178


65517_at
AP1M2
adaptor-related protein complex 1, mu 2
−2.176




subunit



208651_x_at
CD24
CD24 molecule
−2.175


242037_at
ASPH
aspartate beta-hydroxylase
−2.168


224950_at
PTGFRN
prostaglandin F2 receptor negative regulator
−2.166


215299_x_at
SULT1A1
sulfotransferase family, cytosolic, 1A,
−2.161




phenol-preferring, member 1



226039_at
MGAT4A
mannosyl (alpha-1,3-)-glycoprotein beta-
−2.145




1,4-N-acetylglucosaminyltransferase,





isozyme A



212651_at
RHOBTB1
Rho-related BTB domain containing 1
−2.131


200732_s_at
PTP4A1
protein tyrosine phosphatase type IVA,
−2.099




member 1



209276_s_at
GLRX
glutaredoxin (thioltransferase)
−2.097


211302_s_at
PDE4B
phosphodiesterase 4B, cAMP-specific
−2.095




(phosphodiesterase E4 dunce homolog,






Drosophila)




223058_at
FAM107B
family with sequence similarity 107,
−2.095




member B



215635_at
NA
NA
−2.078


204505_s_at
EPB49
erythrocyte membrane protein band 4.9
−2.062




(dematin)



222496_s_at
RBM47
RNA binding motif protein 47
−2.059


48106_at
SLC48A1
solute carrier family 48 (heme transporter),
−2.056




member 1



211382_s_at
TACC2
transforming, acidic coiled-coil containing
−2.054




protein 2



218681_s_at
SDF2L1
stromal cell-derived factor 2-like 1
−2.04


216548_x_at
HMGB3L1
high-mobility group box 3-like 1
−2.031


234986_at
NA
NA
−2.02


223059_s_at
FAM107B
family with sequence similarity 107,
−2.017




member B



202421_at
IGSF3
immunoglobulin superfamily, member 3
-2.009


225033_at
ST3GAL1
ST3 beta-galactoside alpha-2,3-
-2.006




sialyltransferase 1



207709_at
PRKAA2
protein kinase, AMP-activated, alpha 2
−1.999




catalytic subunit



238489_at
PRKAA2
protein kinase, AMP-activated, alpha 2
−1.996




catalytic subunit



236140_at
GCLM
glutamate-cysteine ligase, modifier subunit
−1.994


218035_s_at
RBM47
RNA binding motif protein 47
−1.99


200730_s_at
PTP4A1
protein tyrosine phosphatase type IVA,
−1.986




member 1



266_s_at
CD24
CD24 molecule
−1.985


204058_at
ME1
malic enzyme 1, NADPH-dependent,
−1.968




cytosolic



1557689_at
NA
NA
−1.96


226886_at
GFPT1
glutamine-fructose-6-phosphate
−1.959




transaminase 1



216379_x_at
CD24
CD24 molecule
−1.925


209771_x_at
CD24
CD24 molecule
−1.916


241459_at
LIMCH1
LIM and calponin homology domains 1
−1.916


39548_at
NPAS2
neuronal PAS domain protein 2
−1.911


206662_at
GLRX
glutaredoxin (thioltransferase)
−1.904


221245_s_at
FZD5
frizzled homolog 5 (Drosophila)
−1.893


207178_s_at
FRK
fyn-related kinase
−1.89


203343_at
UGDH
UDP-glucose dehydrogenase
−1.861


209607_x_at
NA
NA
−1.856


212325_at
LIMCH1
LIM and calponin homology domains 1
−1.845


226055_at
ARRDC2
arrestin domain containing 2
−1.838


226653_at
MARK1
MAP/microtubule affinity-regulating kinase 1
−1.809


205459_s_at
NPAS2
neuronal PAS domain protein 2
−1.799


226003_at
KIF21A
kinesin family member 21A
−1.756


229002_at
FAM69B
family with sequence similarity 69, member B
−1.732


202206_at
ARL4C
ADP-ribosylation factor-like 4C
1.504


231017_at
STK11
serine/threonine kinase 11
1.514


1554769_at
ZNF785
zinc finger protein 785
1.594


201105_at
LGALS1
lectin, galactoside-binding, soluble, 1
1.603


218154_at
GSDMD
gasdermin D
1.604


211799_x_at
HLA-C
major histocompatibility complex, class I, C
1.633


1553193_at
ZNF441
zinc finger protein 441
1.669


201109_s_at
THBS1
thrombospondin 1
1.672


221903_s_at
CYLD
cylindromatosis (turban tumor syndrome)
1.682


242028_at
NA
NA
1.689


201110_s_at
THBS1
thrombospondin 1
1.703


211962_s_at
ZFP36L1
zinc finger protein 36, C3H type-like 1
1.707


225328_at
NA
NA
1.719


238940_at
KLF12
Kruppel-like factor 12
1.739


231215_at
NA
NA
1.753


221534_at
C11orf68
chromosome 11 open reading frame 68
1.766


228213_at
H2AFJ
H2A histone family, member J
1.779


235171_at
NA
NA
1.81


214860_at
SLC9A7
solute carrier family 9 (sodium/hydrogen
1.836




exchanger), member 7



216526_x_at
HLA-C
major histocompatibility complex, class I, C
1.839


201466_s_at
JUN
jun oncogene
1.848


228394_at
STK10
serine/threonine kinase 10
1.851


1555675_at
BLID
BH3-like motif containing, cell death
1.886




inducer



239426_at
SLC2A8
solute carrier family 2 (facilitated glucose
1.888




transporter), member 8



208812_x_at
HLA-C
major histocompatibility complex, class I, C
1.899


242458_at
RALGPS2
Ral GEF with PH domain and SH3 binding
1.902




motif 2



229224_x_at
LOC643085
hypothetical LOC643085
1.906


230536_at
PBX4
pre-B-cell leukemia homeobox 4
1.913


1553247_a_at
ZNF709
zinc finger protein 709
1.918


1552671_a_at
SLC9A7
solute carrier family 9 (sodium/hydrogen
1.918




exchanger), member 7



226550_at
NA
NA
1.939


230112_at
4-Mar
membrane-associated ring finger (C3HC4) 4
1.955


228121_at
TGFB2
transforming growth factor, beta 2
1.956


211165_x_at
EPHB2
EPH receptor B2
1.985


209651_at
TGFB1I1
transforming growth factor beta 1 induced
1.989




transcript 1



219427_at
FAT4
FAT tumor suppressor homolog 4
1.99




(Drosophila)



208025_s_at
HMGA2
high mobility group AT-hook 2
1.996


214459_x_at
HLA-C
major histocompatibility complex, class I, C
1.996


203047_at
STK10
serine/threonine kinase 10
1.996


203988_s_at
FUT8
fucosyltransferase 8 (alpha (1,6)
1.997




fucosyltransferase)



227503_at
NA
NA
2.005


211529_x_at
HLA-G
major histocompatibility complex, class I, G
2.012


209304_x_at
GADD45B
growth arrest and DNA-damage-inducible,
2.014




beta



211528_x_at
HLA-G
major histocompatibility complex, class I, G
2.031


1558626_at
NA
NA
2.037


1558105_a_at
NA
NA
2.044


201462_at
SCRN1
secernin 1
2.047


208729_x_at
HLA-B
major histocompatibility complex, class I, B
2.062


207574_s_at
GADD45B
growth arrest and DNA-damage-inducible,
2.064




beta



37547_at
BBS9
Bardet-Biedl syndrome 9
2.069


225388_at
TSPAN5
tetraspanin 5
2.072


210875_s_at
ZEB1
zinc finger E-box binding homeobox 1
2.077


232247_at
ZNF502
zinc finger protein 502
2.077


209140_x_at
HLA-B
major histocompatibility complex, class I, B
2.08


227088_at
PDESA
phosphodiesterase 5A, cGMP-specific
2.083


229014_at
F1142709
hypothetical LOC441094
2.096


227489_at
SMURF2
SMAD specific E3 ubiquitin protein ligase 2
2.102


244180_at
ZNF793
zinc finger protein 793
2.114


239105_at
NA
NA
2.116


210655_s_at
NA
NA
2.119


232774_x_at
ZIK1
zinc finger protein interacting with K
2.123




protein 1 homolog (mouse)



211911_x_at
HLA-B
major histocompatibility complex, class I, B
2.125


212607_at
AKT3
v-akt murine thymoma viral oncogene
2.136




homolog 3 (protein kinase B, gamma)



244241_x_at
NA
NA
2.137


209305_s_at
GADD45B
growth arrest and DNA-damage-inducible,
2.14




beta



1558391_s_at
ZNF599
zinc finger protein 599
2.164


217624_at
PDAP1
PDGFA associated protein 1
2.182


202084_s_at
SEC14L1
SEC14-like 1 (S. cerevisiae)
2.187


225524_at
ANTXR2
anthrax toxin receptor 2
2.2


231879_at
COL12A1
collagen, type XII, alpha 1
2.204


236044_at
PPAPDC1A
phosphatidic acid phosphatase type 2
2.224




domain containing 1A



219765_at
ZNF329
zinc finger protein 329
2.238


1558683_a_at
HMGA2
high mobility group AT-hook 2
2.247


218718_at
PDGFC
platelet derived growth factor C
2.249


214995_s_at
NA
NA
2.254


241826_x_at
ZNF738
zinc finger protein 738
2.257


219523_s_at
ODZ3
odz, odd Oz/ten-m homolog 3 (Drosophila)
2.262


205596_s_at
SMURF2
SMAD specific E3 ubiquitin protein ligase 2
2.327


218986_s_at
DDX60
DEAD (Asp-Glu-Ala-Asp) box polypeptide 60
2.336


204292_x_at
STK11
serine/threonine kinase 11
2.348


230820_at
NA
NA
2.354


212985_at
APBB2
amyloid beta (A4) precursor protein-
2.356




binding, family B, member 2



202082_s_at
SEC14L1
SEC14-like 1 (S. cerevisiae)
2.363


210001_s_at
SOCS1
suppressor of cytokine signaling 1
2.371


206659_at
NA
NA
2.374


235027_at
NA
NA
2.38


228208_x_at
ZNF354C
zinc finger protein 354C
2.391


208790 _s_at
PTRF
polymerase I and transcript release factor
2.406


239761_at
GCNT1
glucosaminyl (N-acetyl) transferase 1, core
2.414




2 (beta-1,6-N-





acetylglucosaminyltransferase)



218273_s_at
PDP1
pyruvate dehyrogenase phosphatase
2.415




catalytic subunit 1



1562386_s_at
ZNF501
zinc finger protein 501
2.416


204897_at
PTGER4
prostaglandin E receptor 4 (subtype EP4)
2.435


213325_at
PVRL3
poliovirus receptor-related 3
2.437


222572_at
PDP1
pyruvate dehyrogenase phosphatase
2.441




catalytic subunit 1



205505_at
GCNT1
glucosaminyl (N-acetyl) transferase 1, core
2.461




2 (beta-1,6-N-





acetylglucosaminyltransferase)



222880_at
AKT3
v-akt murine thymoma viral oncogene
2.463




homolog 3 (protein kinase B, gamma)



239669_at
NA
NA
2.468


229533_x_at
ZNF680
zinc finger protein 680
2.479


238149_at
ZNF818P
zinc finger protein 818 pseudogene
2.481


201649_at
UBE2L6
ubiquitin-conjugating enzyme E2L 6
2.49


239204_at
ZNF75A
zinc finger protein 75a
2.495


233002_at
PPP4R4
protein phosphatase 4, regulatory subunit 4
2.529


238944_at
ZNF404
zinc finger protein 404
2.546


203989_x_at
F2R
coagulation factor II (thrombin) receptor
2.552


1567224_at
HMGA2
high mobility group AT-hook 2
2.558


1562415_a_at
SPOCD1
SPOC domain containing 1
2.566


232020_at
SMURF2
SMAD specific E3 ubiquitin protein ligase 2
2.584


200665_s_at
SPARC
secreted protein, acidic, cysteine-rich
2.6




(osteonectin)



218656_s_at
LHFP
lipoma HMGIC fusion partner
2.606


230345_at
SEMA7A
semaphorin 7A, GPI membrane anchor
2.613




(John Milton Hagen blood group)



1561633_at
HMGA2
high mobility group AT-hook 2
2.631


228054_at
TMEM44
transmembrane protein 44
2.631


205514_at
ZNF415
zinc finger protein 415
2.633


209505_at
NR2F1
nuclear receptor subfamily 2, group F,
2.657




member 1



228843_at
NA
NA
2.665


201325_s_at
EMP1
epithelial membrane protein 1
2.681


202686_s_at
AXL
AXL receptor tyrosine kinase
2.691


201324_at
EMP1
epithelial membrane protein 1
2.724


206557_at
ZNF702P
zinc finger protein 702 pseudogene
2.738


231930_at
ELMOD1
ELMO/CED-12 domain containing 1
2.745


228278_at
NFIX
nuclear factor I/X (CCAAT-binding
2.765




transcription factor)



227828_s_at
FAM176A
family with sequence similarity 176,
2.783




member A



220738_s_at
RPS6KA6
ribosomal protein S6 kinase, 90 kDa,
2.788




polypeptide 6



207156_at
HIST1H2AG
histone cluster 1, H2ag
2.821


224833_at
ETS1
v-ets erythroblastosis virus E26 oncogene
2.838




homolog 1 (avian)



1569470_a_at
FRMD5
FERM domain containing 5
2.841


235417_at
SPOCD1
SPOC domain containing 1
2.844


202083_s_at
SEC14L1
SEC14-like 1 (S. cerevisiae)
2.852


222571_at
ST6GALNAC6
ST6 (alpha-N-acetyl-neuraminy1-2,3-beta-
2.859




galactosyl-1,3)-N-acetylgalactosaminide





alpha-2,6-sialyltransferase 6



244551_at
NA
NA
2.893


224822_at
DLC1
deleted in liver cancer 1
2.895


207068_at
ZFP37
zinc finger protein 37 homolog (mouse)
2.901


236847_at
C19orf18
chromosome 19 open reading frame 18
2.911


217999_s_at
PHLDA1
pleckstrin homology-like domain, family A,
2.921




member 1



222719_s_at
PDGFC
platelet derived growth factor C
2.948


209890_at
TSPAN5
tetraspanin 5
2.996


238050_at
ANTXR2
anthrax toxin receptor 2
3.015


225387_at
TSPAN5
tetraspanin 5
3.021


208081_s_at
ZNF442
zinc finger protein 442
3.046


230831_at
FRMD5
FERM domain containing 5
3.057


209156_s_at
COL6A2
collagen, type VI, alpha 2
3.088


240407_at
LOC100126784
hypothetical LOC100126784
3.09


228950_s_at
GPR177
G protein-coupled receptor 177
3.109


221958_s_at
GPR177
G protein-coupled receptor 177
3.125


228368_at
ARHGAP20
Rho GTPase activating protein 20
3.236


221087_s_at
APOL3
apolipoprotein L, 3
3.27


232231_at
RUNX2
runt-related transcription factor 2
3.292


204823_at
NAV3
neuron navigator 3
3.293


218691_s_at
PDLIM4
PDZ and LIM domain 4
3.35


229059_at
NA
NA
3.352


1557636_a_at
C7orf57
chromosome 7 open reading frame 57
3.352


231766_s_at
COL12A1
collagen, type XII, alpha 1
3.362


1552658_a_at
NAV3
neuron navigator 3
3.378


229430_at
NA
NA
3.44


235944_at
HMCN1
hemicentin 1
3.44


228949_at
GPR177
G protein-coupled receptor 177
3.444


204415_at
IFI6
interferon, alpha-inducible protein 6
3.521


206170_at
ADRB2
adrenergic, beta-2-, receptor, surface
3.533


1552309_a_at
NEXN
nexilin (F actin binding protein)
3.534


218312_s_at
ZSCAN18
zinc finger and SCAN domain containing 18
3.547


223794_at
ARMC4
armadillo repeat containing 4
3.565


230968_at
NA
NA
3.696


206230_at
LHX1
LIM homeobox 1
3.852


239043_at
ZNF404
zinc finger protein 404
3.869


202411_at
IF127
interferon, alpha-inducible protein 27
3.906


231470_at
NA
NA
3.994


226103_at
NEXN
nexilin (F actin binding protein)
4.055


226218_at
IL7R
interleukin 7 receptor
4.061


213338_at
TMEM158
transmembrane protein 158
4.302


231728_at
CAPS
calcyphosine
4.309


205798_at
IL7R
interleukin 7 receptor
4.332


214175_x_at
PDLIM4
PDZ and LIM domain 4
4.526


211564_s_at
PDLIM4
PDZ and LIM domain 4
4.593


239250_at
ZNF542
zinc finger protein 542
4.607


233504_at
C9orf84
chromosome 9 open reading frame 84
4.71


243818_at
SFTA1P
surfactant associated 1 (pseudogene)
4.772


219885_at
SLFN12
schlafen family member 12
5.084


215446_s_at
LOX
lysyl oxidase
5.089


213139_at
SNAI2
snail homolog 2 (Drosophila)
5.214


204298_s_at
LOX
lysyl oxidase
5.555


203153_at
IFIT1
interferon-induced protein with
5.74




tetratricopeptide repeats 1



206421_s_at
SERPINB7
serpin peptidase inhibitor, clade B
5.838




(ovalbumin), member 7



204205_at
APOBEC3G
apolipoprotein B mRNA editing enzyme,
6.054




catalytic polypeptide-like 3G



206157_at
PTX3
pentraxin-related gene, rapidly induced by
6.193




IL-1 beta



1569039_s_at
ZNF677
zinc finger protein 677
6.8


244552_at
ZNF788
zinc finger family member 788
7.004


228974_at
NA
NA
7.033


228617_at
XAF1
XIAP associated factor 1
7.056


231098_at
NA
NA
7.498


203435_s_at
MME
membrane metallo-endopeptidase
7.574


202202_s_at
LAMA4
laminin, alpha 4
7.834


1560562_a_at
ZNF677
zinc finger protein 677
8.104


203434_s_at
MME
membrane metallo-endopeptidase
8.713


1555759_a_at
CCL5
chemokine (C-C motif) ligand 5
9.405


227655_at
SNORD123
small nucleolar RNA, C/D box 123
9.436


209619_at
CD74
CD74 molecule, major histocompatibility
10.572




complex, class II invariant chain



235236_at
LOC100131897
Uncharacterized protein LOC 100131897
13.196


231729_s_at
CAPS
calcyphosine
15.222


211518_s_at
BMP4
bone morphogenetic protein 4
17.634


1555673_at
NA
NA
20.578


1405_i_at
CCL5
chemokine (C-C motif) ligand 5
23 .398


231867_at
ODZ2
odz, odd Oz/ten-m homolog 2 (Drosophila)
29.634


209396_s_at
CHI3L1
chitinase 3-like 1 (cartilage glycoprotein-39)
42.124


209395_at
CHI3L1
chitinase 3-like 1 (cartilage glycoprotein-39)
48.846


242206_at
NA
NA
70.713









Fold Change values were computed by dividing the average gene expression for LKB1 positive cell lines (wild type) with the average gene expression of LKB1 negative cell lines (see FIG. 3 for positive and negative LKB1 cell lines). When the fold change is <1, the negative reciprocal of the original value is taken as the final fold change. A negative Fold Change value therefore means that LKB1 positive cell lines have a lower expression than LKB1 negative cell lines.


5.3 TOR Kinase Inhibitors

The compounds provided herein are generally referred to as TOR kinase inhibitors or “TORKi.” In a specific embodiment, the TORKi do not include rapamycin or rapamycin analogs (rapalogs). In certain embodiments, compounds provided herein are also DNA-PK inhibitors or “DNA-PKi.”


In one embodiment, the TOR kinase inhibitors include compounds having the following formula (I):




embedded image


and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof, wherein:


X, Y and Z are at each occurrence independently N or CR3, wherein at least one of X, Y and Z is N and at least one of X, Y and Z is CR3;


-A-B-Q- taken together form —CHR4C(O)NH—, —C(O)CHR4NH—, —C(O)NH—, —CH2C(O)O—, —C(O)CH2O—, —C(O)O— or C(O)NR3;


L is a direct bond, NH or O;


R1 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted C2-8alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl;


R2 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl;


R3 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclylalkyl, —NHR4 or —N(R4)2; and


R4 is at each occurrence independently substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In one embodiment, the TOR kinase inhibitors of formula (I) are those wherein -A-B-Q- taken together form —CH2C(O)NH—.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein -A-B-Q- taken together form —C(O)CH2NH—.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein -A-B-Q- taken together form —C(O)NH—.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein -A-B-Q- taken together form —CH2C(O)O—.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein -A-B-Q- taken together form —C(O)CH2O—.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein -A-B-Q- taken together form —C(O)O—.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein -A-B-Q- taken together form —C(O)NR3—.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein Y is CR3.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein X and Z are N and Y is CR3.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein X and Z are N and Y is CH.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein X and Z are CH and Y is N.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein Y and Z are CH and X is N.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein X and Y are CH and Z is N.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein R1 is substituted aryl, such as substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein R1 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl or substituted or unsubstituted naphthyl.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted quinoline, substituted or unsubstituted pyridine, substituted or unsubstituted pyrimidine, substituted or unsubstituted indole, or substituted or unsubstituted thiophene.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein R1 is H.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein R2 is substituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein R2 is methyl or ethyl substituted with substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein R2 is methyl or ethyl substituted with substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein R2 is C1-4alkyl substituted with substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein R2 is substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein R2 is H.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein L is a direct bond.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein -A-B-Q- taken together form —C(O)NH—, X and Z are N and Y is CH, R1 is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl, L is a direct bond, and R2 is substituted or unsubstituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein -A-B-Q- taken together form —C(O)NH—, X and Z are N and Y is CH, R1 is substituted or unsubstituted aryl, L is a direct bond, and R2 is substituted or unsubstituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein -A-B-Q- taken together form —C(O)NH—, X and Z are N and Y is CH, R1 is substituted or unsubstituted aryl, and R2 is C1-8alkyl substituted with one or more substituents selected from alkoxy, amino, hydroxy, cycloalkyl, or heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein -A-B-Q- taken together form —C(O)NH—, X and Z are N and Y is CH, R1 is substituted or unsubstituted aryl, and R2 is substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (I) are those wherein -A-B-Q- taken together form —C(O)NH—, X and Z are N and Y is CH, R1 is substituted phenyl, L is a direct bond, and R2 is substituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (I) do not include compounds wherein X and Z are both N and Y is CH, -A-B-Q- is —C(O)NH—, L is a direct bond, R1 is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl, and R2 is C1-8alkyl substituted with substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl.


