Full duplex radio-frequency identification (RFID) systems such as ultra-high frequency (UHF) systems operating at 900 MHz based on the various International Organization for Standardization (ISO) ISO18000-6ABC standards have to deal with a higher amplitude self jammer resulting from a powerful transmitter signal either leaking from one antenna to another in a bi-static antenna system, or from the antenna's return loss in a monostatic antenna system. This self jammer is typically present during both transmit and receive periods although it is during receive periods that desensing the receiver is an issue. In the receive mode, the jammer is a continuous wave (CW) tone down at −16 dBc to −26 dBc in a typical RFID system. In a typical 1 watt system, this equates to +4 to +15 dBm at the system port. While there are situations when other interferers may occur at higher amplitudes, removal the self jammer is capable of enhancing system performance.
Claimed subject matter is particularly pointed out and distinctly claimed in the concluding portion of the specification. However, such subject matter may be understood by reference to the following detailed description when read with the accompanying drawings in which:
It will be appreciated that for simplicity and/or clarity of illustration, elements illustrated in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, if considered appropriate, reference numerals have been repeated among the figures to indicate corresponding and/or analogous elements.
In the following detailed description, numerous specific details are set forth to provide a thorough understanding of claimed subject matter. However, it will be understood by those skilled in the art that claimed subject matter may be practiced without these specific details. In other instances, well-known methods, procedures, components and/or circuits have not been described in detail.
In the following description and/or claims, the terms coupled and/or connected, along with their derivatives, may be used. In particular embodiments, connected may be used to indicate that two or more elements are in direct physical and/or electrical contact with each other. Coupled may mean that two or more elements are in direct physical and/or electrical contact. However, coupled may also mean that two or more elements may not be in direct contact with each other, but yet may still cooperate and/or interact with each other. For example, “coupled” may mean that two or more elements do not contact each other but are indirectly joined together via another element or intermediate elements. The terms “on,” “overlying,” and “over” may be used in the following description and claims. “On,” “overlying,” and “over” may be used to indicate that two or more elements are in direct physical contact with each other. However, “over” may also mean that two or more elements are not in direct contact with each other. For example, “over” may mean that one element is above another element but not contact each other and may have another element or elements in between the two elements. Furthermore, the term “and/or” may mean “and”, it may mean “or”, it may mean “exclusive-or”, it may mean “one”, it may mean “some, but not all”, it may mean “neither”, and/or it may mean “both”, although the scope of claimed subject matter is not limited in this respect. In the following description and/or claims, the terms “comprise” and “include,” along with their derivatives, may be used and are intended as synonyms for each other.
Referring now to
In one or more embodiments, a signal to be transmitted by transceiver 100 may pass through transmitter chain 110 to a power amplifier 112 through coupler 116 to be transmitted via antenna 120. Likewise, reflected signals may be received at antenna 120 to be passed along receiver chain 130 via power combiner 132. Combiner 118 may couple and/or split signals between transmitter chain 110 and receiver chain 130. In one or more embodiments, phase shifter 126 and variable attenuator 124 may be adjusted to minimize, or nearly minimize, power detected at peak detector and pilot tone detector 136, for example via dual proportional-integrative-derivative (PID) control loops and/or adaptive perturbation control loops (not shown). Peak detector 128 monitors signals on transmitter chain 110 to provide a feedback path to control the power of the signal transmitted on transmitter chain 110. Peak detector 134 is capable of providing a reference level for an incoming jammer and/or other loud interferer signal. Peak detector 122 allows for initial power level matching to accelerate a perturbation loop convergence solution. Ultimately, minimizing, or nearly minimizing, the power at peak detector and pilot tone detection circuit 136 minimizes the self jammer injected into the receiver chain 130 which results in less desensitization and saturation yielding a higher signal to noise ratio (SNR). In one or more embodiments, pilot tone generator 114 may be arranged to perform lower amplitude modulation at one or more variable gain stages of the transmitter chain 110, for example at power amplifier 112. In an alternative embodiment, pilot tone generator 114 may perform modulation in the frequency domain which would mean modulating a voltage controlled oscillator (not shown) in the transmitter chain 110 with a very low amplitude pilot tone to slightly dither the frequency. Then, on the receiver chain 130 side, the output of the receiver chain 130, which in one or more embodiments comprises an input to an analog-to-digital converter (ADC), the output of which may be provided to a discrete Fourier transform (DFT) or a fast Fourier transform (FFT) processor to determine whether or not the jammer suppressor is functioning in the correct band, although the scope of the claimed subject matter is not limited in this respect.
In one or more embodiments, the self jammer may be suppressed from the received signal by self jammer suppressor circuit 102 and/or by implementation of method 200 of
Referring now to
Although the claimed subject matter has been described with a certain degree of particularity, it should be recognized that elements thereof may be altered by persons skilled in the art without departing from the spirit and/or scope of claimed subject matter. It is believed that the subject matter pertaining to identification of self jammer tone for suppression thereof in RFID systems or the like and/or many of its attendant utilities will be understood by the forgoing description, and it will be apparent that various changes may be made in the form, construction and/or arrangement of the components thereof without departing from the scope and/or spirit of the claimed subject matter or without sacrificing all of its material advantages, the form herein before described being merely an explanatory embodiment thereof, and/or further without providing substantial change thereto. It is the intention of the claims to encompass and/or include such changes.