The Bochringer Mahnheim Catalog (1989) p. 144. |
Chomczynski, P., and Sacchi, N., "Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction," Analyt. Biochem. 162:156-159 (1987). |
Ciechanover, A., and Schwartz, A.L., "The Ubiquitin-Mediated Proteolytic Pathway: Mechanisms of Recognition of the Proteolytic Substrate and Involvement in the Degradation of Native Cellular Proteins," FASEB J. 8:182-191 (Feb. 1994). |
Evans, W.E., et al., "Altered Mercaptopurine Metabolism, Toxic Effects, and Dosage Requirement in a Thiopurine Methyltransferase-Deficient Child with Acute Lymphocytic Leukemia," J. Pediatr. 119(6):985-989 (1991). |
Grant, D.M., "Molecular Genetics of the N-Acetyltransferases," Pharmacogenetics 3:45-50 (1993). |
Heim, M., and Meyer, U.A., "Genotyping of Poor Metabolisers of Debrisoquine by Allele-Specific PCR Amplification," Lancet 336:529-532 (1990). |
Hollander, A.A.M.J., et al., "Beneficial Effects of Conversion from Cyclosporin to Azathioprine After Kidney Transplantation," Lancet 345:610-614 (Mar. 11, 1995). |
Honchel, R., et al., "Human Thiopurine Methyltransferase: Molecular Cloning and Expression of T84 Colon Carcinoma Cell cDNA," Molec. Pharmacol 43:878-887 (1993). |
Jin. A., et al., "New Restriction Endonuclease CviRI Cleaves DNA at TG/CA Sequences," Nucl. Acids Res. 22(19):3928-3929 (Sep. 25, 1994). |
Kohler, G., and Milstein, C., "Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity," Nature 256:495-497 (1975). |
Krynetski, E.Y., et al., "A Single Point Mutation Leading to Loss of Catalytic Activity in Human Thiopurine S-methyltransferase," Proc. Natl. Acad. Sci. USA 92:949-953 (Feb. 1995). |
Krynetski, E.Y., et al., "High Yield Expression of Functionally Active Human Liver CYP2D6 in Yeast Cells," Pharmacogenetics 5(2):103-109 (Apr. 1995). |
Krynetski, E.Y., et al., "Methylation of Mercaptopurine, Thioguanine, and Their Nucleotide Metabolites by Heterologously Expressed Human Thiopurine S-Methyltransferase," Mol. Pharmacol. 47:1141-1147 (Jun. 1995). |
Krynetsky, E.Yu., et al., "Effects of Amino-Terminus Truncation in Human Cytochrome P450IID6 on Ints Insertion Into the Endoplasmic Reticulum Membrane of Saccharomyces cerevisiae," FEBS Lett. 336(1):87-89 (1993). |
Lee, D., et al., "Thiopurine Methyltransferase Pharmacogenetics. Cloning of Human Liver cDNA and a Processed Pseudogene on Human Chromosome 18q21.1," Drug Metab. Disp. 23(3):398-405 (Mar. 1995). |
Lennard, L., et al., "Thiopurine Pharmacogenetics in Leukemia: Correlation of Erythrocyte Thiopurine Methyltransferase Activity and 6-Thioguanine Nucleotide Concentrations," Clin. Pharmacol. Ther. 41(1):18-25 (1987). |
Lennard, L., et al., "Congenital Thiopurine Methyltransferase Deficiency and 6-Mercaptopurine Toxicity During Treatment for Acute Lymphoblastic Leukemia," Arch. Dis. Child. 69:577-579 (1993). |
McLeod, H.L., et al., "Azathioprine-Induced Myelosuppression in Thiopurine Methyltransferase Deficient Heart Transplant Recipient," Lancet 341:1151 (1993). |
McLeod, H.L., et al., "Higher Activity of Polymorphic Thiopurine S-Methyltransferase in Erythrocytes From Neonates Compared to Adults," Pharmacogenetics 5(5):281-286 (Jul. 1995). |
Pacifici, G.M., et al., "S-Methyltransferases in Human Intestine: Differential Distribution of the Microsomal Thiol Methyltransferase and Cytosolic Thiopurine Methyltransferase Along the Human Bowel," Xenobiotica 23:671-679 (1993). |
Purmal, A.A., et al., "5-Hydroxypyrimidine Deoxynucleoside Triphosphates are More Efficiently Incorporated into DNA by Exonuclease-Free Klenow Fragment than 8-Oxopurine Deoxynucleoside Triphosphates," Nucl. Acids. Res. 22(19):3930-3935 (Sep. 25, 1994). |
Schmitt, M.E., et al., "A Rapid and Simple Method For Preparation of RNA From Saccharomyces cerevisiae," Nucl. Acids Res. 18(10):3091-3092 (1990). |
Schutz, E., et al., "Azathioprine-Induced Myelosuppression in Thiopurine Methyltransferase Deficient Heart Transplant Recipient," Lancet 341:436 (1993). |
Siebert, P.D., et al., "An Improved PCR Method for Walking in Uncloned Genomic DNA," Nucl. Acids Res. 23(6):1087-1088 (Mar. 1995). |
Van Loon, J.A., and Weinshilboum, R.M., "Thiopurine Methyltransferaes Isozymes in Human Renal Tissue," Drug Metab. Dispos. 18(5):632-638 (1990). |
Van Loon, J.A., et al., "Human Kidney Thiopurine Methyltransferase. Photoaffinity Labeling with S-Adenosyl-L-Methionine," Biochem. Pharmacol. 44(4):775-785 (1992). |
Weinshilboum, R.M., et al., "Human Erythrocyte Thiopurine Methyltransferase: Radiochemical Microassay and Biochemical Properties," Clin. Chim. Acta 85:323-333 (1978). |
Weinshilboum, R.M., and Sladek, S.L., "Mercaptopurine Pharmacogenetics: Monogenic Inheritance of Erythrocyte Thiopurine Methyltransferase Activity," Am. J. Human Genet. 32:651-662 (1980). |
Woodson, L.C., et al., "Pharmacogenetics of Human Thiopurine Methyltransferase: Kidney-Erythrocyte Correlation and Immuntitration Studies," J. Pharmacol. Exp. Ther. 222(1):174-181 (1982). |