In another embodiment, the TOR kinase inhibitors of formula (I) do not include compounds wherein X and Z are both N and Y is CH, -A-B-Q- is —C(O)NH—, L is a direct bond, R1 is phenyl, naphthyl, indanyl or biphenyl, each of which may be optionally substituted with one or more substituents independently selected from the group consisting substituted or unsubstituted C1-8alkyl, substituted or unsubstituted C2-8alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (I) do not include compounds wherein X and Z are both N and Y is CH, -A-B-Q- is —C(O)NH—, L is a direct bond, R1 is phenyl, naphthyl or biphenyl, each of which may be optionally substituted with one or more substituents each independently selected from the group consisting of C1-4alkyl, amino, aminoC1-12alkyl, halogen, hydroxy, hydroxyC1-4alkyl, C1-4alkyloxyC1-4alkyl, —CF3, C1-12alkoxy, aryloxy, arylC1-12alkoxy, —CN, —OCF3, —CORg, —COORg, —CONRgRh, —NRgCORh, —SO2Rg, —SO3Rg or —SO2NRgRh, wherein each Rg and Rh are independently selected from the group consisting of hydrogen, C1-4alkyl, C3-6cycloalkyl, aryl, arylC1-6alkyl, heteroaryl or heteroarylC1-6alkyl; or A is a 5- to 6-membered monocyclic heteroaromatic ring having from one, two, three or four heteroatoms independently selected from the group consisting of N, O and S, that monocyclic heteroaromatic ring may be optionally substituted with one or more substituents each independently selected from the group consisting of C1-6alkyl, amino, aminoC1-12alkyl, halogen, hydroxy, hydroxyC1-4alkyl, C1-4alkyloxyC1-4alkyl, C1-12alkoxy, aryloxy, aryl C1-12alkoxy, —CN, —CF3, —OCF3, —CORi, —COORi, —CONRiRj, —NRiCORj, —NRiSO2Rj, —SO2Ri, —SO3Ri, or —SO2NRiRj, wherein each Ri and Rj are independently selected from the group consisting of hydrogen, C1-4 alkyl, C3-6cycloalkyl, aryl, arylC1-6alkyl, heteroaryl or heteroarylC1-6alkyl; or A is a 8- to 10 membered bicyclic heteroaromatic ring from one, two, three or four heteroatoms selected from the group consisting of N, O and S, and may be optionally substituted with one, two or three substituents each independently selected from the group consisting of C1-6alkyl, amino, aminoC1-6alkyl, halogen, hydroxy, hydroxyC1-4alkyl, C1-4alkyloxyC1-4alkyl, C1-4alkoxy, aryloxy, aryl C1-12alkoxy, —CN, —CF3, —OCF3, —CORk, —COORk, —CONRkRl, —NRkCORl, —NRkSO2Rl, —SO2Rk, —SO3Rk or —SO2NRkRl, wherein each Rk and Rl are independently selected from the group consisting of hydrogen, C1-4 alkyl, C3-6 cycloalkyl, aryl, arylC1-6alkyl, heteroaryl or heteroarylC1-6alkyl, and R2 is C1-8alkyl substituted with substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl.


In another embodiment, the TOR kinase inhibitors of formula (I) do not include compounds wherein X and Y are both N and Z is CH, -A-B-Q- is —C(O)NH—, L is a direct bond, R1 is substituted or unsubstituted phenyl or substituted or unsubstituted heteroaryl, and R2 is substituted or unsubstituted methyl, unsubstituted ethyl, unsubstituted propyl, or an acetamide.


In another embodiment, the TOR kinase inhibitors of formula (I) do not include compounds wherein X and Y are both N and Z is CH, -A-B-Q- is —C(O)NH—, L is a direct bond, R1 is substituted or unsubstituted phenyl or substituted or unsubstituted heteroaryl, and R2 is an acetamide.


In another embodiment, the TOR kinase inhibitors of formula (I) do not include compounds wherein X is N and Y and Z are both CH, -A-B-Q- is —C(O)NH—, L is a direct bond, R1 is a (2,5′-Bi-1H-benzimidazole)-5-carboxamide, and R2 is H.


In another embodiment, the TOR kinase inhibitors of formula (I) do not include compounds wherein one of X and Z is CH and the other is N, Y is CH, -A-B-Q- is —C(O)NH—, L is a direct bond, R1 is unsubstituted pyridine, and R2 is H, methyl or substituted ethyl.


In another embodiment, the TOR kinase inhibitors of formula (I) do not include compounds wherein X and Z are both N and Y is CH, -A-B-Q- is —C(O)NH—, R1 is H, C1-8alkyl, C2-8alkenyl, aryl or cycloalkyl, and L is NH.


In another embodiment, the TOR kinase inhibitors of formula (I) do not include compounds wherein X and Z are both N and Y is CH, -A-B-Q- is —C(O)NR3—, R2 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted phenyl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl, and L is NH.


In another embodiment, the TOR kinase inhibitors of formula (I) do not include compounds wherein R1 is a substituted or unsubstituted oxazolidinone.


In another embodiment, the TOR kinase inhibitors of formula (I) do not include one or more of the following compounds: 1,7-dihydro-2-phenyl-8H-Purin-8-one, 1,2-dihydro-3-phenyl-6H-Imidazo[4,5-e]-1,2,4-triazin-6-one, 1,3-dihydro-6-(4-pyridinyl)-2H-Imidazo[4,5-b ]pyridin-2-one, 6-(1,3-benzodioxol-5-yl)-1,3-dihydro-1-[(1S)-1-phenylethyl]-2H-Imidazo[4,5-b]pyrazin-2-one, 3-[2,3-dihydro-2-oxo-3-(4-pyridinylmethyl)-1H-imidazo[4,5-b]pyrazin-5-yl]-Benzamide, 1-[2-(dimethylamino)ethyl]-1,3-dihydro-6-(3,4,5-trimethoxyphenyl)-2H-Imidazo[4,5-b]pyrazin-2-one, N-[5-(1,1-dimethylethyl)-2-methoxyphenyl]-N′-[4-(1,2,3,4-tetrahydro-2-oxopyrido[2,3-b]pyrazin-7-yl)-1-naphthalenyl]-Urea, N-[4-(2,3-dihydro-2-oxo-1H-imidazo[4,5-b]pyridin-6-yl)-1-naphthalenyl]-N′-[5-(1,1-dimethylethyl)-2-methoxyphenyl]-Urea, 1,3-dihydro-5-phenyl-2H-Imidazo[4,5-b]pyrazin-2-one, 1,3-dihydro-5-phenoxy-2H-Imidazo[4,5-b]pyridin-2-one, 1,3-dihydro-1-methyl-6-phenyl-2H-Imidazo[4,5-b]pyridin-2-one, 1,3-dihydro-5-(1H-imidazol-1-yl) 2H-Imidazo[4,5-b]pyridin-2-one, 6-(2,3-dihydro-2-oxo-1H-imidazo[4,5-b]pyridin-6-yl)-8-methyl-2(1H)-Quinolinone and 7,8-dihydro-8-oxo-2-phenyl-9H-purine-9-acetic acid.


In one embodiment, the TOR kinase inhibitors include compounds having the following formula (Ia):




embedded image


and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof, wherein:


L is a direct bond, NH or O;


Y is N or CR3;


R1 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted C2-8alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl;


R2 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl;


R3 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclylalkyl, —NHR4 or —N(R4)2; and


R4 is at each occurrence independently substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In one embodiment, the TOR kinase inhibitors of formula (Ia) are those wherein R1 is substituted aryl, such as substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (Ia) are those wherein R1 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl or substituted or unsubstituted naphthyl.


In another embodiment, the TOR kinase inhibitors of formula (Ia) are those wherein R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted quinoline, substituted or unsubstituted pyridine, substituted or unsubstituted pyrimidine, substituted or unsubstituted indole, or substituted or unsubstituted thiophene.


In another embodiment, the TOR kinase inhibitors of formula (Ia) are those wherein R1 is H.


In another embodiment, the TOR kinase inhibitors of formula (Ia) are those wherein R2 is substituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ia) are those wherein R2 is methyl or ethyl substituted with substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ia) are those wherein R2 is substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ia) are those wherein R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (Ia) are those wherein R2 is H.


In another embodiment, the TOR kinase inhibitors of formula (Ia) are those wherein Y is CH.


In another embodiment, the TOR kinase inhibitors of formula (Ia) are those wherein L is a direct bond.


In another embodiment, the TOR kinase inhibitors of formula (Ia) are those wherein R1 is substituted or unsubstituted aryl and R2 is unsubstituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ia) are those wherein R1 is substituted or unsubstituted aryl and R2 is C1-8alkyl substituted with one or more substituents selected from alkoxy, amino, hydroxy, cycloalkyl, or heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ia) are those wherein R1 is substituted or unsubstituted aryl and R2 is substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ia) do not include compounds wherein Y is CH, L is a direct bond, R1 is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl, and R2 is C1-8alkyl substituted with substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl.


In one embodiment, the TOR kinase inhibitors include compounds having the following formula (Ib):




embedded image


and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof, wherein:


L is a direct bond, NH or O;


R1 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted C2-8alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl; and


R2 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In one embodiment, the TOR kinase inhibitors of formula (Ib) are those wherein R1 is substituted aryl, such as substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (Ib) are those wherein R1 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl or substituted or unsubstituted naphthyl.


In another embodiment, the TOR kinase inhibitors of formula (Ib) are those wherein R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted quinoline, substituted or unsubstituted pyridine, substituted or unsubstituted pyrimidine, substituted or unsubstituted indole, or substituted or unsubstituted thiophene.


In another embodiment, the TOR kinase inhibitors of formula (Ib) are those wherein R1 is H.


In another embodiment, the TOR kinase inhibitors of formula (Ib) are those wherein R2 is substituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ib) are those wherein R2 is methyl or ethyl substituted with substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ib) are those wherein R2 is substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ib) are those wherein R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (Ib) are those wherein R2 is H.


In another embodiment, the TOR kinase inhibitors of formula (Ib) are those wherein L is a direct bond.


In another embodiment, the TOR kinase inhibitors of formula (Ib) are those wherein R1 is substituted or unsubstituted aryl and R2 is unsubstituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ib) are those wherein R1 is substituted or unsubstituted aryl and R2 is C1-8alkyl substituted with one or more substituents selected from alkoxy, amino, hydroxy, cycloalkyl, or heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ib) are those wherein R1 is substituted or unsubstituted aryl and R2 is substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In one embodiment, the TOR kinase inhibitors include compounds having the following formula (Ic):




embedded image


and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof, wherein:


L is a direct bond, NH or O;


R1 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted C2-8alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl; and


R2 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In one embodiment, the TOR kinase inhibitors of formula (Ic) are those wherein R1 is substituted aryl, such as substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (Ic) are those wherein R1 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl or substituted or unsubstituted naphthyl.


In another embodiment, the TOR kinase inhibitors of formula (Ic) are those wherein R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted quinoline, substituted or unsubstituted pyridine, substituted or unsubstituted pyrimidine, substituted or unsubstituted indole, or substituted or unsubstituted thiophene.


In another embodiment, the TOR kinase inhibitors of formula (Ic) are those wherein R1 is H.


In another embodiment, the TOR kinase inhibitors of formula (Ic) are those wherein R2 is substituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ic) are those wherein R2 is methyl or ethyl substituted with substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ic) are those wherein R2 is substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ic) are those wherein R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (Ic) are those wherein R2 is H.


In another embodiment, the TOR kinase inhibitors of formula (Ic) are those wherein L is a direct bond.


In another embodiment, the TOR kinase inhibitors of formula (Ic) are those wherein R1 is substituted or unsubstituted aryl and R2 is unsubstituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ic) are those wherein R1 is substituted or unsubstituted aryl and R2 is C1-8alkyl substituted with one or more substituents selected from alkoxy, amino, hydroxy, cycloalkyl, or heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ic) are those wherein R1 is substituted or unsubstituted aryl and R2 is substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In one embodiment, the TOR kinase inhibitors include compounds having the following formula (Id):




embedded image


and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof, wherein:


L is a direct bond, NH or O;


R1 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted C2-8alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl; and


R2 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In one embodiment, the TOR kinase inhibitors of formula (Id) are those wherein R1 is substituted aryl, such as substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (Id) are those wherein R1 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl or substituted or unsubstituted naphthyl.


In another embodiment, the TOR kinase inhibitors of formula (Id) are those wherein R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted quinoline, substituted or unsubstituted pyridine, substituted or unsubstituted pyrimidine, substituted or unsubstituted indole, or substituted or unsubstituted thiophene.


In another embodiment, the TOR kinase inhibitors of formula (Id) are those wherein R1 is H.


In another embodiment, the TOR kinase inhibitors of formula (Id) are those wherein R2 is substituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (Id) are those wherein R2 is methyl or ethyl substituted with substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Id) are those wherein R2 is substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Id) are those wherein R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl.


In another embodiment, the Heteroaryl Compounds of formula (Id) are those wherein R2 is H.


In another embodiment, the TOR kinase inhibitors of formula (Id) are those wherein L is a direct bond.


In another embodiment, the TOR kinase inhibitors of formula (Id) are those wherein R1 is substituted or unsubstituted aryl and R2 is unsubstituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (Id) are those wherein R1 is substituted or unsubstituted aryl and R2 is C1-8alkyl substituted with one or more substituents selected from alkoxy, amino, hydroxy, cycloalkyl, or heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Id) are those wherein R1 is substituted or unsubstituted aryl and R2 is substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In one embodiment, the TOR kinase inhibitors include compounds having the following formula (Ie):




embedded image


and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof, wherein:


L is a direct bond, NH or O;


R1 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted C2-8alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl; and R2 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In one embodiment, the TOR kinase inhibitors of formula (Ie) are those wherein R1 is substituted aryl, such as substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (Ie) are those wherein R1 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl or substituted or unsubstituted naphthyl.


In another embodiment, the TOR kinase inhibitors of formula (Ie) are those wherein R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted quinoline, substituted or unsubstituted pyridine, substituted or unsubstituted pyrimidine, substituted or unsubstituted indole, or substituted or unsubstituted thiophene.


In another embodiment, the TOR kinase inhibitors of formula (Ie) are those wherein R1 is H.


In another embodiment, the TOR kinase inhibitors of formula (Ie) are those wherein R2 is substituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ie) are those wherein R2 is methyl or ethyl substituted with substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ie) are those wherein R2 is substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ie) are those wherein R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (Ie) are those wherein R2 is H.


In another embodiment, the TOR kinase inhibitors of formula (Ie) are those wherein L is a direct bond.


In another embodiment, the TOR kinase inhibitors of formula (Ie) are those wherein R1 is substituted or unsubstituted aryl and R2 is unsubstituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ie) are those wherein R1 is substituted or unsubstituted aryl and R2 is C1-8alkyl substituted with one or more substituents selected from alkoxy, amino, hydroxy, cycloalkyl, or heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ie) are those wherein R1 is substituted or unsubstituted aryl and R2 is substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In one embodiment, the TOR kinase inhibitors include compounds having the following formula (If):




embedded image


and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof, wherein:


L is a direct bond, NH or O;


R1 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted C2-8alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl; and


R2 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In one embodiment, the TOR kinase inhibitors of formula (If) are those wherein R1 is substituted aryl, such as substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (If) are those wherein R1 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl or substituted or unsubstituted naphthyl.


In another embodiment, the TOR kinase inhibitors of formula (If) are those wherein R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted quinoline, substituted or unsubstituted pyridine, substituted or unsubstituted pyrimidine, substituted or unsubstituted indole, or substituted or unsubstituted thiophene.


In another embodiment, the TOR kinase inhibitors of formula (If) are those wherein R1 is H.


In another embodiment, the TOR kinase inhibitors of formula (If) are those wherein R2 is substituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (If) are those wherein R2 is methyl or ethyl substituted with substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (If) are those wherein R2 is substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (If) are those wherein R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (If) are those wherein R2 is H.


In another embodiment, the TOR kinase inhibitors of formula (If) are those wherein L is a direct bond.


In another embodiment, the TOR kinase inhibitors of formula (If) are those wherein R1 is substituted or unsubstituted aryl and R2 is unsubstituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (If) are those wherein R1 is substituted or unsubstituted aryl and R2 is C1-8alkyl substituted with one or more substituents selected from alkoxy, amino, hydroxy, cycloalkyl, or heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (If) are those wherein R1 is substituted or unsubstituted aryl and R2 is substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In one embodiment, the TOR kinase inhibitors include compounds having the following formula (Ig):




embedded image


and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof, wherein:


L is a direct bond, NH or O;


R1 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted C2-8alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl; and


R2 is H, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In one embodiment, the TOR kinase inhibitors of formula (Ig) are those wherein R1 is substituted aryl, such as substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (Ig) are those wherein R1 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl or substituted or unsubstituted naphthyl.


In another embodiment, the TOR kinase inhibitors of formula (Ig) are those wherein R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted quinoline, substituted or unsubstituted pyridine, substituted or unsubstituted pyrimidine, substituted or unsubstituted indole, or substituted or unsubstituted thiophene.


In another embodiment, the TOR kinase inhibitors of formula (Ig) are those wherein R1 is H.


In another embodiment, the TOR kinase inhibitors of formula (Ig) are those wherein R2 is substituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ig) are those wherein R2 is methyl or ethyl substituted with substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ig) are those wherein R2 is substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ig) are those wherein R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (Ig) are those wherein R2 is H.


In another embodiment, the TOR kinase inhibitors of formula (Ig) are those wherein L is a direct bond.


In another embodiment, the TOR kinase inhibitors of formula (Ig) are those wherein R1 is substituted or unsubstituted aryl and R2 is unsubstituted C1-8alkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ig) are those wherein R1 is substituted or unsubstituted aryl and R2 is C1-8alkyl substituted with one or more substituents selected from alkoxy, amino, hydroxy, cycloalkyl, or heterocyclylalkyl.


In another embodiment, the TOR kinase inhibitors of formula (Ig) are those wherein R1 is substituted or unsubstituted aryl and R2 is substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl.


Representative TOR kinase inhibitors of formula (I) include:

  • (S)-1-(1-hydroxy-3-methylbutan-2-yl)-6-phenyl-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-((tetrahydro-2H-pyran-4-yl)methyl)-6-(3,4,5-trimethoxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (R)-6-(naphthalen-1-yl)-1-(1-phenylethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(3-methoxybenzyl)-6-(4-(methylsulfonyl)phenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (S)-1-(1-phenylethyl)-6-(quinlin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-hydroxyphenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (S)-6-(naphthalen-1-yl)-1-(1-phenylethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (S)-1-(1-hydroxy-3-methylbutan-2-yl)-6-(5-isopropyl-2-methoxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (R)-1-(1-hydroxy-3-methylbutan-2-yl)-6-phenyl-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (R)-1-(1-phenylethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (S)-1-(1-hydroxy-3-methylbutan-2-yl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (R)-1-(1-hydroxy-3-methylbutan-2-yl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (R)-1-(1-hydroxy-3-methylbutan-2-yl)-6-(5-isopropyl-2-methoxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-benzyl-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(4-methoxybenzyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (R)-1-(1-phenylethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (S)-1-(1-phenylethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-isopropyl-6-(5-isopropyl-2-methoxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-cyclohexyl-6-(5-isopropyl-2-methoxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 5-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-isobutyl-6-(5-isopropyl-2-methoxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(2-hydroxyethyl)-6-(5-isopropyl-2-methoxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(5-isopropyl-2-methoxyphenyl)-1-(tetrahydro-2H-pyran-4-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (R)-1-(1-phenylethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-c]pyridin-2(3H)-one;
  • (S)-1-(1-phenylethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-c]pyridin-2(3H)-one;
  • 3-(1-phenylethyl)-5-(quinolin-5-yl)-1H-imidazo[4,5-b]pyridin-2(3H)-one;
  • (R)-3-(1-phenylethyl)-5-(quinolin-5-yl)-1H-imidazo[4,5-b]pyridin-2(3H)-one;
  • (R)-6-(5-isopropyl-2-methoxyphenyl)-1-(3-methylbutan-2-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (S)-6-(5-isopropyl-2-methoxyphenyl)-1-(tetrahydrofuran-3-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (S)-6-(5-isopropyl-2-methoxyphenyl)-1-(3-methylbutan-2-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-cyclopentyl-6-(5-isopropyl-2-methoxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (R)-6-(5-isopropyl-2-methoxyphenyl)-1-(tetrahydrofuran-3-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(cyclopropylmethyl)-6-(5-isopropyl-2-methoxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(cyclopentylmethyl)-6-(5-isopropyl-2-methoxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(cyclohexylmethyl)-6-(5-isopropyl-2-methoxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(5-isopropyl-2-methoxyphenyl)-1-neopentyl-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-isopropyl-6-(3-isopropylphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-isopropyl-6-(2-methoxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (S)-3-(1-hydroxy-3-methylbutan-2-yl)-5-(5-isopropyl-2-methoxyphenyl)-1H-imidazo[4,5-b]pyridin-2(3H)-one;
  • (R)-1-(2-hydroxy-1-phenylethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (S)-1-(2-hydroxy-1-phenylethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(1-phenylethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-benzhydryl-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (S)-1-(1-phenylpropyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (R)-1-(1-phenylpropyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(5-isopropyl-2-methoxyphenyl)-1-(tetrahydro-2H-pyran-3-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(3-methoxybenzyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (R)-1-methyl-3-(1-phenylethyl)-5-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (S)-1-methyl-3-(1-phenylethyl)-5-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(cyclopentylmethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(1-(2-fluorophenyl)ethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(1-(4-fluorophenyl)ethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-cyclopentyl-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(1-(3-fluorophenyl)ethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(1-(3-methoxyphenyl)ethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(1-(4-methoxyphenyl)ethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(quinolin-5-yl)-1-(tetrahydro-2H-pyran-4-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(quinolin-5-yl)-1-(tetrahydro-2H-pyran-3-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-((1s,4s)-4-hydroxycyclohexyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-((1r,4r)-4-hydroxycyclohexyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(isoquinolin-5-yl)-1-(1-phenylethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (R)-1-(1-phenylethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyridin-2(3H)-one;
  • 1-(1-phenylethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyridin-2(3H)-one;
  • 1-isopropyl-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(1-(4-chlorophenyl)ethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(1-(4-(methylsulfonyl)phenyl)ethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(1-(pyridin-4-yl)ethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 5-methyl-1-((S)-1-phenylethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 5-methyl-1-((R)-1-phenylethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(1-phenylethyl)-6-(quinolin-4-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(3-fluorophenyl)-1-(1-phenylethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(2-fluorophenyl)-1-(1-phenylethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(1-phenylethyl)-6-(quinolin-6-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(piperidin-4-ylmethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(1-(pyridin-2-yl)ethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(1-(pyridin-3-yl)ethyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-((1s,4s)-4-(hydroxymethyl)cyclohexyl)-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • N-(4-(2-oxo-3-(1-phenylethyl)-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)phenyl)methanesulfonamide;
  • 6-(3-(methylsulfonyl)phenyl)-1-(1-phenylethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(3-aminophenyl)-1-(1-phenylethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(3-(dimethylamino)phenyl)-1-(1-phenylethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-phenyl-6-(quinolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(1-phenylethyl)-6-(4-(trifluoromethyl)phenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • N-(3-(2-oxo-3-(1-phenylethyl)-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)phenyl)methanesulfonamide;
  • 6-(4-(methylsulfonyl)phenyl)-1-(1-phenylethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 3-(1-phenylethyl)-5-(quinolin-5-yl)oxazolo[5,4-b]pyrazin-2(3H)-one;
  • 1-(cyclopentylmethyl)-6-(4-hydroxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one
  • 6-(4-hydroxyphenyl)-1-isopropyl-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-hydroxyphenyl)-1-isobutyl-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-hydroxyphenyl)-1-((tetrahydro-2H-pyran-3-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(cyclohexylmethyl)-6-(4-hydroxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 5-(3-Hydroxyphenyl)-3-(2-methoxyphenyl)-1H-imidazo[4,5-b]pyridin-2(3H)-one;
  • 4-(3-(3-Methoxybenzyl)-2-oxo-2,3-dihydrooxazolo[5,4-b]pyrazin-5-yl)-N-methyl benzamide;
  • 1-Cyclopentyl-6-(4-hydroxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-Cyclohexyl-6-(4-hydroxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 4-(3-(Cyclohexylmethyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)benzamide;
  • Methyl 4-(3-(cyclohexylmethyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)benzoate;
  • 1-(Cyclohexylmethyl)-6-(pyridin-4-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 4-(3-(Cyclohexylmethyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)-N-methylbenzamide;
  • 1-(Cyclohexylmethyl)-6-(4-(hydroxymethyl)phenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(pyridin-3-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 3-(Cyclohexylmethyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)benzonitrile;
  • 1-(Cyclohexylmethyl)-6-(1H-indol-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 4-(3-(Cyclohexylmethyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)-N-isopropylbenz amide;
  • 1-(2-Hydroxyethyl)-6-(4-hydroxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(1H-indol-6-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 3-(3-(Cyclohexylmethyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)benzamide;
  • 6-(4-(Aminomethyl)phenyl)-1-(cyclohexylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-Hydroxyphenyl)-1-((1-methylpiperidin-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 4-(3-(Cyclohexylmethyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)benzonitrile;
  • 1-((1s,4s)-4-Hydroxycyclohexyl)-6-(4-hydroxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(pyridin-2-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 4-(3-(Cyclohexylmethyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)-N-ethylbenzamide;
  • 1-(Cyclohexylmethyl)-6-(4-(2-hydroxypropan-2-yl)phenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(4-hydroxy-2-methylphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 4-(3-(Cyclohexylmethyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)benzoic acid;
  • 6-(4-Hydroxyphenyl)-1-(2-methoxyethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-Hydroxyphenyl)-1-(3-methoxypropyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-Hydroxyphenyl)-4-(3-methoxybenzyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(4-Hydroxyphenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-Hydroxyphenyl)-1-phenethyl-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-((1r,4r)-4-Hydroxycyclohexyl)-6-(4-hydroxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(1H-1,2,4-Triazol-3-yl)phenyl)-1-(cyclohexylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-phenyl-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(1H-pyrazol-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(1H-pyrazol-4-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(1-oxoisoindolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(3-(1H-Tetrazol-5-yl)phenyl)-1-(cyclohexylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(2-oxoindolin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(1H-indazol-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(6-methoxypyridin-3-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-Hydroxyphenyl)-1-(tetrahydro-2H-pyran-4-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-Hydroxyphenyl)-1-(piperidin-4-ylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(((1r,4r)-4-Aminocyclohexyl)methyl)-6-(4-hydroxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(6-hydroxypyridin-3-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(2-methoxypyridin-4-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 4-(3-((1r,4r)-4-Hydroxycyclohexyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)benzamide;
  • 2-(4-(3-(Cyclohexylmethyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)phenyl)acetic acid;
  • 2-(4-(3-(Cyclohexylmethyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)phenyl) acetamide;
  • 1-(Cyclohexylmethyl)-6-(2-oxoindolin-6-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 4-(3-(Cyclohexylmethyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)-3-methyl benzoic acid;
  • N-Methyl-4-(2-oxo-3-((tetrahydro-2H-pyran-4-yl)methyl)-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)benzamide;
  • 4-(2-oxo-3-((Tetrahydro-2H-pyran-4-yl)methyl)-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)benzamide;
  • 7-(4-Hydroxyphenyl)-1-(3-methoxybenzyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(4-(2-Hydroxypropan-2-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(1H-Indol-5-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(4H-1,2,4-Triazol-3-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(1H-Benzo[d]imidazol-5-yl)-1-(cyclohexylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 4-(2-oxo-3-(2-(Tetrahydro-2H-pyran-4-yl)ethyl)-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)benzamide;
  • 6-(3-(2H-1,2,3-Triazol-4-yl)phenyl)-1-(cyclohexylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(1H-Imidazol-1-yl)phenyl)-1-(cyclohexylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(1H-1,2,4-Triazol-3-yl)phenyl)-1-((1r,4r)-4-hydroxycyclohexyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(2H-tetrazol-5-yl)phenyl)-1-(cyclohexylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(2-hydroxypyridin-4-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(1H-1,2,4-Triazol-3-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(1H-Imidazol-2-yl)phenyl)-1-(cyclohexylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(1H-1,2,3-Triazol-1-yl)phenyl)-1-(cyclohexylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(2-Hydroxypropan-2-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(4-(5-methyl-1H-1,2,4-triazol-3-yl)phenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(1H-Pyrazol-3-yl)phenyl)-1-(cyclohexylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(1H-Pyrazol-4-yl)phenyl)-1-(cyclohexylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(5-(Aminomethyl)-1H-1,2,4-triazol-3-yl)phenyl)-1-(cyclohexylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one hydrochloride;
  • 1-(Cyclohexylmethyl)-6-(4-(5-(trifluoromethyl)-1H-1,2,4-triazol-3-yl)phenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-Hydroxyphenyl)-1-((1r,4r)-4-methoxycyclohexyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-Hydroxyphenyl)-1-((tetrahydrofuran-2-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(3-(1H-1,2,4-Triazol-3-yl)phenyl)-1-(cyclohexylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-((1r,4r)-4-(Hydroxymethyl)cyclohexyl)-6-(4-hydroxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-Hydroxyphenyl)-1-((1s,4s)-4-methoxycyclohexyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-Hydroxyphenyl)-1-((1r,4r)-4-(methoxymethyl)cyclohexyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(1-Methyl-1H-pyrazol-4-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(((1r,4r)-4-Hydroxycyclohexyl)methyl)-6-(4-hydroxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-Hydroxyphenyl)-1-((tetrahydrofuran-3-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(((1s,4s)-4-Hydroxycyclohexyl)methyl)-6-(4-hydroxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(1H-Benzo[d]imidazol-5-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one hydrochloride;
  • 6-(4-(5-(Morpholinomethyl)-1H-1,2,4-triazol-3-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-Hydroxyphenyl)-1-(3-(2-oxopyrrolidin-1-yl)propyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-Hydroxyphenyl)-1-(2-morpholinoethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one hydrochloride;
  • 1-(Cyclohexylmethyl)-6-(4-(oxazol-5-yl)phenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(2-Methyl-1H-benzo[d]imidazol-5-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one hydrocholoride;
  • 6-(4-(5-(Methoxymethyl)-1H-1,2,4-triazol-3-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-((1s,4s)-4-(Hydroxymethyl)cyclohexyl)-6-(4-hydroxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(3-Methyl-1H-pyrazol-4-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(1H-Pyrazol-4-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(2-Amino-1H-benzo[d]imidazol-5-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one di hydrochloride;
  • 64445-(2-Hydroxypropan-2-yl)-1H-1,2,4-triazol-3-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(5-Isopropyl-1H-1,2,4-triazol-3-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 4-(2-Methoxy-1-(2-morpholinoethyl)-1H-imidazo[4,5-b]pyrazin-6-yl)benzamide hydrochloride;
  • 4-(1-((1s,4s)-4-Hydroxycyclohexyl)-2-methoxy-1H-imidazo[4,5-b]pyrazin-6-yl)benzamide;
  • 6-(4-Hydroxyphenyl)-1-((1s,4s)-4-(methoxymethyl)cyclohexyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(3H-imidazo[4,5-b]pyridin-6-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(2-(2,2-Dimethyltetrahydro-2H-pyran-4-yl)ethyl)-6-(4-hydroxyphenyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(1H-Pyrazol-1-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(4H-1,2,4-Triazol-3-yl)phenyl)-1-(2-morpholinoethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(1H-Benzo[d]imidazol-2-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(1H-Imidazol-2-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one hydrochloride;
  • 6-(4-(5-(Hydroxymethyl)-1H-1,2,4-triazol-3-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(1H-Imidazol-5-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one hydrochloride;
  • 6-(4-Hydroxyphenyl)-1-((5-oxopyrrolidin-2-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(4,5-Dimethyl-1H-imidazol-2-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(1H-1,2,4-Triazol-5-yl)phenyl)-1-(((1s,4s)-4-methoxycyclohexyl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(1H-1,2,4-Triazol-5-yl)phenyl)-1-(((1r,4r)-4-methoxycyclohexyl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(6-(1H-1,2,4-Triazol-3-yl)pyridin-3-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(1H-1,2,4-Triazol-3-yl)phenyl)-1-(2-(2-oxopyrrolidin-1-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(5-((dimethylamino)methyl)-1H-1,2,4-triazol-3-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-Hydroxyphenyl)-1-(pyrrolidin-2-ylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one hydrochloride;
  • 6-(2-Aminobenzimidazol-5-yl)-1-(cyclohexylmethyl)-4-imidazolino[4,5-b]pyrazin-2-one di hydrochloride;
  • 6-(2-(Dimethylamino)-1H-benzo[d]imidazol-5-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-Hydroxyphenyl)-1-(piperidin-3-ylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(4H-1,2,4-triazol-3-yl)phenyl)-1-(2-(piperidin-1-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one hydrochloride;
  • 1-(Cyclohexylmethyl)-6-(2-(methylamino)pyrimidin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(3-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(2-(2-methoxyethylamino)pyrimidin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(5-((methylamino)methyl)-1H-1,2,4-triazol-3-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(5-Oxopyrrolidin-2-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(5-methyl-1H-1,2,4-triazol-3-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(1H-imidazol-2-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(4H-1,2,4-triazol-3-yl)phenyl)-1-(2-methyl-2-morpholinopropyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(4H-1,2,4-Triazol-3-yl)phenyl)-1-(1-morpholinopropan-2-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(Pyrrolidin-2-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(5-(aminomethyl)-1H-1,2,4-triazol-3-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(5-(Hydroxymethyl)thiophen-2-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (1r,4s)-4-(6-(4-Hydroxyphenyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-1-yl)cyclo-hexanecarboxamide;
  • (1s,4s)-4-(6-(4-Hydroxyphenyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-1-yl)cyclohexanecarboxamide;
  • 6-(4-(5-methyl-1H-1,2,4-triazol-3-yl)phenyl)-1-(2-morpholinoethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(5-Oxopyrrolidin-3-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(Pyrrolidin-3-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(1H-benzo[d]imidazol-5-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(3-(Hydroxymethyl)thiophen-2-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-5-(2-Hydroxyethyl)thiophen-2-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(pyrimidin-5-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(6-Fluoropyridin-3-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(6-Aminopyridin-3-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(5-methyl-1H-imidazol-2-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(5-Methyl-1H-1,2,4-triazol-3-yl)phenyl)-1-(2-(2-oxopyrrolidin-1-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(6-(Methylamino)pyridin-3-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(2-aminopyrimidin-5-yl)-1-(cyclohexylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(2-hydroxypropan-2-yl)phenyl)-1-(((1r,4r)-4-methoxycyclohexyl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-hydroxyphenyl)-1-((1-methylpiperidin-3-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 1-(cyclohexylmethyl)-6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(hydroxymethyl)thiophen-2-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(1H-benzo[d]imidazol-6-yl)-1-(((1r,4r)-4-methoxycyclohexyl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(4,5-dimethyl-1H-imidazol-2-yl)phenyl)-1-(2-morpholinoethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(4H-1,2,4-triazol-3-yl)phenyl)-1-(2-morpholino-2-oxoethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(4H-1,2,4-triazol-3-yl)phenyl)-3-(cyclohexylmethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(4-(1H-1,2,4-triazol-3-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyridin-2(3H)-one;
  • (R)-6-(4-(1H-1,2,4-triazol-3-yl)phenyl)-1-(1-phenylethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (S)-6-(4-(1H-1,2,4-triazol-3-yl)phenyl)-1-(1-phenylethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (1r,4r)-4-(6-(4-(2-hydroxypropan-2-yl)phenyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-1-yl)cyclohexanecarboxamide;
  • 6-(3-Methyl-4-(1H-1,2,4-Triazol-3-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-B]pyrazin-2(3H)-one;
  • 6-(4-(1H-imidazol-2-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(5-(Aminomethyl)-1H-1,2,4-triazol-3-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(1H-benzo[d]imidazol-5-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(2-Aminopyrimidin-5-yl)-1-(cyclohexylmethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-Hydroxyphenyl)-1-((1-methylpiperidin-2-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one hydrochloride;
  • 6-(3-Methyl-4-(1H-1,2,4-Triazol-3-yl)phenyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-B]pyrazin-2(3H)-one;
  • 1-(Cyclohexylmethyl)-6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(6-(2-Hydroxypropan-2-yl)pyridin-3-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(6-(2-Hydroxypropan-2-yl)pyridin-3-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • 6-(4-(4H-1,2,4-Triazol-3-yl)phenyl)-1-(2-morpholino-2-oxoethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (R)-6-(4-(4H-1,2,4-Triazol-3-yl)phenyl)-3-(cyclohexylmethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • (R)-6-(4-(1H-1,2,4-Triazol-3-yl)phenyl)-1-(1-phenylethyl)-1H-imidazo[4,5-B]pyrazin-2(3H)-one;
  • (S)-6-(4-(4H-1,2,4-Triazol-3-yl)phenyl)-1-(1-phenylethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one;
  • (1r,4s)-4-(6-(4-(2-Hydroxypropan-2-yl)phenyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-1-yl)cyclohexanecarboxamide; and
  • 6-(4-(5-Methyl-1H-1,2,4-triazol-3-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1H-imidazo[4,5-b]pyrazin-2(3H)-one,


    and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof.


In one embodiment, the TOR kinase inhibitors include compounds having the following formula (II):




embedded image


and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof, wherein:


R1 is substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl;


—X-A-B—Y— taken together form —N(R2)CH2C(O)NH—, —N(R2)C(O)CH2NH—, —N(R2)C(O)NH—, —N(R2)C═N—, or —C(R2)═CHNH—;


L is a direct bond, NH or O;


R2 is substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl; and


R3 and R4 are independently H or C1-8alkyl.


In one embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —N(R2)CH2C(O)NH—.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —N(R2)C(O)CH2NH—.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —N(R2)C(O)NH—.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —N(R2)C═N—.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —C(R2)═CHNH—.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein L is a direct bond.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein R1 is substituted aryl, such as substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted pyridine, substituted or unsubstituted indole or substituted or unsubstituted quinoline.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein R1 is substituted or unsubstituted cycloalkyl, such as substituted or unsubstituted cyclopentyl.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —N(R2)C(O)NH— and R1 is substituted aryl, such as phenyl.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —N(R2)C(O)NH— and R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted pyridine, substituted or unsubstituted indole or substituted or unsubstituted quinoline.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —N(R2)C(O)NH— and R1 is substituted or unsubstituted cycloalkyl, such as substituted or unsubstituted cyclopentyl.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein R2 is substituted C1-8alkyl, such as —CH2C6H5.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein R2 is unsubstituted C1-8alkyl, such as unsubstituted methyl.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein R2 is substituted aryl, such as halo, haloalkyl or alkoxy substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein R2 is substituted or unsubstituted cycloalkyl, such as substituted or unsubstituted cyclohexyl or substituted or unsubstituted cycloheptyl.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein R2 is substituted heterocyclylalkyl, such as substituted piperidine.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein R3 and R4 are H.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —N(R2)C(O)NH— and R2 is unsubstituted aryl, such as unsubstituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —N(R2)C(O)NH—, R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted pyridine, and R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —N(R2)C(O)NH—, R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted pyridine, R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl, and R3 and R4 are H.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —N(R2)C(O)NH—, L is a direct bond, R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted pyridine, R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl, and R3 and R4 are H.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —N(R2)C(O)NH—, R1 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl, and R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —N(R2)C(O)NH—, R1 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl, R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl, and R3 and R4 are H.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —N(R2)C(O)NH—, L is a direct bond, R1 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl, R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl, and R3 and R4 are H.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —N(R2)C(O)NH—, R1 is substituted or unsubstituted heteroaryl, L is a direct bond and R2 is substituted or unsubstituted C1-8alkyl or substituted or unsubstituted cycloalkyl.


In another embodiment, the TOR kinase inhibitors of formula (II) are those wherein —X-A-B—Y— taken together form —N(R2)C(O)NH—, R1 is substituted or unsubstituted aryl, L is a direct bond and R2 is substituted or unsubstituted C1-8alkyl or substituted or unsubstituted cycloalkyl.


In another embodiment, the TOR kinase inhibitors of formula (II) do not include 8,9-dihydro-8-oxo-9-phenyl-2-(3-pyridinyl)-7H-purine-6-carboxamide, 8,9-dihydro-8-oxo-9-phenyl-2-(3-pyridinyl)-7H-purine-6-carboxamide, 8,9-dihydro-8-oxo-9-phenyl-2-(3-pyridinyl)-7H-purine-6-carboxamide, 2-(4-cyanophenyl)-8-oxo-9-phenyl-8,9-dihydro-7H-purine-6-carboxamide, 2-(4-nitrophenyl)-8-oxo-9-phenyl-8,9-dihydro-7H-purine-6-carboxamide, 9-benzyl-2-(4-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide, 2-methyl-8-oxo-9-phenyl-8,9-dihydro-7H-purine-6-carboxamide, 9-benzyl-9H-purine-2,6-dicarboxamide, 9-[2,3-bis[(benzoyloxy)methyl]cyclobutyl]-2-methyl-9H-Purine-6-carboxamide, 9-benzyl-2-methyl-9H-purine-6-carboxamide, 9-(2-hydroxyethyl)-2-methyl-9H-purine-6-carboxamide, 9-(2-hydroxyethyl)-2-(trifluoromethyl)-9H-purine-6-carboxamide, 9-(2-hydroxyethyl)-2-(prop-1-enyl)-9H-purine-6-carboxamide, 9-(2-hydroxyethyl)-2-phenyl-9H-purine-6-carboxamide, 9-(3-hydroxypropyl)-2-methyl-9H-purine-6-carboxamide, 9-(3-hydroxypropyl)-2-(trifluoromethyl)-9H-purine-6-carboxamide, 2-methyl-9-phenylmethyl-9H-purine-6-carboxamide or 2-methyl-9-β-D-ribofuranosyl-9H-purine-6-carboxamide.


In another embodiment, the TOR kinase inhibitors of formula (II) do not include compounds wherein R2 is a substituted furanoside.


In another embodiment, the TOR kinase inhibitors of formula (II) do not include compounds wherein R2 is a substituted or unsubstituted furanoside.


In another embodiment, the TOR kinase inhibitors of formula (II) do not include (2′R)-2′-deoxy-2′-fluoro-2′-C-methyl nucleosides.


In one embodiment, the TOR kinase inhibitors include compounds having the following formula (IIa):




embedded image


and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof, wherein:


R1 is substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl;


R2 is substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl; and


R3 and R4 are independently H or C1-8alkyl.


In one embodiment, the TOR kinase inhibitors of formula (IIa) are those wherein


R1 is substituted aryl, substituted or unsubstituted heteroaryl, such as substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (IIa) are those wherein R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted pyridine, substituted or unsubstituted indole or substituted or unsubstituted quinoline.


In another embodiment, the TOR kinase inhibitors of formula (IIa) are those wherein R1 is substituted or unsubstituted cycloalkyl, such as substituted or unsubstituted cyclopentyl.


In another embodiment, the TOR kinase inhibitors of formula (IIa) are those wherein R2 is substituted C1-8alkyl, such as —CH2C6H5.


In another embodiment, the TOR kinase inhibitors of formula (IIa) are those wherein R2 is unsubstituted C1-8alkyl, such as unsubstituted methyl.


In another embodiment, the TOR kinase inhibitors of formula (IIa) are those wherein R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (IIa) are those wherein R2 is substituted aryl, such as halo, haloalkyl or alkoxy substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (IIa) are those wherein R2 is substituted or unsubstituted cycloalkyl, such as substituted or unsubstituted cyclohexyl or substituted or unsubstituted cycloheptyl.


In another embodiment, the TOR kinase inhibitors of formula (IIa) are those wherein R2 is substituted heterocyclylalkyl, such as substituted piperidine.


In another embodiment, the TOR kinase inhibitors of formula (IIa) are those wherein R3 and R4 are H.


In another embodiment, the TOR kinase inhibitors of formula (IIa) do not include 8,9-dihydro-8-oxo-9-phenyl-2-(3-pyridinyl)-7H-Purine-6-carboxamide, 8,9-dihydro-8-oxo-9-phenyl-2-(3-pyridinyl)-7H-Purine-6-carboxamide, 8,9-dihydro-8-oxo-9-phenyl-2-(3-pyridinyl)-7H-Purine-6-carboxamide, 2-(4-cyanophenyl)-8-oxo-9-phenyl-8,9-dihydro-7H-purine-6-carboxamide, 2-(4-nitrophenyl)-8-oxo-9-phenyl-8,9-dihydro-7H-purine-6-carboxamide, 9-benzyl-2-(4-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide, 9-phenylmethyl-9H-purine-2,6-dicarboxamide, or 2-methyl-8-oxo-9-phenyl-8,9-dihydro-7H-purine-6-carboxamide.


In another embodiment, the TOR kinase inhibitors of formula (IIa) do not include compounds wherein R2 is a substituted furanoside.


In another embodiment, the TOR kinase inhibitors of formula (IIa) do not include compounds wherein R2 is a substituted or unsubstituted furanoside.


In another embodiment, the TOR kinase inhibitors of formula (IIa) do not include (2′R)-2′-deoxy-2′-fluoro-2′-C-methyl nucleosides.


In one embodiment, the TOR kinase inhibitors include compounds having the following formula (IIb):




embedded image


and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof, wherein:




embedded image


is —C(R2)═CH—NH— or —N(R2)—CH═N—;

R1 is substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl;


R2 is substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl; and


R3 and R4 are independently H or C1-8alkyl.


In one embodiment, the TOR kinase inhibitors of formula (IIb) are those wherein R1 is substituted aryl, such as substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (IIb) are those wherein R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted pyridine, substituted or unsubstituted indole or substituted or unsubstituted quinoline.


In another embodiment, the TOR kinase inhibitors of formula (IIb) are those wherein R1 is substituted or unsubstituted cycloalkyl, such as substituted or unsubstituted cyclopentyl.


In another embodiment, the TOR kinase inhibitors of formula (IIb) are those wherein R2 is substituted C1-8alkyl, such as —CH2C6H5.


In another embodiment, the TOR kinase inhibitors of formula (IIb) are those wherein R2 is unsubstituted C1-8alkyl, such as unsubstituted methyl.


In another embodiment, the TOR kinase inhibitors of formula (IIb) are those wherein R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (IIb) are those wherein R2 is substituted aryl, such as halo, haloalkyl or alkoxy substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (IIb) are those wherein R2 is substituted or unsubstituted cycloalkyl, such as substituted or unsubstituted cyclohexyl or substituted or unsubstituted cycloheptyl.


In another embodiment, the TOR kinase inhibitors of formula (IIb) are those wherein R2 is substituted heterocyclylalkyl, such as substituted piperidine.


In another embodiment, the TOR kinase inhibitors of formula (IIb) are those wherein R3 and R4 are H.


In another embodiment, the TOR kinase inhibitors of formula (IIb) are those wherein




embedded image


is —C(R2)═CH—NH— and R2 is substituted aryl, such as substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (IIb) are those wherein




embedded image


is —N(R2)—CH═N— and R2 is substituted aryl, such as substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (IIb) are those wherein R1 is substituted aryl, such as phenyl, and R2 is substituted aryl, such as substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (IIb) do not include 9-benzyl-9H-purine-2,6-dicarboxamide, 9-[2,3-bis[(benzoyloxy)methyl]cyclobutyl]-2-methyl-9H-Purine-6-carboxamide, 9-benzyl-2-methyl-9H-purine-6-carboxamide, 9-(2-hydroxyethyl)-2-methyl-9H-purine-6-carboxamide, 9-(2-hydroxyethyl)-2-(trifluoromethyl)-9H-purine-6-carboxamide, 9-(2-hydroxyethyl)-2-(prop-1-enyl)-9H-purine-6-carboxamide, 9-(2-hydroxyethyl)-2-phenyl-9H-purine-6-carboxamide, 9-(3-hydroxypropyl)-2-methyl-9H-purine-6-carboxamide, 9-(3-hydroxypropyl)-2-(trifluoromethyl)-9H-purine-6-carboxamide, 9-phenylmethyl-9H-purine-2,6-dicarboxamide, 2-methyl-9-phenylmethyl-9H-purine-6-carboxamide or 2-methyl-9-β-D-ribofuranosyl-9H-purine-6-carboxamide.


In another embodiment, the TOR kinase inhibitors of formula (IIb) do not include compounds wherein R2 is substituted cyclobutyl when




embedded image


is —N(R2)—CH═N—.

In another embodiment, the TOR kinase inhibitors of formula (IIb) do not include compounds wherein R2 is a substituted furanoside when




embedded image


is —N(R2)—CH═N—.

In another embodiment, the TOR kinase inhibitors of formula (IIb) do not include compounds wherein R2 is substituted pyrimidine when




embedded image


is —C(R2)═CH—NH—.

In another embodiment, the TOR kinase inhibitors of formula (IIb) do not include compounds wherein R2 is substituted oxetane when




embedded image


is —N(R2)—CH═N—.

In another embodiment, the TOR kinase inhibitors of formula (IIb) do not include compounds wherein R2 is substituted cyclopentyl or a heterocyclopentyl when




embedded image


is —N(R2)—CH═N—.

In one embodiment, the TOR kinase inhibitors include compounds having the following formula (IIc):




embedded image


and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof, wherein:


R1 is substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl;


R2 is substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl; and


R3 and R4 are independently H or C1-8alkyl.


In one embodiment, the TOR kinase inhibitors of formula (IIc) are those wherein R1 is substituted aryl, such as substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (IIc) are those wherein R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted pyridine, substituted or unsubstituted indole or substituted or unsubstituted quinoline.


In another embodiment, the TOR kinase inhibitors of formula (IIc) are those wherein R1 is substituted or unsubstituted cycloalkyl, such as substituted or unsubstituted cyclopentyl.


In another embodiment, the TOR kinase inhibitors of formula (IIc) are those wherein R2 is substituted C1-8alkyl, such as —CH2C6H5.


In another embodiment, the TOR kinase inhibitors of formula (IIc) are those wherein R2 is unsubstituted C1-8alkyl, such as unsubstituted methyl.


In another embodiment, the TOR kinase inhibitors of formula (IIc) are those wherein R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (IIc) are those wherein R2 is substituted aryl, such as halo, haloalkyl or alkoxy substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (IIc) are those wherein R2 is substituted or unsubstituted cycloalkyl, such as substituted or unsubstituted cyclohexyl or substituted or unsubstituted cycloheptyl.


In another embodiment, the TOR kinase inhibitors of formula (IIc) are those wherein R2 is substituted heterocyclylalkyl, such as substituted piperidine.


In another embodiment, the TOR kinase inhibitors of formula (IIc) are those wherein R3 and R4 are H.


In one embodiment, the TOR kinase inhibitors include compounds having the following formula (IId):




embedded image


and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof, wherein:


R1 is substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl;


R2 is substituted or unsubstituted C1-8alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocyclylalkyl; and


R3 and R4 are independently H or C1-8alkyl.


In one embodiment, the TOR kinase inhibitors of formula (IId) are those wherein R1 is substituted aryl, such as substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (IId) are those wherein R1 is substituted or unsubstituted heteroaryl, such as substituted or unsubstituted pyridine, substituted or unsubstituted indole or substituted or unsubstituted quinoline.


In another embodiment, the TOR kinase inhibitors of formula (IId) are those wherein R1 is substituted or unsubstituted cycloalkyl, such as substituted or unsubstituted cyclopentyl.


In another embodiment, the TOR kinase inhibitors of formula (IId) are those wherein R2 is substituted C1-8alkyl, such as —CH2C6H5.


In another embodiment, the TOR kinase inhibitors of formula (IId) are those wherein R2 is unsubstituted C1-8alkyl, such as unsubstituted methyl.


In another embodiment, the TOR kinase inhibitors of formula (IId) are those wherein R2 is substituted or unsubstituted aryl, such as substituted or unsubstituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (IId) are those wherein R2 is substituted aryl, such as halo, haloalkyl or alkoxy substituted phenyl.


In another embodiment, the TOR kinase inhibitors of formula (IId) are those wherein R2 is substituted or unsubstituted cycloalkyl, such as substituted or unsubstituted cyclohexyl or substituted or unsubstituted cycloheptyl.


In another embodiment, the TOR kinase inhibitors of formula (IId) are those wherein R2 is substituted heterocyclylalkyl, such as substituted piperidine.


In another embodiment, the TOR kinase inhibitors of formula (IId) are those wherein R3 and R4 are H.


Representative TOR kinase inhibitors of formula (II) include:

  • 9-benzyl-8-oxo-2-(pyridin-3-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • N-methyl-8-oxo-9-phenyl-2-(pyridin-3-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 8-oxo-9-phenyl-2-(pyridin-2-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(2-chloropyridin-3-yl)-8-oxo-9-phenyl-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(2-methoxypyridin-3-yl)-8-oxo-9-phenyl-8,9-dihydro-7H-purine-6-carboxamide;
  • N,N-dimethyl-8-oxo-9-phenyl-2-(pyridin-3-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-methyl-8-oxo-2-(pyridin-3-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(4-hydroxyphenyl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-hydroxyphenyl)-8-oxo-9-o-tolyl-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(1H-indol-4-yl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(1H-indol-6-yl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-hydroxyphenyl)-9-(4-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(2-hydroxypyridin-4-yl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-chlorophenyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-fluorophenyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2,6-difluorophenyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-cycloheptyl-8-oxo-2-(pyridin-3-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-methoxyphenyl)-8-oxo-2-(quinolin-5-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-cyclopentyl-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-methoxyphenyl)-8-oxo-2-(3-(trifluoromethyl)phenyl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-methoxyphenyl)-2-(6-methoxypyridin-3-yl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-hydroxyphenyl)-8-oxo-9-(4-(trifluoromethyl)phenyl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-benzyl-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-hydroxyphenyl)-8-oxo-9-(2-(trifluoromethoxy)phenyl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2,4-dichlorophenyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-methoxyphenyl)-2-(3-nitrophenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-cyanophenyl)-8-oxo-9-phenyl-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(3-fluorophenyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-methoxyphenyl)-8-oxo-2-(2-(trifluoromethyl)phenyl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(5-fluoropyridin-3-yl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(1-benzylpiperidin-4-yl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide; benzyl 4-(6-carbamoyl-8-oxo-2-(pyridin-3-yl)-7H-purin-9(8H)-yl)piperidine-1-carboxylate;
  • 9-cyclohexyl-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-methoxyphenyl)-8-oxo-2-(3-(trifluoromethoxy)phenyl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-phenyl-2-(pyridin-3-yl)-9H-purine-6-carboxamide;
  • 6-oxo-8-phenyl-2-(pyridin-3-yl)-5,6,7,8-tetrahydropteridine-4-carboxamide;
  • 6-oxo-8-phenyl-2-(pyridin-4-yl)-5,6,7,8-tetrahydropteridine-4-carboxamide;
  • 2-(3-aminophenyl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-hydroxyphenyl)-9-(2-methoxyphenyl)-9H-purine-6-carboxamide;
  • 9-Cyclopentyl-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-tert-Butyl-2-(3-hydroxy-phenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • [2-(3-Hydroxyphenyl)-9-(2-methoxyphenyl)-8-oxo(7-hydropurin-6-yl)]-N-methylcarbox-amide;
  • 2-phenyl-5H-pyrrolo[3,2-d]pyrimidine-4-carboxamide;
  • [2-(3-Hydroxyphenyl)-9-(2-methoxyphenyl)-8-oxo(7-hydropurin-6-yl)]-N,N-dimethyl carboxamide;
  • 2-(3-Hydroxyphenylamino)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(4-Hydroxyphenylamino)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(trans-4-Hydroxycyclohexyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(trans-4-Hydroxycyclohexyl)-8-oxo-2-(pyridin-3-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(trans-4-Hydroxycyclohexyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(trans-4-Hydroxycyclohexyl)-8-oxo-2-(pyridin-3-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-Hydroxyphenylamino)-9-(2-methoxyphenyl)-9H-purine-6-carboxamide;
  • 9-Isopropyl-2-(3-hydroxy-phenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • Methyl 4-(6-carbamoyl-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purin-2-yl)benzoate;
  • 2-(2-Chloro-3-hydroxyphenyl)-9-(2-methoxyphenyl)-8-oxo-7-hydropurine-6-carbox amide;
  • 2-(3-Cyanophenyl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(2-Hydroxyphenylamino)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-Hydroxyphenyl)-9-(4-methoxy-2-methylphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-Hydroxyphenyl)-8-oxo-9-(2-(trifluoromethyl)phenyl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(4-Cyano-phenyl)-9-(2-methoxy-phenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 4-[6-Carbamoyl-9-(2-methoxy-phenyl)-8-oxo-8,9-dihydro-7H-purin-2-yl]-benzoic acid;
  • Methyl 3-(6-carbamoyl-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purin-2-yl)benzoate;
  • 3-(6-Carbamoyl-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purin-2-yl)benzoic acid;
  • 2-(3-Hydroxyphenyl)-9-(2-isopropylphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(1H-Indazol-6-yl)-9-(2-methoxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 2-(4-Carbamoylphenyl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-Ethylphenyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2,5-Dichlorophenyl)-2-(3-hydroxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 2-(3-Carbamoylphenyl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carbox amide;
  • 9-(2,6-Dichlorophenyl)-2-(3-hydroxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 2-(2-Hydroxyphenyl)-9-(2-methoxyphenyl)purine-6-carboxamide;
  • 2-(1H-Indazol-5-yl)-9-(2-methoxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 9-(2,3-Dichlorophenyl)-2-(3-hydroxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 2-[4-(Hydroxymethyl)phenyl]-9-(2-methoxyphenyl)-8-oxo-7-hydropurine-6-carbox-amide;
  • 2-[3-(Hydroxymethyl)phenyl]-9-(2-methoxyphenyl)-8-oxo-7-hydropurine-6-carbox-amide;
  • 9-(2-Methoxyphenyl)-8-oxo-2-(pyridin-4-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(4-Fluoro-3-hydroxyphenyl)-9-(2-methoxyphenyl)-8-oxo-7-hydropurine-6-carbox-amide;
  • 2-(2-Fluoro-3-hydroxyphenyl)-9-(2-methoxyphenyl)-8-oxo-7-hydropurine-6-carbox-amide;
  • 2-[4-(1-Hydroxy-isopropyl)phenyl]-9-(2-methoxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 2-[3-(1-Hydroxy-isopropyl)phenyl]-9-(2-methoxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 9-(2-Methoxyphenyl)-2-(2-nitrophenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 9-(2-Methoxyphenyl)-2-(4-nitrophenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 9-(2-Methoxyphenyl)-2-(2-nitrophenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 9-(2,4-Difluorophenyl)-2-(3-hydroxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 9-(2-Methoxyphenyl)-2-{3-[(methylsulfonyl)amino]phenyl}-8-oxo-7-hydropurine-6-carboxamide;
  • 9-(4-Chloro-2-fluorophenyl)-2-(3-hydroxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 9-(2-Chlorophenyl)-8-oxo-2-(3-pyridyl)-7-hydropurine-6-carboxamide;
  • 8-oxo-2-(3-pyridyl)-9-[2-(trifluoromethyl)phenyl]-7-hydropurine-6-carboxamide;
  • 9-(3-Chloro-2-fluorophenyl)-2-(3-hydroxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 9-(2-Fluoro-3-trifluoromethylphenyl)-2-(3-hydroxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 9-(2, 3, 4-Trifluorophenyl)-2-(3-hydroxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 2-(1H-Benzo[d]imidazol-6-yl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-[3-(Acetylamino)phenyl]-9-(2-methoxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 2-(3-hydroxyphenyl)-8-(2-methoxyphenyl)-6-oxo-5,6,7,8-tetrahydropteridine-4-carbox-amide;
  • 9-(2-Methoxyphenyl)-8-oxo-2-pyrazol-4-yl-7-hydropurine-6-carboxamide;
  • 9-(2-Methoxyphenyl)-8-oxo-2-pyrazol-3-yl-7-hydropurine-6-carboxamide;
  • 9-(4-Aminocyclohexyl)-2-(3-hydroxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 2-[3-(Difluoromethyl)phenyl]-9-(2-methoxyphenyl)-8-oxo-7-hydropurine-6-carbox-amide;
  • 2-[5-(Difluoromethyl)-2-fluorophenyl]-9-(2-methoxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 2-(1H-benzo[d]imidazol-4-yl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(6-Hydroxypyridin-3-yl)-8-oxo-9-(2-(trifluoromethyl)phenyl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(1H-benzo[d]imidazol-6-yl)-9-(2-fluorophenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-Benzimidazol-6-yl-8-oxo-9-[2-(trifluoromethyl)phenyl]-7-hydropurine-6-carboxamide;
  • 2-(5-Chloropyridin-3-yl)-8-oxo-9-(2-(trifluoromethyl)phenyl)-8,9-dihydro-7H-purine-6-carboxamide;
  • trans-4-(6-Carbamoyl-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purin-2-ylamino) cyclohexyl carbamate;
  • (R)-9-(2-Methoxyphenyl)-8-oxo-2-(pyrrolidin-3-ylamino)-8,9-dihydro-7H-purine-6-carboxamide;
  • (S)-9-(2-Methoxyphenyl)-8-oxo-2-(pyrrolidin-3-ylamino)-8,9-dihydro-7H-purine-6-carboxamide;
  • (cis)-4-(6-Carbamoyl-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purin-2-ylamino) cyclohexyl carbamate;
  • 2-(trans-4-Hydroxycyclohexylamino)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(4-Chloropyridin-3-yl)-8-oxo-9-(2-(trifluoromethyl)phenyl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(cis-4-Hydroxycyclohexylamino)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(4-((1H-Imidazol-1-yl)methyl)phenylamino)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(4-Hydroxypyridin-3-yl)-8-oxo-9-(2-(trifluoromethyl)phenyl)-8,9-dihydro-7H-purine-6-carboxamide;
  • (R)-9-(2-Methoxyphenyl)-8-oxo-2-(pyrrolidin-2-ylmethylamino)-8,9-dihydro-7H-purine-6-carboxamide;
  • (S)-9-(2-Methoxyphenyl)-8-oxo-2-(pyrrolidin-2-ylmethylamino)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(4-(1H-1,2,4-Triazol-3-yl)phenyl)-9-(2-methoxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 2-(2-Hydroxyethylamino)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-Methoxyphenyl)-8-oxo-2-(2-(trifluoromethyl)-1H-benzo[d]imidazol-6-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-(1H-1,2,4-Triazol-3-yl)phenyl)-9-(2-methoxyphenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 9-(Biphenyl-2-yl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(4-(1H-1,2,4-Triazol-3-yl)phenyl)-9-(2-fluorophenyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 2-(4-(1H-1,2,4-Triazol-3-yl)phenyl)-9-(2-isopropylphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-Methoxyphenyl)-2-(2-methyl-1H-benzo[d]imidazol-6-yl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-(Hydroxymethyl)phenylamino)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(2-(Hydroxymethyl)phenylamino)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-tert-Butylphenyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-Hydroxyphenyl)-8-oxo-9-(2-phenoxyphenyl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(1H-Benzo[d]imidazol-6-yl)-9-(2-isopropylphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(1H-Indazol-4-yl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(2-Hydroxypyridin-3-yl)-8-oxo-9-(2-(trifluoromethyl)phenyl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(1H-Imidazo[4,5-b]pyridin-6-yl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(4-(1H-Imidazol-1-yl)phenyl)-9-(2-isopropylphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-Cyclohexylphenyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(4-(1H-Imidazol-2-yl)phenyl)-9-(2-isopropylphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(1H-Benzo[d]imidazol-1-yl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(1H-Imidazo[4,5-b]pyridin-6-yl)-9-(2-isopropylphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-Isopropylphenyl)-8-oxo-2-(1H-pyrrolo[2,3-b]pyridin-5-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(1H-Imidazo[4,5-b]pyridin-6-yl)-8-oxo-9-(2-(trifluoromethyl)phenyl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-Methoxyphenyl)-2-(2-(methylthio)-1H-benzo[d]imidazol-5-yl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(1H-Indol-5-yl)-9-(2-isopropylphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(Cyclohexylmethyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2,3-Dihydro-1H-inden-1-yl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-Hydroxyphenyl)-9-isobutyl-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(trans-4-Methoxycyclohexyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(cis-4-Methoxycyclohexyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-Hydroxyphenyl)-8-oxo-9-(5,6,7,8-tetrahydronaphthalen-1-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(4-(1H-1,2,4-Triazol-3-yl)phenyl)-9-cyclohexyl-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-Hydroxyphenyl)-9-(1H-indol-4-yl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-Fluoro-3-methoxyphenyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-Fluoro-5-methoxyphenyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-Cyclohexyl-2-(1H-imidazo[4,5-b]pyridin-6-yl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-Hydroxyphenyl)-8-oxo-9-(tetrahydro-2H-pyran-4-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-Hydroxyphenyl)-8-oxo-9-((tetrahydro-2H-pyran-4-yl)methyl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-Cyclopentylphenyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-Hydroxyphenyl)-8-oxo-9-(piperidin-4-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(2-Fluoro-4-methoxyphenyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(1H-benzo[d]imidazol-6-yl)-9-cyclohexyl-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-Benzimidazol-6-yl-9-(trans-4-methoxycyclohexyl)-8-oxo-7-hydropurine-6-carboxamide;
  • 2-(4-(Aminomethyl)phenyl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-Hydroxyphenyl)-9-(cis-4-(methoxymethyl)cyclohexyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 9-(trans-4-Aminocyclohexyl)-2-(3-hydroxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-Hydroxyphenyl)-9-(2-isobutylphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • (R)-2-(3-Hydroxyphenyl)-8-oxo-9-(tetrahydrofuran-3-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • (S)-2-(3-Hydroxyphenyl)-8-oxo-9-(tetrahydrofuran-3-yl)-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-(Aminomethyl)phenyl)-9-(2-methoxyphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(4-(1H-1,2,3-Triazol-5-yl)phenyl)-9-(2-isopropylphenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(4-(1H-1,2,4-Triazol-3-yl)phenyl)-9-(cis-4-methoxycyclohexyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(1H-Benzo[d]imidazol-6-yl)-9-(cis-4-methoxycyclohexyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(1H-Imidazo[4,5-b]pyridin-6-yl)-9-(cis-4-methoxycyclohexyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide;
  • 2-(3-Hydroxyphenyl)-9-((1r,4r)-4-(methoxymethyl)cyclohexyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide; and
  • 9-(2-Isopropylphenyl)-2-(4-(5-methyl-4H-1,2,4-triazol-3-yl)phenyl)-8-oxo-8,9-dihydro-7H-purine-6-carboxamide,


    and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof.


In one embodiment, the TOR kinase inhibitors include compounds having the following formula (III):




embedded image


and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof, wherein:


R1 is substituted or unsubstituted C1-8 alkyl, substituted or unsubstituted aryl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, or substituted or unsubstituted heterocyclylalkyl;


R2 is H, substituted or unsubstituted C1-8 alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted heterocyclylalkyl, substituted or unsubstituted aralkyl, or substituted or unsubstituted cycloalkylalkyl;


R3 and R4 are each independently H, substituted or unsubstituted C1-8 alkyl, substituted or unsubstituted aryl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted heterocyclylalkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted cycloalkylalkyl, or R3 and R4, together with the atoms to which they are attached, form a substituted or unsubstituted cycloalkyl or substituted or unsubstituted heterocyclyl;


or R2 and one of R3 and R4, together with the atoms to which they are attached, form a substituted or unsubstituted heterocyclyl,


wherein in certain embodiments, the TOR kinase inhibitors do not include the compounds depicted below, namely:




embedded image


  • 6-(4-hydroxyphenyl)-4-(3-methoxybenzyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;





embedded image


  • 6-(4-hydroxyphenyl)-4-(3-methoxybenzyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;


    or,





embedded image


  • (R)-6-(4-(1H-1,2,4-triazol-5-yl)phenyl)-3-(cyclohexylmethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one.



In some embodiments of compounds of formula (III), R1 is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl. In one embodiment, R1 is phenyl, pyridyl, pyrimidyl, benzimidazolyl, indolyl, indazolyl, 1H-pyrrolo[2,3-b]pyridyl, 1H-imidazo[4,5-b]pyridyl, 1H-imidazo[4,5-b]pyridin-2(3H)-onyl, 3H-imidazo[4,5-b]pyridyl, or pyrazolyl, each optionally substituted. In some embodiments, R1 is phenyl substituted with one or more substituents independently selected from the group consisting of substituted or unsubstituted C1-8 alkyl (for example, methyl), substituted or unsubstituted heterocyclyl (for example, substituted or unsubstituted triazolyl or pyrazolyl), halogen (for example, fluorine), aminocarbonyl, cyano, hydroxyalkyl (for example, hydroxypropyl), and hydroxy. In other embodiments, R1 is pyridyl substituted with one or more substituents independently selected from the group consisting of substituted or unsubstituted C1-8 alkyl, substituted or unsubstituted heterocyclyl (for example, substituted or unsubstituted triazolyl), halogen, aminocarbonyl, cyano, hydroxyalkyl, —OR, and —NR2, wherein each R is independently H, or a substituted or unsubstituted C1-4 alkyl. In yet other embodiments, R1 is 1H-pyrrolo[2,3-b]pyridyl or benzimidazolyl, each optionally substituted with one or more substituents independently selected from the group consisting of substituted or unsubstituted C1-8 alkyl, and —NR2, wherein each R is independently H, or a substituted or unsubstituted C1-4 alkyl.


In some embodiments of compounds of formula (III), R1 is




embedded image


wherein R is at each occurrence independently H, or a substituted or unsubstituted C1-4 alkyl (for example, methyl); R′ is at each occurrence independently a substituted or unsubstituted C1-4 alkyl, halogen (for example, fluorine), cyano, —OR, or —NR2; m is 0-3; and n is 0-3. It will be understood by those skilled in the art that any of the substitutents R′ may be attached to any suitable atom of any of the rings in the fused ring systems. It will also be understood by those skilled in the art that the connecting bond of R1 (designated by the bisecting wavy line) may be attached to any of the atoms in any of the rings in the fused ring systems.


In some embodiments of compounds of formula (III), R1 is




embedded image


wherein R is at each occurrence independently H, or a substituted or unsubstituted C1-4 alkyl; R′ is at each occurrence independently a substituted or unsubstituted C1-4 alkyl, halogen, cyano, —OR, or —NR2; m is 0-3; and n is 0-3.


In some embodiments of compounds of formula (III), R2 is H, substituted or unsubstituted C1-8 alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted C1-4 alkyl-heterocyclyl, substituted or unsubstituted C1-4 alkyl-aryl, or substituted or unsubstituted C1-4 alkyl-cycloalkyl. For example, R2 is H, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, cyclopentyl, cyclohexyl, tetrahydrofuranyl, tetrahydropyranyl, (C1-4 alkyl)-phenyl, (C1-4 alkyl)-cyclopropyl, (C1-4 alkyl)-cyclobutyl, (C1-4 alkyl)-cyclopentyl, (C1-4 alkyl)-cyclohexyl, (C1-4 alkyl)-pyrrolidyl, (C1-4 alkyl)-piperidyl, (C1-4 alkyl)-piperazinyl, (C1-4 alkyl)-morpholinyl, (C1-4 alkyl)-tetrahydrofuranyl, or (C1-4 alkyl)-tetrahydropyranyl, each optionally substituted.


In other embodiments, R2 is H, C1-4 alkyl, (C1-4alkyl)(OR),




embedded image


wherein R is at each occurrence independently H, or a substituted or unsubstituted C1-4 alkyl (for example, methyl); R′ is at each occurrence independently H, —OR, cyano, or a substituted or unsubstituted C1-4 alkyl (for example, methyl); and p is 0-3.


In some such embodiments, R2 is H, C1-4 alkyl, (C1-4 alkyl)(OR),




embedded image


wherein R is at each occurrence independently H, or a substituted or unsubstituted C1-2 alkyl; R′ is at each occurrence independently H, —OR, cyano, or a substituted or unsubstituted C1-2 alkyl; and p is 0-1.


In some other embodiments of compounds of formula (III), R2 and one of R3 and R4 together with the atoms to which they are attached form a substituted or unsubstituted heterocyclyl. For example, in some embodiments, the compound of formula (III) is




embedded image


wherein R is at each occurrence independently H, or a substituted or unsubstituted C1-4 alkyl; R″ is H, OR, or a substituted or unsubstituted C1-4 alkyl; and R1 is as defined herein.


In some embodiments of compounds of formula (III), R3 and R4 are both H. In others, one of R3 and R4 is H and the other is other than H. In still others, one of R3 and R4 is C1-4 alkyl (for example, methyl) and the other is H. In still others, both of R3 and R4 are C1-4 alkyl (for example, methyl).


In some such embodiments described above, R1 is substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. For example, R1 is phenyl, pyridyl, pyrimidyl, benzimidazolyl, indolyl, indazolyl, 1H-pyrrolo[2,3-b]pyridyl, 1H-imidazo[4,5-b]pyridyl, 1H-imidazo[4,5-b]pyridin-2(3H)-onyl, 3H-imidazo[4,5-b]pyridyl, or pyrazolyl, each optionally substituted. In some embodiments, R1 is phenyl substituted with one or more substituents independently selected from the group consisting of substituted or unsubstituted C1-8 alkyl, substituted or unsubstituted heterocyclyl, halogen, aminocarbonyl, cyano, hydroxyalkyl and hydroxy. In others, R1 is pyridyl substituted with one or more substituents independently selected from the group consisting of cyano, substituted or unsubstituted C1-8 alkyl, substituted or unsubstituted heterocyclyl, hydroxyalkyl, halogen, aminocarbonyl, —OR, and —NR2, wherein each R is independently H, or a substituted or unsubstituted C1-4 alkyl. In others, R1 is 1H-pyrrolo[2,3-b]pyridyl or benzimidazolyl, optionally substituted with one or more substituents independently selected from the group consisting of substituted or unsubstituted C1-8 alkyl, and —NR2, wherein R is independently H, or a substituted or unsubstituted C1-4 alkyl.


In certain embodiments, the compounds of formula (III) have an R1 group set forth herein and an R2 group set forth herein.


In some embodiments of compounds of formula (III), the compound at a concentration of 10 μM inhibits mTOR, DNA-PK, or PI3K or a combination thereof, by at least about 50%. Compounds of formula (III) may be shown to be inhibitors of the kinases above in any suitable assay system.


Representative TOR kinase inhibitors of formula (III) include:

  • 6-(1H-pyrrolo[2,3-b]pyridin-3-yl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(4-methyl-6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-((tetrahydro-2H-pyran-4-yl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-4-((trans-4-methoxycyclohexyl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-4-((cis-4-methoxycyclohexyl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-((trans-4-methoxycyclohexyl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-4-((trans-4-hydroxycyclohexyl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-((cis-4-methoxycyclohexyl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-((trans-4-hydroxycyclohexyl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-(cis-4-hydroxycyclohexyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-((cis-4-hydroxycyclohexyl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-4-(trans-4-methoxycyclohexyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-(trans-4-methoxycyclohexyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-(trans-4-hydroxycyclohexyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-4-((cis-4-hydroxycyclohexyl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-(cis-4-methoxycyclohexyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-isopropyl-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-4-(cis-4-hydroxycyclohexyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-4-(cis-4-methoxycyclohexyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-4-(2-methoxyethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-(tetrahydro-2H-pyran-4-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-ethyl-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-4-(trans-4-hydroxycyclohexyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-4-(tetrahydro-2H-pyran-4-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-4-isopropyl-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 4-ethyl-6-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(3-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-4-(tetrahydro-2H-pyran-4-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(3-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-4-(cis-4-methoxycyclohexyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(3-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-4-(trans-4-methoxycyclohexyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 4-(2-methoxyethyl)-6-(4-methyl-6(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(3-(1H-1,2,4-triazol-5-yl)phenyl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 5-(8-(2-methoxyethyl)-6-oxo-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin-2-yl)-4-methylpicolinamide;
  • 3-(6-oxo-8-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin-2-yl)benzamide;
  • 3-(6-oxo-8-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin-2-yl)benzonitrile;
  • 5-(8-(trans-4-methoxycyclohexyl)-6-oxo-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin-2-yl)-4-methylpicolinamide;
  • 6-(1H-imidazo[4,5-b]pyridin-6-yl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(1H-indazol-6-yl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 4-((1R,3S)-3-methoxycyclopentyl)-6-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 4-((1S,3R)-3-methoxycyclopentyl)-6-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 4-((1R,3R)-3-methoxycyclopentyl)-6-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 4-((1S,3S)-3-methoxycyclopentyl)-6-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 4-ethyl-6-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(1H-pyrrolo[2,3-b]pyridin-5-yl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(1H-indol-6-yl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(1H-indol-5-yl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 4-(((1R,3S)-3-methoxycyclopentypmethyl)-6-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 4-(((1S,3R)-3-methoxycyclopentyl)methyl)-6-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(3-fluoro-2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(3-fluoro-2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-4-(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 3,3-dimethyl-6-(4-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-((tetrahydro-2H-pyran-4-yl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-((1R,3S)-3-methoxycyclopentyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-((1S,3R)-3-methoxycyclopentyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-((1S,3S)-3-methoxycyclopentyl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-((1R,3R)-3-methoxycyclopentyl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-((1S,3S)-3-methoxycyclopentyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-((1R,3R)-3-methoxycyclopentyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-((1R,3S)-3-methoxycyclopentyl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-((1S,3R)-3-methoxycyclopentyl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(3-fluoro-4-(4H-1,2,4-triazol-3-yl)phenyl)-4-(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(3-fluoro-4-(4H-1,2,4-triazol-3-yl)phenyl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7′-(2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-1′-((tetrahydro-2H-pyran-4-yl)methyl)-1′H-spiro[cyclopentane-1,2′-pyrazino[2,3-b]pyrazin]-3′(4′H)-one;
  • 7′-(2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-1′-((tetrahydro-2H-pyran-4-yl)methyl)-1′H-spiro[cyclobutane-1,2′-pyrazino[2,3-b]pyrazin]-3′(4′H)-one;
  • 4-(cyclopropylmethyl)-6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7′-(2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-1′H-spiro[cyclopentane-1,2′-pyrazino[2,3-b]pyrazin]-3′(4′H)-one;
  • 7′-(2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-1′H-spiro[cyclobutane-1,2′-pyrazino[2,3-b]pyrazin]-3′(4′H)-one;
  • 7′-(2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-1′H-spiro[cyclopropane-1,2′-pyrazino[2,3-b]pyrazin]-3′(4′H)-one;
  • (R)-6-(4-(4H-1,2,4-triazol-3-yl)phenyl)-4-((tetrahydrofuran-2-yl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • (S)-6-(4-(4H-1,2,4-triazol-3-yl)phenyl)-4-((tetrahydrofuran-2-yl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(1H-indazol-5-yl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 4-(6-oxo-8-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin-2-yl)benzamide;
  • 4-(2-methoxyethyl)-3,3-dimethyl-6-(2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 4-ethyl-3,3-dimethyl-6-(2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 3,3-dimethyl-6-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-((tetrahydro-2H-pyran-4-yl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • (R)-6-(6-(1-hydroxyethyl)pyridin-3-yl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 3,3-dimethyl-6-(2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-4-((tetrahydro-2H-pyran-4-yl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)-4-methylpyridin-3-yl)-4-(trans-4-methoxycyclohexyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)-4-methylpyridin-3-yl)-4-((tetrahydro-2H-pyran-4-yl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 3,3-dimethyl-6-(2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 3,3-dimethyl-6-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)-2-methylpyridin-3-yl)-4-((tetrahydro-2H-pyran-4-yl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)-2-methylpyridin-3-yl)-4-(trans-4-methoxycyclohexyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • (S)-6-(6-(1-hydroxyethyl)pyridin-3-yl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 3,3-dimethyl-6-(2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-3,3-dimethyl-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(4-(2-hydroxypropan-2-yl)phenyl)-4-(trans-4-methoxycyclohexyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(4-(2-hydroxypropan-2-yl)phenyl)-4-((trans-4-methoxycyclohexyl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 4-(cis-4-methoxycyclohexyl)-6-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 4-(trans-4-methoxycyclohexyl)-6-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(4-(2-hydroxypropan-2-yl)phenyl)-4-((tetrahydro-2H-pyran-4-yl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 4-(2-methoxyethyl)-6-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 9-(6-(4H-1,2,4-triazol-3-yl)-3-pyridyl)-6,11,4a-trihydromorpholino[4,3-e]pyrazino[2,3-b]pyrazin-5-one;
  • 6-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-((tetrahydro-2H-pyran-4-yl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 5-(8-(cis-4-methoxycyclohexyl)-6-oxo-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin-2-yl)-6-methylpicolinonitrile;
  • 6-(6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 9-(4-(4H-1,2,4-triazol-3-yl)-2-methylphenyl)-3-(2-methoxyacetyl)-6,11,4a-trihydropiperazino [1,2-e]pyrazino[2,3-b]pyrazin-5-one;
  • 9-(4-(4H-1,2,4-triazol-3-yl)-2-methylphenyl)-6,11,4a-trihydropiperazino[1,2-e]pyrazino[2,3-b]pyrazin-5-one;
  • 9-(4-(4H-1,2,4-triazol-3-yl)-2-methylphenyl)-3-(2-methoxyethyl)-6,11,4a-trihydropiperazino [1,2-e]pyrazino[2,3-b]pyrazin-5-one;
  • 4-(cyclopentylmethyl)-6-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 9-(6-(4H-1,2,4-triazol-3-yl)-2-methyl-3-pyridyl)-6,11,4a-trihydromorpholino[4,3-e]pyrazino[2,3-b]pyrazin-5-one;
  • 4-(trans-4-hydroxycyclohexyl)-6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 4-(cis-4-hydroxycyclohexyl)-6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-((tetrahydrofuran-3-yl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 4-(cyclopentylmethyl)-6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-neopentyl-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-isobutyl-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 3-methyl-6-(2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-(piperidin-4-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-(2-(tetrahydro-2H-pyran-3-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 8-(4-(4H-1,2,4-triazol-3-yl)-2-methylphenyl)(3aS,2R)-2-methoxy-5,10,3a-trihydropyrazino[2,3-b]pyrrolidino[1,2-e]pyrazin-4-one;
  • 8-(4-(4H-1,2,4-triazol-3-yl)-2-methylphenyl)(2R,3aR)-2-methoxy-5,10,3a-trihydropyrazino[2,3-b]pyrrolidino[1,2-e]pyrazin-4-one;
  • 8-(4-(4H-1,2,4-triazol-3-yl)-2-methylphenyl)(2S,3aR)-2-methoxy-5,10,3a-trihydropyrazino[2,3-b]pyrrolidino[1,2-e]pyrazin-4-one;
  • 8-(4-(4H-1,2,4-triazol-3-yl)-2-methylphenyl)(2S,3aS)-2-methoxy-5,10,3a-trihydropyrazino[2,3-b]pyrrolidino[1,2-e]pyrazin-4-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-(3-methoxypropyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • (S)-6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-((tetrahydrofuran-2-yl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • (R)-6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-((tetrahydrofuran-2-yl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 9-(4-(4H-1,2,4-triazol-3-yl)-2-methylphenyl)-3-methyl-6,11,4a-trihydropiperazino[1,2-e]pyrazino[2,3-b]pyrazin-5-one;
  • 9-(4-(4H-1,2,4-triazol-3-yl)phenyl)-6,11,4a-trihydromorpholino[4,3-e]pyrazino[2,3-b]pyrazin-5-one;
  • 9-(4-(4H-1,2,4-triazol-3-yl)-2-methylphenyl)-6,11,4a-trihydropiperidino[1,2-e]pyrazino[2,3-b]pyrazin-5-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-(trans-4-methoxycyclohexyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-(cis-4-methoxycyclohexyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-(2-morpholinoethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-phenethyl-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-(tetrahydro-2H-pyran-4-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 4-(cyclohexylmethyl)-6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-((trans-4-methoxycyclohexyl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-((cis-4-methoxycyclohexyl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • (R)-6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-(tetrahydrofuran-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • (S)-6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-(tetrahydrofuran-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-phenyl-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • (S)-6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-3-methyl-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 9-[6-(1-hydroxy-isopropyl)-3-pyridyl]-6,11,4a-trihydromorpholino[4,3-e]pyrazino[2,3-b]pyrazin-5-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-((tetrahydro-2H-pyran-4-yl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(2-amino-7-methyl-1H-benzo[d]imidazol-5-yl)-4-(3-(trifluoromethyl)benzyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-(3-(trifluoromethyl)benzyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 9-(4-(4H-1,2,4-triazol-3-yl)-2-methylphenyl)-6,11,4a-trihydromorpholino[4,3-e]pyrazino[2,3-b]pyrazin-5-one;
  • 6-(4-methyl-2-(methylamino)-1H-benzo[d]imidazol-6-yl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 8-(4-(4H-1,2,4-triazol-3-yl)-2-methylphenyl)-5,10,3a-trihydropyrazino[2,3-b]pyrrolidino[1,2-e]pyrazin-4-one;
  • 6-(4-(4H-1,2,4-triazol-3-yl)phenyl)-4-ethyl-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(4-(4H-1,2,4-triazol-3-yl)phenyl)-4-((tetrahydro-2H-pyran-4-yl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(4-(4H-1,2,4-triazol-3-yl)phenyl)-4-(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(4-(4H-1,2,4-triazol-3-yl)phenyl)-4-(3-(trifluoromethyl)benzyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 6-(2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(4-methyl-1H-benzo[d]imidazol-6-yl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 6-(4-(2-hydroxypropan-2-yl)phenyl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one; and
  • 6-(4-(1H-1,2,4-triazol-5-yl)phenyl)-4-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one,


    and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof.


In one embodiment, the TOR kinase inhibitors include compounds having the following formula (IV):




embedded image


and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof, wherein:


R1 is substituted or unsubstituted C1-8 alkyl, substituted or unsubstituted aryl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, or substituted or unsubstituted heterocyclylalkyl;


R2 is H, substituted or unsubstituted C1-8 alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted heterocyclylalkyl, substituted or unsubstituted aralkyl, or substituted or unsubstituted cycloalkylalkyl;


R3 is H, or a substituted or unsubstituted C1-8 alkyl,


wherein in certain embodiments, the TOR kinase inhibitors do not include 7-(4-hydroxyphenyl)-1-(3-methoxybenzyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one, depicted below:




embedded image


In some embodiments of compounds of formula (IV), R1 is substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl. For example, R1 is phenyl, pyridyl, pyrimidyl, benzimidazolyl, 1H-pyrrolo[2,3-b]pyridyl, indazolyl, indolyl, 1H-imidazo[4,5-b]pyridyl, 1H-imidazo[4,5-b]pyridin-2(3H)-onyl, 3H-imidazo[4,5-b]pyridyl, or pyrazolyl, each optionally substituted. In some embodiments, R1 is phenyl substituted with one or more substituents independently selected from the group consisting of substituted or unsubstituted C1-8 alkyl (for example, methyl), substituted or unsubstituted heterocyclyl (for example, a substituted or unsubstituted triazolyl or pyrazolyl), aminocarbonyl, halogen (for example, fluorine), cyano, hydroxyalkyl and hydroxy. In other embodiments, R1 is pyridyl substituted with one or more substituents independently selected from the group consisting of substituted or unsubstituted C1-8 alkyl (for example, methyl), substituted or unsubstituted heterocyclyl (for example, a substituted or unsubstituted triazolyl), halogen, aminocarbonyl, cyano, hydroxyalkyl (for example, hydroxypropyl), —OR, and —NR2, wherein each R is independently H, or a substituted or unsubstituted C1-4 alkyl. In some embodiments, R1 is 1H-pyrrolo[2,3-b]pyridyl or benzimidazolyl, optionally substituted with one or more substituents independently selected from the group consisting of substituted or unsubstituted C1-8 alkyl, and —NR2, wherein R is independently H, or a substituted or unsubstituted C1-4 alkyl.


In some embodiments, R1 is




embedded image


wherein R is at each occurrence independently H, or a substituted or unsubstituted C1-4 alkyl (for example, methyl); R′ is at each occurrence independently a substituted or unsubstituted C1-4 alkyl (for example, methyl), halogen (for example, fluoro), cyano, —OR, or —NR2; m is 0-3; and n is 0-3. It will be understood by those skilled in the art that any of the substitutuents R′ may be attached to any suitable atom of any of the rings in the fused ring systems.


In some embodiments of compounds of formula (IV), R1 is




embedded image


wherein R is at each occurrence independently H, or a substituted or unsubstituted C1-4 alkyl; R′ is at each occurrence independently a substituted or unsubstituted C1-4 alkyl, halogen, cyano, —OR or —NR2; m is 0-3; and n is 0-3.


In some embodiments of compounds of formula (IV), R2 is H, substituted or unsubstituted C1-8 alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted C1-4 alkyl-heterocyclyl, substituted or unsubstituted C1-4 alkyl-aryl, or substituted or unsubstituted C1-4 alkyl-cycloalkyl. For example, R2 is H, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, cyclopentyl, cyclohexyl, tetrahydrofuranyl, tetrahydropyranyl, (C1-4 alkyl)-phenyl, (C1-4 alkyl)-cyclopropyl, (C1-4 alkyl)-cyclobutyl, (C1-4 alkyl)-cyclopentyl, (C1-4 alkyl)-cyclohexyl, (C1-4 alkyl)-pyrrolidyl, (C1-4 alkyl)-piperidyl, (C1-4 alkyl)-piperazinyl, (C1-4 alkyl)-morpholinyl, (C1-4 alkyl)-tetrahydrofuranyl, or (C1-4 alkyl)-tetrahydropyranyl, each optionally substituted.


In other embodiments, R2 is H, C1-4 alkyl, (C1-4alkyl)(OR),




embedded image


wherein R is at each occurrence independently H, or a substituted or unsubstituted C1-4 alkyl (for example, methyl); R′ is at each occurrence independently H, —OR, cyano, or a substituted or unsubstituted C1-4 alkyl (for example, methyl); and p is 0-3.


In other embodiments of compounds of formula (IV), R2 is H, C1-4 alkyl, (C1-4alkyl)(OR),




embedded image


wherein R is at each occurrence independently H, or a substituted or unsubstituted C1-2 alkyl; R′ is at each occurrence independently H, —OR, cyano, or a substituted or unsubstituted C1-2 alkyl; and p is 0-1.


In other embodiments of compounds of formula (IV), R3 is H.


In some such embodiments described herein, R1 is substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. For example, R1 is phenyl, pyridyl, pyrimidyl, benzimidazolyl, 1H-pyrrolo[2,3-b]pyridyl, indazolyl, indolyl, 1H-imidazo[4,5-b]pyridine, pyridyl, 1H-imidazo[4,5-b]pyridin-2(3H)-onyl, 3H-imidazo[4,5-b]pyridyl, or pyrazolyl, each optionally substituted. In some embodiments, R1 is phenyl substituted with one or more substituents independently selected from the group consisting of substituted or unsubstituted C1-8 alkyl, substituted or unsubstituted heterocyclyl, aminocarbonyl, halogen, cyano, hydroxyalkyl and hydroxy. In others, R1 is pyridyl substituted with one or more substituents independently selected from the group consisting of C1-8 alkyl, substituted or unsubstituted heterocyclyl, halogen, aminocarbonyl, cyano, hydroxyalkyl, —OR, and —NR2, wherein each R is independently H, or a substituted or unsubstituted C1-4 alkyl. In still others, R1 is 1H-pyrrolo[2,3-b]pyridyl or benzimidazolyl, optionally substituted with one or more substituents independently selected from the group consisting of substituted or unsubstituted C1-8 alkyl, and —NR2, wherein R is independently H, or a substituted or unsubstituted C1-4 alkyl.


In certain embodiments, the compounds of formula (IV) have an R1 group set forth herein and an R2 group set forth herein.


In some embodiments of compounds of formula (IV), the compound at a concentration of 10 μm inhibits mTOR, DNA-PK, PI3K, or a combination thereof by at least about 50%. Compounds of formula (IV) may be shown to be inhibitors of the kinases above in any suitable assay system.


Representative TOR kinase inhibitors of formula (IV) include:

  • 7-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-1-((trans-4-methoxycyclohexyl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-(cis-4-methoxycyclohexyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(1H-pyrrolo[2,3-b]pyridin-3-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-1-((cis-4-methoxycyclohexyl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-ethyl-7-(1H-pyrrolo[3,2-b]pyridin-5-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-((cis-4-methoxycyclohexyl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(1H-benzo[d]imidazol-4-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(1H-pyrrolo[2,3-b]pyridin-4-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-((trans-4-methoxycyclohexyl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-((trans-4-hydroxycyclohexyl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-(cis-4-hydroxycyclohexyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-1-(cis-4-hydroxycyclohexyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-(tetrahydro-2H-pyran-4-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-ethyl-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-1-((cis-4-hydroxycyclohexyl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-1-(tetrahydro-2H-pyran-4-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(1H-indol-4-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-1-((trans-4-hydroxycyclohexyl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-((cis-4-hydroxycyclohexyl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-(trans-4-hydroxycyclohexyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-(trans-4-methoxycyclohexyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-isopropyl-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-1-(trans-4-methoxycyclohexyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-1-(trans-4-hydroxycyclohexyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-1-(2-methoxyethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-1-isopropyl-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-ethyl-7-(5-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(2-hydroxypyridin-4-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-isopropyl-7-(4-methyl-6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 5-(8-isopropyl-7-oxo-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin-2-yl)-4-methylpicolinamide;
  • 7-(1H-indazol-4-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(2-aminopyrimidin-5-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(2-aminopyridin-4-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(methylamino)pyridin-3-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-hydroxypyridin-3-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(4-(1H-pyrazol-3-yl)phenyl)-1-(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(pyridin-3-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(1H-indazol-4-yl)-1-(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(1H-indazol-6-yl)-1-(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(pyrimidin-5-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-methoxypyridin-3-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-(2-methoxyethyl)-7-(1H-pyrrolo[2,3-b]pyridin-5-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-ethyl-7-(1H-pyrrolo[2,3-b]pyridin-5-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-ethyl-7-(1H-indazol-4-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(pyridin-4-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-aminopyridin-3-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-methyl-7-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 2-(2-hydroxypropan-2-yl)-5-(8-(trans-4-methoxycyclohexyl)-7-oxo-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin-2-yl)pyridine 1-oxide;
  • 4-methyl-5-(7-oxo-8-((tetrahydro-2H-pyran-4-yl)methyl)-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin-2-yl)picolinamide;
  • 5-(8-((cis-4-methoxycyclohexyl)methyl)-7-oxo-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin-2-yl)-4-methylpicolinamide;
  • 7-(1H-pyrazol-4-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-(trans-4-methoxycyclohexyl)-7-(4-methyl-6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 3-((7-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-2-oxo-3,4-dihydropyrazino[2,3-b]pyrazin-1(2H)-yl)methyl)benzonitrile;
  • 1-((trans-4-methoxycyclohexyl)methyl)-7-(4-methyl-6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 3-(7-oxo-8-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin-2-yl)benzamide;
  • 5-(8-((trans-4-methoxycyclohexyl)methyl)-7-oxo-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin-2-yl)-4-methylpicolinamide;
  • 3-((7-(6-(2-hydroxypropan-2-yl)pyridin-3-O-2-oxo-3,4-dihydropyrazino[2,3-b]pyrazin-(2H)-yl)methyl)benzonitrile;
  • 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-((1R,3R)-3-methoxycyclopentyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-((1S,3R)-3-methoxycyclopentyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-((1S,3S)-3-methoxycyclopentyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-((1R,3S)-3-methoxycyclopentyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(1H-indazol-6-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-(2-morpholinoethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-(trans-4-hydroxycyclohexyl)-7-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-(cis-4-hydroxycyclohexyl)-7-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-(2-morpholinoethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-isopropyl-7-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(1H-imidazo[4,5-b]pyridin-6-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-((cis-4-methoxycyclohexyl)methyl)-7-(2-methyl-6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-(trans-4-hydroxycyclohexyl)-7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-(cis-4-hydroxycyclohexyl)-7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 4-(7-oxo-8-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-5,6,7,8-tetrahydropyrazino[2,3-b]pyrazin-2-yl)benzamide;
  • 7-(1H-indazol-5-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(1H-pyrrolo[2,3-b]pyridin-5-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-(tetrahydro-2H-pyran-4-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 1-((1S,3R)-3-methoxycyclopentyl)-7-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 1-((1R,3R)-3-methoxycyclopentyl)-7-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 1-((1R,3 S)-3-methoxycyclopentyl)-7-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 1-((1S,3 S)-3-methoxycyclopentyl)-7-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(1H-indol-5-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-ethyl-7-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(1H-indol-6-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(4-(2-hydroxypropan-2-yl)phenyl)-1-(trans-4-methoxycyclohexyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-(tetrahydro-2H-pyran-4-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 1-((trans-4-methoxycyclohexyl)methyl)-7-(2-methyl-6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-((cis-4-methoxycyclohexyl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 1-(2-methoxyethyl)-7-(4-methyl-2-(methylamino)-1H-benzo[d]imidazol-6-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(7-methyl-2-oxo-2,3-dihydro-1H-benzo[d]imidazol-5-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-(2-methoxyethyl)-7-(4-methyl-6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-benzyl-7-(2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(3-fluoro-4-(4H-1,2,4-triazol-3-yl)phenyl)-1-(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(3-fluoro-4-(4H-1,2,4-triazol-3-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(3-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-1-(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-(trans-4-methoxycyclohexyl)-7-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-(trans-4-methoxycyclohexyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(5-fluoro-2-methyl-4-(4H-1,2,4-triazol-3-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(3-fluoro-2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-(2-methoxyethyl)-7-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-((trans-4-methoxycyclohexyl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 1-(cyclopentylmethyl)-7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(4-(2-hydroxypropan-2-yl)phenyl)-1-(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • (S)-7-(6-(1-hydroxyethyl)pyridin-3-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • (R)-7-(6-(1-hydroxyethyl)pyridin-3-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(4-(2-hydroxypropan-2-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-(4-(trifluoromethyl)benzyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-(3-(trifluoromethyl)benzyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-(3-methoxypropyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(4-methyl-6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-(2-methoxyethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(4-methyl-2-(methylamino)-1H-benzo[d]imidazol-6-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(2-amino-4-methyl-1H-benzo[d]imidazol-6-yl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(2-methyl-6-(4H-1,2,4-triazol-3-yl)pyridin-3-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • (R)-7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-3-methyl-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • (S)-7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-3-methyl-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-3,3-dimethyl-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one;
  • 7-(2-amino-4-methyl-1H-benzo[d]imidazol-6-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(2-methyl-4-(1H-1,2,4-triazol-3-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 7-(4-(1H-1,2,4-triazol-5-yl)phenyl)-1-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one;
  • 1-(1-hydroxypropan-2-yl)-7-(2-methyl-6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino [2,3-b]pyrazin-2(1H)-one; and
  • 1-(2-hydroxyethyl)-7-(2-methyl-6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one,


    and pharmaceutically acceptable salts, clathrates, solvates, stereoisomers, tautomers, and prodrugs thereof.


In one embodiment, the TOR kinase inhibitor is a compound having the following formula:




embedded image


or a pharmaceutically acceptable salt, clathrate, solvate, stereoisomer, tautomer, or prodrug thereof.


In one embodiment, the TOR kinase inhibitor is a compound having the following formula:




embedded image


or a pharmaceutically acceptable salt, clathrate, solvate, stereoisomer, tautomer, or prodrug thereof.


In one embodiment, the TOR kinase inhibitor is a compound having the following formula:




embedded image


or a pharmaceutically acceptable salt, clathrate, solvate, stereoisomer, tautomer, or prodrug thereof.


In one embodiment, the TOR kinase inhibitor is a compound having the following formula:




embedded image


or a pharmaceutically acceptable salt, clathrate, solvate, stereoisomer, tautomer, or prodrug thereof.


In one embodiment, the TOR kinase inhibitor is a compound having the following formula:




embedded image


or a pharmaceutically acceptable salt, clathrate, solvate, stereoisomer, tautomer, or prodrug thereof.


In one embodiment, the TOR kinase inhibitor is a compound having the following formula:




embedded image


or a pharmaceutically acceptable salt, clathrate, solvate, stereoisomer, tautomer, or prodrug thereof.


In one embodiment, the TOR kinase inhibitor is a compound having the following formula:




embedded image


or a pharmaceutically acceptable salt, clathrate, solvate, stereoisomer, tautomer, or prodrug thereof.


In one embodiment, the TOR kinase inhibitor is a compound having the following formula:




embedded image


or a pharmaceutically acceptable salt, clathrate, solvate, stereoisomer, tautomer, or prodrug thereof.


In one embodiment, the TOR kinase inhibitor is a compound disclosed in WO 2008/023161 (see, e.g., page 5, line 5 to page 11, line 15), WO 2009/007751 (see, e.g., page 9, line 8 to page 26, line 8), WO 2009/007749 (see, e.g., page 9, line 21 to page 29, line 23), WO 2009/007750 (see, e.g., page 9, line 21 to page 32, line 22), WO 2009/007748 (see, e.g., page 9, line 6 to page 42, line 28), WO 2008/032028 (see, e.g., page 11, line 13 to page 21, line 13), WO 2008/032086 (see, e.g., page 10 line 21 to page 15, line 22), WO 2008/032072 (see, e.g., page 11, line 11 to page 16, line 13), WO 2008/032033 (see, e.g., page 11, line 3 to page 16, line 5), WO 2008/032089 (see, e.g., page 11, line 11 to page 16, line 13), WO 2008/032060 (see, e.g., page 11, line 3 to page page 16, line 6), WO 2008/032091 (see, e.g., page 11, line 11 to page 16, line 13), WO 2008/032036 (see, e.g., page 11, line 13 to page 21, line 13), WO 2008/032077 (see, e.g., page 10, line 21 to page 15, line 22), WO 2008/032064 (see, e.g., page 11, line 3 to page 16, line 5), WO 2008/032027 (see, e.g., page 10, line 21 to page 15, line 22), WO 2007/135398 (see, e.g., page 11, line 28 to page 16, line 6), WO 2007/129052 (see, e.g., page 10, line 8 to page 13, line 5), WO 2007/129044 (see, e.g., page 10, line 22 to page 13, line 20), WO 2007/080382 (see, e.g., page 9, line 20 to page 32, line 32), WO 2007/066102 (see, e.g., page 9, line 22 to page 14, line 17), WO 2007/066099 (see, e.g., page 9, line 22 to page 14, line 14), WO 2007/066103 (see, e.g., page 9, line 22 to page 14, line 16), WO 2007/060404 (see, e.g., 5, line 4 to page 7, line 25), WO 2006/090169 (see, e.g., page 4, lines 1-25), WO 2006/090167 (see, e.g., page 3, line 33 to page 6, line 23), WO 2008/115974 (see, e.g., page 4, paragraph [0012] to page 127, paragraph [0257]), WO 2009/052145 (see, e.g., page 5, paragraph [0015] to page 81, paragraph [0082]), WO 2010/006072 (see, e.g., page 28, line 1 to page 34, line 1), WO 2007/044698 (see, e.g., page 3, paragraph [0010] to the bottom of page 7), WO 2007/044813 (see, e.g., page 3, paragraph [0010] to the middle of page 7), WO 2007/044729 (see, e.g., page 3, paragraph [0010] to the bottom of page 10), WO 2007/129161 (see, e.g., page 2, line 10 to page 9, line 19), WO 2006/046031 (see, e.g., page 2, line 15 to page 4, line 12), WO 2003/072557 (see, e.g., page 1, line 4 to page 2, line 27), WO 2004/048365 (see, e.g., page 1, line 4 to page 4, line 17), WO 2004/078754 (see, e.g., page 1, line 4 to page 2, line 21), WO 2004/096797 (see, e.g., page 1, line 4 to page 2, line 34), WO 2005/021519 (see, e.g., page 1, line 4 to page 4, line 17) or US 2007/112005 (see, e.g., page 2, paragraph [0012] to page 22, paragraph [0065]), each of which is incorporated by reference herein in its entirety.


5.4 Methods for Making TOR Kinase Inhibitors

The TOR kinase inhibitors can be obtained via standard, well-known synthetic methodology, see e.g., March, J. Advanced Organic Chemistry; Reactions Mechanisms, and Structure, 4th ed., 1992. Starting materials useful for preparing compounds of formula (III) and intermediates therefore, are commercially available or can be prepared from commercially available materials using known synthetic methods and reagents.


Particular methods for preparing compounds of formula (I) are disclosed in U.S. application Ser. No. 11/975,652, filed Oct. 18, 2007, incorporated by reference herein in its entirety. Particular methods for preparing compounds of formula (II) are disclosed in U.S. application Ser. No. 11/975,657, filed Oct. 18, 2007, incorporated by reference herein in its entirety. Particular methods for preparing compounds of formula (III) and (IV) are disclosed in U.S. application Ser. No. 12/605,791, filed Oct. 26, 2009, incorporated by reference herein in its entirety.


5.5 Methods of Use

Without being limited by theory, it is believed that LKB1 plays an important role in the nutrient sensing arm of the mTOR pathway. In particular, it is believed that LKB1 is a negative regulator of the mTOR pathway under stress conditions, such as hypoxia and low glucose. LKB1 suppresses mTOR activity via its downsteam kinase, AMP-activated protein kinase (AMPK). In response to energy stress, LKB1 phosphorylates the AMPK catalytic subunit at T172 and this phosphorylation is essential for activation of AMPK. Activated AMPK phosphorylates TSC2 and raptor, and suppresses mTOR activity (Shackelford D B and Shaw J S, Nat. Rev Cancer 9:563 (2009)). Therefore, phosphorylation or activity of AMPK can be used as a marker for LKB1 status. In basal conditions, it is believed that loss of LKB1 and/or AMPK can result in activation of the mTOR pathway. In cancer cells, under stress conditions, it is believed that the LKB1/AMPK pathway may actually play a protective role by causing cells to slow down their proliferation and thus evade apoptosis induced by the stress condition. However, it is believed that in LKB1 mutant cancer cells (e.g., cells harboring a LKB1 gene mutation resulting in a decrease in LKB1 mRNA expression, a decrease in LKB1 protein production or a non-functional LKB1 protein), in the absence of the negative signal to mTOR, the cancer cells continue to proliferate and undergo metabolic catastrophe. Accordingly, without being limited by theory, it is believed that TOR kinase inhibitors by their effects on cell metabolism cause a stress response in cancer cells and in LKB1 mutant cancer cells, and in the absence of a negative signal to slow the growth of the cells, result in cell death. Also without being limited by theory, it is believed that the expression levels of certain genes are characteristic of LKB1 gene or protein mutation or loss, such that measurement of the gene expression levels of a biological sample can be used to predict LKB1 status of the biological sample.


Provided herein are methods for predicting the LKB1 status of a patient or a biological sample, comprising the measurement of a predictive gene expression level. Without being limited by theory, it is believed that certain gene expression levels are characteristic of LKB1 gene and/or protein mutation and/or loss.


Further provided herein are methods for treating or preventing a cancer, for example non-small cell lung carcinoma or cervical cancer, or treating a tumor syndrome, for example Peutz-Jeghers Syndrome, comprising administering an effective amount of a TOR kinase inhibitor to a patient having a cancer or a tumor syndrome characterized by a particular gene expression level, relative to that of wild type.


Further provided herein are methods for treating or preventing a cancer, for example non-small cell lung carcinoma or cervical cancer, comprising screening a patient's cancer for the presence of a particular gene expression level relative to that of wild type and administering an effective amount of a TOR kinase inhibitor to the patient having a cancer characterized by a particular gene expression level.


Further provided herein are methods for predicting LKB1 gene and/or protein loss and/or mutation in a patient's (“test patient”) cancer, for example non-small cell lung carcinoma or cervical cancer, comprising: a) obtaining a biological test sample from the patient's cancer; b) obtaining the gene expression level(s) of one or more genes selected from Table 1 in said biological sample; c) comparing said gene expression level(s) to a set of reference levels that represent the gene expression level of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation, and the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation; wherein the gene expression level(s) of the biological test sample characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation, indicates an increased likelihood of an LKB1 gene and/or protein loss and/or mutation in the patient's cancer.


Further provided herein are methods for treating non-small cell lung carcinoma, cervical cancer or Peutz-Jeghers Syndrome, comprising administering an effective amount of a TOR kinase inhibitor to a patient having non-small cell lung carcinoma, cervical cancer or Peutz-Jeghers Syndrome, wherein the gene expression level(s) of a biological test sample from said patient is characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation than the gene expression level of a wild type sample without LKB1 gene and/or protein loss and/or mutation, and wherein the genes are selected from Table 1.


Further provided are methods for treating non-small cell lung carcinoma or cervical cancer, comprising screening a patient's carcinoma or cancer for the presence of LKB1 gene and/or protein loss and/or mutation, relative to wild type, and administering an effective amount of a TOR kinase inhibitor to the patient having non-small cell lung carcinoma or cervical cancer characterized by a gene expression level(s) characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation than the gene expression level of a wild type sample without LKB1 gene and/or protein loss and/or mutation, and wherein the genes are selected from Table 1.


Further provided herein are methods for predicting response to treatment with a TOR kinase inhibitor in a patient, the method comprising: a) obtaining a biological test sample from the patient's cancer; b) obtaining the gene expression level(s) of one or more genes selected from Table 1 in said biological test sample; c) comparing said gene expression level(s) to a set of reference levels that represent the gene expression level of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation, and the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation; wherein the gene expression level(s) of the biological test sample characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation, indicates an increased likelihood of response to TOR kinase inhibitor treatment of said patient's cancer.


Further provided herein are methods for predicting therapeutic efficacy of TOR kinase inhibitor treatment of a patient having cancer, for example non-small cell lung carcinoma or cervical cancer, with a TOR kinase inhibitor, the method comprising: a) obtaining a biological test sample from the patient's cancer; b) obtaining the gene expression level(s) of one or more genes selected from Table 1 in said biological test sample; c) comparing said gene expression level(s) to a set of reference levels that represent the gene expression level of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation, and the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation; wherein the gene expression level(s) of the biological test sample characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation, indicates an increased likelihood of therapeutic efficacy of said TOR kinase inhibitor treatment for said patient.


Further provided herein are methods screening a patient having cancer, for example non-small cell lung carcinoma or cervical cancer, for LKB1 gene and/or protein loss and/or mutation, the method comprising: a) obtaining a biological test sample from the patient's cancer; b) obtaining the gene expression level(s) of one or more genes selected from Table 1 in said biological test sample; c) comparing said gene expression level(s) to a set of reference levels that represent the gene expression level of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation, and the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation; wherein the gene expression level(s) of the biological test sample characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation, indicates an increased likelihood of LKB1 gene and/or protein loss and/or mutation.


Further provided herein are methods for treating a tumor syndrome, for example Peutz-Jeghers Syndrome, comprising comparing a patient's gene expression level(s) to wild type, and administering an effective amount of a TOR kinase inhibitor to the patient having Peutz-Jeghers Syndrome characterized by a gene expression level characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation, than the gene expression level of a wild type sample without LKB1 gene and/or protein loss and/or mutation, and wherein the genes are selected from Table 1.


Further provided are methods for treating a tumor syndrome, for example Peutz-Jeghers Syndrome, comprising screening a patient for the presence of LKB1 gene and/or protein loss and/or mutation, relative to wild type, and administering an effective amount of a TOR kinase inhibitor to the patient having a tumor syndrome characterized by a gene expression level characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation, than the gene expression level of a wild type sample without LKB1 gene and/or protein loss and/or mutation, and wherein the genes are selected from Table 1.


Further provided herein are methods for predicting LKB1 gene and/or protein loss and/or mutation in a patient having a tumor syndrome, for example, Peutz-Jeghers Syndrome, comprising: a) obtaining a biological test sample from the patient; b) obtaining the gene expression level(s) of one or more genes selected from Table 1 in said biological test sample; c) comparing said gene expression level(s) to a set of reference levels that represent the gene expression level of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation, and the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation; wherein the gene expression level(s) of the biological test sample characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation, indicates an increased likelihood of an LKB1 gene and/or protein loss and/or mutation in the patient.


Further provided herein are methods for predicting response to TOR kinase inhibitor therapy in a patient having a tumor syndrome, for example, Peutz-Jeghers Syndrome, comprising: a) obtaining a biological test sample from the patient; b) obtaining the gene expression level(s) of one or more genes selected from Table 1 in said biological test sample; c) comparing said gene expression level(s) to a set of reference levels that represent the gene expression level of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation, and the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation; wherein the gene expression level(s) of the biological test sample characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation, indicates an increased likelihood of response to TOR kinase inhibitor treatment of said patient's tumor syndrome.


Further provided herein are methods for predicting therapeutic efficacy of treatment of a patient having a tumor syndrome, for example, Peutz-Jeghers Syndrome, with a TOR kinase inhibitor, comprising: a) obtaining a biological test sample from the patient; b) obtaining the gene expression level(s) of one or more genes selected from Table 1 in said biological test sample; c) comparing said gene expression level(s) to a set of reference levels that represent the gene expression level of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation, and the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation; wherein the gene expression level(s) of the biological test sample characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation, indicates an increased likelihood of therapeutic efficacy of said TOR kinase inhibitor treatment for said patient.


Further provided herein are methods screening a patient having a tumor syndrome, for example Peutz-Jeghers Syndrome, for LKB1 gene and/or protein loss and/or mutation, comprising: a) obtaining a biological test sample from the patient; b) obtaining the gene expression level(s) of one or more genes selected from Table 1 in said biological test sample; c) comparing said gene expression level(s) to a set of reference levels that represent the gene expression level of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation, and the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation; wherein the gene expression level(s) of the biological test sample characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation, indicates an increased likelihood for LKB1 gene and/or protein loss and/or mutation.


In certain embodiments provided herein, the gene expression level of the biological test sample is obtained using gene mRNA measurement. In certain of the methods and embodiments provided herein, the gene expression level of the biological test sample is obtained using RT-PCR or Affymetrix HGU133plus2. In some embodiments, comparison of gene expression levels is performed using Prediction Analysis of Microarrays for R (“PAMR”) (http://cran.r-project.org/web/packages/pamr/pamr.pdf). In some embodiments, similarity between gene expression level(s) of a biological test sample with wild-type samples and/or reference samples is determined using PAMR.


Further provided herein are kits comprising one or more containers filled with a TOR kinase inhibitor or a pharmaceutical composition thereof, reagents for measuring gene expression levels of a patient's cancer or of a patient having a tumor syndrome and instructions for measuring gene expression levels of a patient's cancer or of a patient having a tumor syndrome. In one embodiment, the measurement comprises measurement of the expression level(s) of one or more genes from Table 1. In one embodiment, the gene expression measurement instructions are RT-PCT or Affymetrix HGU133plus2 instructions. In one embodiment, the kit further comprises instructions for comparing the expression levels to a set of reference levels that represent the gene expression levels of a biological wild-type sample without LKB1 gene and/or protein loss and/or mutation, and the gene expression level of a reference sample with LKB1 gene and/or protein loss and/or mutation. In one embodiment, the instructions for the comparison of expression levels are instructions for using PAMR.


In one embodiment, the LKB1 gene mutation or loss results in a decrease in LKB1 mRNA expression (e.g., relative to wild type). In another embodiment, the LKB1 gene mutation or loss results in a change in LKB1 mRNA structure (e.g., relative to wild type). In another embodiment, the LKB1 gene mutation or loss results in a decrease in LKB1 protein production (e.g., relative to wild type). In another embodiment, the LKB1 gene mutation or loss results in a change in LKB1 protein structure (e.g., relative to wild type). Types of gene mutations contemplated include mutations of the LKB1 DNA sequence in which the number of bases is altered, categorized as insertion or deletion mutations (frameshift mutations), and mutations of the DNA that change one base into another, categorized as missense mutations, which are subdivided into the classes of transitions (one purine to another purine, or one pyrimidine to another pyrimidine) and transversions (a purine to a pyrimidine, or a pyrimidine to a purine) and nonsense mutations, wherein a codon encoding an amino acid is changed to a stop codon, thus resulting in truncated protein.


In certain embodiments, the gene expression level(s), for example, in a biological test sample, as referenced herein is comprised of the expression level(s) of one or more of the genes set forth in Table 1. In a further embodiment, the gene expression level(s) does not include the expression level of IGF1R.


In certain embodiments, the gene expression levels associated with LKB1 gene and/or protein mutation and/or loss, for example in a biological test sample, are characterized by an upregulation of one or more genes indicated in Table 1 as having a negative Fold Change value and/or a downregulation of one or more genes in Table 1 as having a positive Fold Change value.


In a particular embodiment, the gene expression levels associated with LKB1 gene and/or protein mutation and/or loss, for example, in a biological test sample, is characterized by upregulation of one or more of the following genes: scavenger receptor class A, member 5 (putative); fibrinogen gamma chain; fibrinogen alpha chain; insulin-like 4 (placenta); organic solute transporter beta; phosphodiesterase 1A, calmodulin-dependent; carbamoyl-phosphate synthetase 1, mitochondrial; frizzled homolog 10 (Drosophila); mucin SAC, oligomeric mucus/gel-forming; trefoil factor 1; transient receptor potential cation channel, subfamily C, member 6; interleukin 1 receptor, type II; fibrinogen beta chain; chromosome 12 open reading frame 39; hypothetical gene supported by AK090616; R-spondin 3 homolog (Xenopus laevis); and interleukin 1 receptor, type II.


In a particular embodiment, the gene expression levels associated with LKB1 gene and/or protein mutation and/or loss, for example, in a biological test sample, are characterized by downregulation of one or more of the following genes: chitinase 3-like 1(cartilage glycoprotein-39); odz, odd Oz/ten-m homolog 2 (Drosophila); chemokine (C—C motif) ligand 5; bone morphogenetic protein 4; calcyphosine; Uncharacterized protein LOC100131897; and CD74 molecule, major histocompatibility complex, class II invariant chain.


In a particular embodiment, the gene expression levels associated with LKB1 gene and/or protein mutation and/or loss, for example in a biological test sample, are characterized by upregulation of one or more of the following genes: scavenger receptor class A, member 5 (putative); fibrinogen gamma chain; fibrinogen alpha chain; insulin-like 4 (placenta); organic solute transporter beta; phosphodiesterase 1A, calmodulin-dependent; carbamoyl-phosphate synthetase 1, mitochondrial; frizzled homolog 10 (Drosophila); mucin SAC, oligomeric mucus/gel-forming; trefoil factor 1; transient receptor potential cation channel, subfamily C, member 6; interleukin 1 receptor, type II; fibrinogen beta chain; chromosome 12 open reading frame 39; hypothetical gene supported by AK090616; R-spondin 3 homolog (Xenopus laevis); and interleukin 1 receptor, type II, and further characterized by downregulation of one or more of the following genes: chitinase 3-like 1 (cartilage glycoprotein-39); odz, odd Oz/ten-m homolog 2 (Drosophila); chemokine (C—C motif) ligand 5; bone morphogenetic protein 4; calcyphosine; Uncharacterized protein LOC 100131897; and CD74 molecule, major histocompatibility complex, class II invariant chain.


In one embodiment, the gene expression levels associated with LKB1 gene and/or protein mutation and/or loss, for example in a biological test sample, are characterized by upregulation of one or more of the following genes: homogentisate 1,2-dioxygenase (homogentisate oxidase); ATP-binding cassette, sub-family C(CFTR/MRP), member 2; chromosome 12 open reading frame 39; fibrinogen beta chain; fibrinogen gamma chain; R-spondin 3 homolog (Xenopus laevis); kynureninase (L-kynurenine hydrolase); carbamoyl-phosphate synthetase 1, mitochondrial; SPARC related modular calcium binding 1; interleukin 1 receptor, type II; chromosome 6 open reading frame 176; neuronal PAS domain protein 2; chondroitin sulfate N-acetylgalactosaminyltransferase 1; insulin-like 4 (placenta); nitric oxide synthase trafficker; and phosphodiesterase 4D, cAMP-specific (phosphodiesterase E3 dunce homolog, Drosophila). In some embodiments, the gene expression levels associated with LKB1 gene and/or protein mutation and/or loss, for example in a biological test sample, are characterized by downregulation of one or more of the following genes: bone morphogenetic protein 4; and pentraxin-related gene, rapidly induced by IL-1 beta.


In certain embodiments, gene expression is upregulated by a factor of about 2, about 5, about 10, about 20, about 30, about 40, about 50, about 60, about 70, about 80, about 90, about 100, about 110, about 120 or more relative to wild type. In certain embodiments, gene expression is downregulated by a factor of about 2, about 5, about 10, about 20, about 30, about 40, about 50, about 60, about 70, about 80, about 90, about 100, about 110, about 120 or more relative to wild type.


In certain embodiments, the cancer, for example non-small cell lung carcinoma or cervical cancer, or the tumor syndrome, for example Peutz-Jeghers Syndrome, results directly or indirectly from LKB1 gene and/or protein loss and/or mutation, relative to that of wild type.


In one embodiment, the LKB1 gene mutation is a somatic mutation.


In one embodiment, a patient or a patient's cancer is screened for LKB1 gene and/or protein loss and/or mutation by obtaining a biological sample from said patient or said patient's cancer, and measuring the gene expression level(s) of said sample ex vivo. In certain embodiments, the ex vivo analysis is performed using microarray analysis or sequence based techniques, such as serial analysis of gene expression (SAGE or SuperSAGE).


In certain of the methods and embodiments provided herein, the gene expression levels are measured using RT-PCR or Affymetrix HGU133plus2. In some embodiments, the gene expression levels are compared to wild type gene expression levels using the statistical package Prediction Analysis of Microarrays for R (“PAMR”). In some embodiments, similarity between gene expression level(s) of a biological test sample with wild-type samples and/or reference samples is determined using PAMR. In certain embodiments, the gene expression level is comprised of the gene expression levels of one or more of the genes set forth in Table 1.


In certain of the methods and embodiments provided herein, the gene expression level(s) (such as those of Table 1) is correlated with increased likelihood of LKB1 gene and/or protein loss and/or mutation.


A TOR kinase inhibitor can be combined with other pharmacologically active compounds (“second active agents”) in methods and compositions described herein. It is believed that certain combinations may work in the treatment of particular types of diseases or disorders, and conditions and symptoms associated with such diseases or disorders. A TOR kinase inhibitor can also work to alleviate adverse effects associated with certain second active agents, and vice versa.


One or more second active ingredients or agents can be used in the methods and compositions described herein. Second active agents can be large molecules (e.g., proteins) or small molecules (e.g., synthetic inorganic, organometallic, or organic molecules).


Examples of second active agents include, but are not limited to, agents that modulate AMP levels (e.g., an AMP activator), glucose uptake, metabolism or a stress response. In one embodiment, the second active agent is 2-deoxyglucose. In one embodiment, the second active agent is metformin. In one embodiment, the second active agent is phenformin. In another embodiment, the second active agent is pemetrexed (e.g., ALIMTA®).


Administration of a TOR kinase inhibitor and one or more second active agents to a patient can occur simultaneously or sequentially by the same or different routes of administration. The suitability of a particular route of administration employed for a particular active agent will depend on the active agent itself (e.g., whether it can be administered orally without decomposing prior to entering the blood stream) and the disease being treated. A preferred route of administration for a TOR kinase inhibitor is oral. Preferred routes of administration for the second active agents or ingredients of the invention are known to those of ordinary skill in the art. See, e.g., Physicians' Desk Reference, 1755-1760 (56th ed., 2002).


In one embodiment, a second active agent is administered intravenously or subcutaneously and once or twice daily in an amount of from about 1 to about 1000 mg, from about 5 to about 500 mg, from about 10 to about 350 mg, or from about 50 to about 200 mg. The specific amount of the second active agent will depend on the specific agent used, the type of disease being treated or managed, the severity and stage of disease, and the amount(s) of a TOR kinase inhibitor and any optional additional active agents concurrently administered to the patient.


Further provided herein are methods of reducing, treating and/or preventing adverse or undesired effects associated with conventional therapy including, but not limited to, surgery, chemotherapy, radiation therapy, hormonal therapy, biological therapy and immunotherapy. TOR kinase inhibitors and other active ingredients can be administered to a patient prior to, during, or after the occurrence of the adverse effect associated with conventional therapy.


5.6 Pharmaceutical Compositions and Routes of Administration

Provided herein are compositions comprising an effective amount of a TOR kinase inhibitor and compositions comprising an effective amount of a TOR kinase inhibitor and a pharmaceutically acceptable carrier or vehicle. In some embodiments, the pharmaceutical composition described herein are suitable for oral, parenteral, mucosal, transdermal or topical administration.


The TOR kinase inhibitors can be administered to a patient orally or parenterally in the conventional form of preparations, such as capsules, microcapsules, tablets, granules, powder, troches, pills, suppositories, injections, suspensions and syrups. Suitable formulations can be prepared by methods commonly employed using conventional, organic or inorganic additives, such as an excipient (e.g., sucrose, starch, mannitol, sorbitol, lactose, glucose, cellulose, talc, calcium phosphate or calcium carbonate), a binder (e.g., cellulose, methylcellulose, hydroxymethylcellulose, polypropylpyrrolidone, polyvinylpyrrolidone, gelatin, gum arabic, polyethyleneglycol, sucrose or starch), a disintegrator (e.g., starch, carboxymethylcellulose, hydroxypropylstarch, low substituted hydroxypropylcellulose, sodium bicarbonate, calcium phosphate or calcium citrate), a lubricant (e.g., magnesium stearate, light anhydrous silicic acid, talc or sodium lauryl sulfate), a flavoring agent (e.g., citric acid, menthol, glycine or orange powder), a preservative (e.g, sodium benzoate, sodium bisulfite, methylparaben or propylparaben), a stabilizer (e.g., citric acid, sodium citrate or acetic acid), a suspending agent (e.g., methylcellulose, polyvinyl pyrroliclone or aluminum stearate), a dispersing agent (e.g., hydroxypropylmethylcellulose), a diluent (e.g., water), and base wax (e.g., cocoa butter, white petrolatum or polyethylene glycol). The effective amount of the TOR kinase inhibitor in the pharmaceutical composition may be at a level that will exercise the desired effect; for example, about 0.005 mg/kg of a patient's body weight to about 10 mg/kg of a patient's body weight in unit dosage for both oral and parenteral administration.


The dose of a TOR kinase inhibitor to be administered to a patient is rather widely variable and can be patient to the judgment of a health-care practitioner. In general, the TOR kinase inhibitors can be administered one to four times a day in a dose of about 0.005 mg/kg of a patient's body weight to about 10 mg/kg of a patient's body weight in a patient, but the above dosage may be properly varied depending on the age, body weight and medical condition of the patient and the type of administration. In one embodiment, the dose is about 0.01 mg/kg of a patient's body weight to about 5 mg/kg of a patient's body weight, about 0.05 mg/kg of a patient's body weight to about 1 mg/kg of a patient's body weight, about 0.1 mg/kg of a patient's body weight to about 0.75 mg/kg of a patient's body weight or about 0.25 mg/kg of a patient's body weight to about 0.5 mg/kg of a patient's body weight. In one embodiment, one dose is given per day. In any given case, the amount of the TOR kinase inhibitor administered will depend on such factors as the solubility of the active component, the formulation used and the route of administration.


In another embodiment, provided herein are methods for the treatment or prevention of a disease or disorder comprising the administration of about 0.375 mg/day to about 750 mg/day, about 0.75 mg/day to about 375 mg/day, about 3.75 mg/day to about 75 mg/day, about 7.5 mg/day to about 55 mg/day or about 18 mg/day to about 37 mg/day of a TOR kinase inhibitor to a patient in need thereof.


In another embodiment, provided herein are methods for the treatment or prevention of a disease or disorder comprising the administration of about 1 mg/day to about 1200 mg/day, about 10 mg/day to about 1200 mg/day, about 100 mg/day to about 1200 mg/day, about 400 mg/day to about 1200 mg/day, about 600 mg/day to about 1200 mg/day, about 400 mg/day to about 800 mg/day or about 600 mg/day to about 800 mg/day of a TOR kinase inhibitor to a patient in need thereof. In a particular embodiment, the methods disclosed herein comprise the administration of 400 mg/day, 600 mg/day or 800 mg/day of a TOR kinase inhibitor to a patient in need thereof.


In another embodiment, provided herein are unit dosage formulations that comprise between about 1 mg and about 2000 mg, about 1 mg and 200 mg, about 35 mg and about 1400 mg, about 125 mg and about 1000 mg, about 250 mg and about 1000 mg, or about 500 mg and about 1000 mg of a TOR kinase inhibitor.


In a particular embodiment, provided herein are unit dosage formulation comprising about 100 mg or 400 mg of a TOR kinase inhibitor.


In another embodiment, provided herein are unit dosage formulations that comprise 1 mg, 2.5 mg, 5 mg, 10 mg, 15 mg, 20 mg, 30 mg, 35 mg, 50 mg, 70 mg, 100 mg, 125 mg, 140 mg, 175 mg, 200 mg, 250 mg, 280 mg, 350 mg, 500 mg, 560 mg, 700 mg, 750 mg, 1000 mg or 1400 mg of a TOR kinase inhibitor.


A TOR kinase inhibitor can be administered once, twice, three, four or more times daily.


A TOR kinase inhibitor can be administered orally for reasons of convenience. In one embodiment, when administered orally, a TOR kinase inhibitor is administered with a meal and water. In another embodiment, the TOR kinase inhibitor is dispersed in water or juice (e.g., apple juice or orange juice) and administered orally as a suspension. In another embodiment, when administered orally, a TOR kinase inhibitor is administered in a fasted state.


The TOR kinase inhibitor can also be administered intradermally, intramuscularly, intraperitoneally, percutaneously, intravenously, subcutaneously, intranasally, epidurally, sublingually, intracerebrally, intravaginally, transdermally, rectally, mucosally, by inhalation, or topically to the ears, nose, eyes, or skin. The mode of administration is left to the discretion of the health-care practitioner, and can depend in-part upon the site of the medical condition.


In one embodiment, provided herein are capsules containing a TOR kinase inhibitor without an additional carrier, excipient or vehicle.


In another embodiment, provided herein are compositions comprising an effective amount of a TOR kinase inhibitor and a pharmaceutically acceptable carrier or vehicle, wherein a pharmaceutically acceptable carrier or vehicle can comprise an excipient, diluent, or a mixture thereof. In a further embodiment, provided herein are compositions comprising an effective amount of a TOR kinase inhibitor, and a pharmaceutically acceptable carrier or vehicle, and one or more agents that modulate AMP levels, glucose uptake, metabolism or a stress response. In one embodiment, the composition is a pharmaceutical composition.


The compositions can be in the form of tablets, chewable tablets, capsules, solutions, parenteral solutions, troches, suppositories and suspensions and the like. Compositions can be formulated to contain a daily dose, or a convenient fraction of a daily dose, in a dosage unit, which may be a single tablet or capsule or convenient volume of a liquid. In one embodiment, the solutions are prepared from water-soluble salts, such as the hydrochloride salt. In general, all of the compositions are prepared according to known methods in pharmaceutical chemistry. Capsules can be prepared by mixing a TOR kinase inhibitor with a suitable carrier or diluent and filling the proper amount of the mixture in capsules. The usual carriers and diluents include, but are not limited to, inert powdered substances such as starch of many different kinds, powdered cellulose, especially crystalline and microcrystalline cellulose, sugars such as fructose, mannitol and sucrose, grain flours and similar edible powders.


Tablets can be prepared by direct compression, by wet granulation, or by dry granulation. Their formulations usually incorporate diluents, binders, lubricants and disintegrators as well as the compound. Typical diluents include, for example, various types of starch, lactose, mannitol, kaolin, calcium phosphate or sulfate, inorganic salts such as sodium chloride and powdered sugar. Powdered cellulose derivatives are also useful. In one embodiment, the pharmaceutical composition is lactose-free. Typical tablet binders are substances such as starch, gelatin and sugars such as lactose, fructose, glucose and the like. Natural and synthetic gums are also convenient, including acacia, alginates, methylcellulose, polyvinylpyrrolidine and the like. Polyethylene glycol, ethylcellulose and waxes can also serve as binders.


A lubricant might be necessary in a tablet formulation to prevent the tablet and punches from sticking in the die. The lubricant can be chosen from such slippery solids as talc, magnesium and calcium stearate, stearic acid and hydrogenated vegetable oils. Tablet disintegrators are substances that swell when wetted to break up the tablet and release the compound. They include starches, clays, celluloses, algins and gums. More particularly, corn and potato starches, methylcellulose, agar, bentonite, wood cellulose, powdered natural sponge, cation-exchange resins, alginic acid, guar gum, citrus pulp and carboxymethyl cellulose, for example, can be used as well as sodium lauryl sulfate. Tablets can be coated with sugar as a flavor and sealant, or with film-forming protecting agents to modify the dissolution properties of the tablet. The compositions can also be formulated as chewable tablets, for example, by using substances such as mannitol in the formulation.


When it is desired to administer a TOR kinase inhibitor as a suppository, typical bases can be used. Cocoa butter is a traditional suppository base, which can be modified by addition of waxes to raise its melting point slightly. Water-miscible suppository bases comprising, particularly, polyethylene glycols of various molecular weights are in wide use.


The effect of the TOR kinase inhibitor can be delayed or prolonged by proper formulation. For example, a slowly soluble pellet of the TOR kinase inhibitor can be prepared and incorporated in a tablet or capsule, or as a slow-release implantable device. The technique also includes making pellets of several different dissolution rates and filling capsules with a mixture of the pellets. Tablets or capsules can be coated with a film that resists dissolution for a predictable period of time. Even the parenteral preparations can be made long-acting, by dissolving or suspending the TOR kinase inhibitor in oily or emulsified vehicles that allow it to disperse slowly in the serum.


6. EXAMPLES
6.1 Gene Expression

Gene Expression Analysis.


40 NSCLC cell lines were grouped into two groups, namely LKB1 positive and LKB1 negative cell lines based on quantified western measurements, wherein cell lines with LKB1/Act protein ratio larger than 25 were classified as LKB1 positive, and cell lines with LKB1/Act protein ratio less than 25 were classified as LKB1 negative.


The free software R package PAMR was used, which implements “nearest shrunken centroids” (see: PNAS 99 (10): 6567-6572 (2002)) to identify subsets of genes that distinguish LKB1 positive from LKB1 negative NSCLC cell lines. PAMR selected 463 probes with 10-fold cross validation error at 22% (78% accuracy). After removing probes that had a small fold difference between the two groups (<1.5 fold), a 458-probe signature was obtained. Results are set forth in Table 1 and FIGS. 1-2.


This experiment demonstrates that a particular gene expression level is associated with the loss of LKB1.


A number of references have been cited, the disclosures of which are incorporated herein by reference in their entirety.

Claims
  • 1. A method for predicting LKB1 gene or protein loss or mutation in a patient's cancer, comprising: a) obtaining a biological test sample from the patient's cancer;b) obtaining the gene expression level of one or more genes selected from Table 1 in said biological sample;c) comparing said gene expression level to a set of reference levels that represent the gene expression level of a biological wild-type sample without LKB1 gene or protein loss or mutation, and the gene expression level of a reference sample with LKB1 gene or protein loss or mutation;wherein the gene expression level of the biological test sample characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene or protein loss or mutation, indicates an increased likelihood of an LKB1 gene or protein loss or mutation in the patient's cancer.
  • 2. The method of claim 1, wherein the gene expression level of the biological test sample is obtained using gene mRNA measurement.
  • 3. The method of claim 1, wherein the gene expression level of the biological test sample is obtained using RT-PCR or Affymetrix HGU133plus2.
  • 4. The method of claim 1, wherein the comparison of gene expression levels is performed using PAMR.
  • 5. The method of claim 1, wherein the cancer is non-small cell lung carcinoma or cervical cancer.
  • 6. The method of claim 1, wherein the gene expression level of the biological test sample is characterized by an upregulation of one or more genes in Table 1 as having a negative Fold Change value.
  • 7. The method of claim 1, wherein the gene expression level of the biological test sample is characterized by a downregulation of one or more genes in Table 1 as having a positive Fold Change value.
  • 8. The method of claim 1, wherein the gene expression level of the biological test sample is characterized by upregulation of one or more of the following genes: scavenger receptor class A, member 5 (putative); fibrinogen gamma chain; fibrinogen alpha chain; insulin-like 4 (placenta); organic solute transporter beta; phosphodiesterase 1A, calmodulin-dependent; carbamoyl-phosphate synthetase 1, mitochondrial; frizzled homolog 10 (Drosophila); mucin SAC, oligomeric mucus/gel-forming; trefoil factor 1; transient receptor potential cation channel, subfamily C, member 6; interleukin 1 receptor, type II; fibrinogen beta chain; chromosome 12 open reading frame 39; hypothetical gene supported by AK090616; R-spondin 3 homolog (Xenopus laevis); and interleukin 1 receptor, type II.
  • 9. The method of claim 1, wherein the gene expression level is characterized by downregulation of one or more of the following genes: chitinase 3-like 1 (cartilage glycoprotein-39); odz, odd Oz/ten-m homolog 2 (Drosophila); chemokine (C—C motif) ligand 5; bone morphogenetic protein 4; calcyphosine; Uncharacterized protein LOC100131897; and CD74 molecule, major histocompatibility complex, class II invariant chain.
  • 10. A method for treating non-small cell lung carcinoma, cervical cancer or Peutz-Jeghers Syndrome, comprising administering an effective amount of a TOR kinase inhibitor to a patient having non-small cell lung carcinoma, cervical cancer or Peutz-Jeghers Syndrome, wherein the gene expression level of a biological test sample from said patient is characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene or protein loss or mutation than the gene expression level of a wild type sample without LKB1 gene or protein loss or mutation, and wherein the genes are selected from Table 1.
  • 11. The method of claim 10, wherein the gene expression level of the biological test sample is obtained using gene mRNA measurement.
  • 12. The method of claim 10, wherein the gene expression level of the biological test sample is obtained using RT-PCR or Affymetrix HGU133plus2.
  • 13. The method of claim 10, wherein the comparison of expression levels is performed using PAMR.
  • 14. The method of claim 10, wherein the gene expression level of the biological test sample is characterized by an upregulation of one or more genes indicated in Table 1 as having a negative Fold Change value.
  • 15. The method of claim 10, wherein the gene expression level of the biological test sample is characterized by a downregulation of one or more genes in Table 1 as having a positive Fold Change value.
  • 16. The method of claim 10, wherein the gene expression level of the biological test sample is characterized by upregulation of one or more of the following genes: scavenger receptor class A, member 5 (putative); fibrinogen gamma chain; fibrinogen alpha chain; insulin-like 4 (placenta); organic solute transporter beta; phosphodiesterase 1A, calmodulin-dependent; carbamoyl-phosphate synthetase 1, mitochondrial; frizzled homolog 10 (Drosophila); mucin SAC, oligomeric mucus/gel-forming; trefoil factor 1; transient receptor potential cation channel, subfamily C, member 6; interleukin 1 receptor, type II; fibrinogen beta chain; chromosome 12 open reading frame 39; hypothetical gene supported by AK090616; R-spondin 3 homolog (Xenopus laevis); and interleukin 1 receptor, type II.
  • 17. The method of claim 10, wherein the gene expression level of the biological test sample is characterized by downregulation of one or more of the following genes: chitinase 3-like 1 (cartilage glycoprotein-39); odz, odd Oz/ten-m homolog 2 (Drosophila); chemokine (C—C motif) ligand 5; bone morphogenetic protein 4; calcyphosine; Uncharacterized protein LOC100131897; and CD74 molecule, major histocompatibility complex, class II invariant chain.
  • 18. A method for treating non-small cell lung carcinoma or cervical cancer, comprising screening a patient's carcinoma or cancer for the presence of LKB1 gene or protein loss or mutation, relative to wild type, and administering an effective amount of a TOR kinase inhibitor to the patient having non-small cell lung carcinoma or cervical cancer characterized by a gene expression level characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene or protein loss or mutation than the gene expression level of a wild type sample without LKB1 gene or protein loss or mutation, and wherein the genes are selected from Table 1.
  • 19. The method of claim 18, wherein the gene expression level is obtained using gene mRNA measurement.
  • 20. The method of claim 18, wherein the gene expression level is obtained using RT-PCR or Affymetrix HGU133plus2.
  • 21. The method of claim 18, wherein the comparison of expression levels is performed using PAMR.
  • 22. The method of claim 18, wherein the gene expression level of the patient's carcinoma or cancer is characterized by upregulation of one or more of the following genes: scavenger receptor class A, member 5 (putative); fibrinogen gamma chain; fibrinogen alpha chain; insulin-like 4 (placenta); organic solute transporter beta; phosphodiesterase 1A, calmodulin-dependent; carbamoyl-phosphate synthetase 1, mitochondrial; frizzled homolog 10(Drosophila); mucin SAC, oligomeric mucus/gel-forming; trefoil factor 1; transient receptor potential cation channel, subfamily C, member 6; interleukin 1 receptor, type II; fibrinogen beta chain; chromosome 12 open reading frame 39; hypothetical gene supported by AK090616; R-spondin 3 homolog (Xenopus laevis); and interleukin 1 receptor, type II.
  • 23. The method of claim 18, wherein the gene expression level of the patient's carcinoma or cancer is characterized by downregulation of one or more of the following genes: chitinase 3-like 1 (cartilage glycoprotein-39); odz, odd Oz/ten-m homolog 2 (Drosophila); chemokine (C—C motif) ligand 5; bone morphogenetic protein 4; calcyphosine; Uncharacterized protein LOC100131897; and CD74 molecule, major histocompatibility complex, class II invariant chain.
  • 24. A method for treating Peutz-Jeghers Syndrome, comprising comparing a patient's gene expression level to wild type, and administering an effective amount of a TOR kinase inhibitor to the patient having Peutz-Jeghers Syndrome characterized by a gene expression level characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene or protein loss or mutation than the gene expression level of a wild type sample without LKB1 gene or protein loss or mutation, and wherein the genes are selected from Table 1.
  • 25. The method of claim 24, wherein the gene expression level is obtained using gene mRNA measurement.
  • 26. The method of claim 24, wherein the gene expression level is obtained using RT-PCR or Affymetrix HGU133plus2.
  • 27. The method of claim 24, wherein the comparison of gene expression levels is performed using PAMR.
  • 28. The method of claim 24, wherein the patient's gene expression level is characterized by upregulation of one or more of the following genes: scavenger receptor class A, member 5 (putative); fibrinogen gamma chain; fibrinogen alpha chain; insulin-like 4 (placenta); organic solute transporter beta; phosphodiesterase 1A, calmodulin-dependent; carbamoyl-phosphate synthetase 1, mitochondrial; frizzled homolog 10 (Drosophila); mucin SAC, oligomeric mucus/gel-forming; trefoil factor 1; transient receptor potential cation channel, subfamily C, member 6; interleukin 1 receptor, type II; fibrinogen beta chain; chromosome 12 open reading frame 39; hypothetical gene supported by AK090616; R-spondin 3 homolog (Xenopus laevis); and interleukin 1 receptor, type II.
  • 29. The method of claim 24, wherein the patient's gene expression level is characterized by downregulation of one or more of the following genes: chitinase 3-like 1(cartilage glycoprotein-39); odz, odd Oz/ten-m homolog 2 (Drosophila); chemokine (C—C motif) ligand 5; bone morphogenetic protein 4; calcyphosine; Uncharacterized protein LOC 100131897; and CD74 molecule, major histocompatibility complex, class II invariant chain.
  • 30. A method of predicting response to treatment with a TOR kinase inhibitor in a patient having cancer, the method comprising: a) obtaining a biological test sample from the patient's cancer;b) obtaining the gene expression level of one or more genes selected from Table 1 in said biological test sample;c) comparing said gene expression level to a set of reference levels that represent the gene expression level of a biological wild-type sample without LKB1 gene or protein loss or mutation and the gene expression level of a reference sample with LKB1 gene or protein loss or mutation;wherein the gene expression level of the biological test sample characterized by higher similarity to the gene expression level of a reference sample with LKB1 gene or protein loss or mutation, indicates an increased likelihood of response to TOR kinase inhibitor treatment of said patient's cancer.
  • 31. The method of claim 30, wherein the gene expression level of the biological test sample is obtained using gene mRNA measurement.
  • 32. The method of claim 30, wherein the gene expression level of the biological test sample is obtained using RT-PCR or Affymetrix HGU133plus2.
  • 33. The method of claim 30, wherein the comparison of gene expression levels is performed using PAMR.
  • 34. A kit comprising one or more containers filled with a TOR kinase inhibitor or a pharmaceutical composition thereof, reagents for measuring gene expression levels of a patient's cancer or of a patient having a tumor syndrome and instructions for measuring gene expression levels of a patient's cancer or of a patient having a tumor syndrome.
  • 35. The kit of claim 34, wherein the measurement comprises measurement of the expression level one or more genes from Table 1.
  • 36. The kit of claim 34, wherein the gene expression measurement instructions are RT-PCT or Affymetrix HGU133plus2 instructions.
  • 37. The kit of claim 35, further comprising instructions for comparing the expression levels to a set of reference levels that represent the gene expression levels of a biological wild-type sample without LKB1 gene or protein loss or mutation and the gene expression level of a reference sample with LKB1 gene or protein loss or mutation.
  • 38. The kit of claim 37, wherein the instructions for the comparison of expression levels are instructions for using PAMR.
Parent Case Info

This application is a U.S. national stage application of International Patent Application No. PCT/US2012/049281, filed Aug. 2, 2012, which claims the benefit of U.S. Provisional Application No. 61/514,798, filed Aug. 3, 2011, the entire contents of each of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2012/049281 8/2/2012 WO 00 3/5/2013
Provisional Applications (1)
Number Date Country
61514798 Aug 2011 US