The methods and systems described herein are directed towards identifying arrangement errors between detector elements in a gamma-ray detector system.
A gamma-ray detector system, such as a positron emission tomography (PET) scanner, usually includes multiple detector elements such as crystals, modules, and detector units. During manufacture or system service, it is possible that these detector elements may be arranged incorrectly. For instance, detector elements may be inserted in an incorrect orientation or may have swapped cable connections. It is important to verify the actual layout of the detector elements in the system to avoid artifacts in imaging due to incorrect layout.
Often times, the layout is checked by visually inspecting the cable connections and orientation of detector elements, which can be unreliable. Image checks could also be performed, but this method cannot provide immediate error feedback without lengthy calibration procedures or reconstruction. In many cases, if the problem is not detected until the system is fully calibrated, part or all of the lengthy calibration process will have to be repeated, which is time consuming and expensive.
Therefore, in consideration of the above issues, a more efficient approach for identifying arrangement errors between detector elements in a gamma-ray detector system is beneficial.
To address at least one problem identified with known techniques, the present disclosure describes capturing radiation events within a gamma-ray detector system, and processing the radiation events data to verify the relative positioning and/or identify arrangement errors of detector elements within the detector system.
Inter-detector scattering and background radiation from the scintillator crystals can cause coincidence events. These coincidence events between multiple detector elements can be tracked and processed. Detector elements that are designed to be side-by-side are expected to share more of these coincidence events, whereas detector elements that are designed to be located far from each other are expected to share very few of these coincidence events.
In one embodiment, the average distance between assembly events (coincidence events caused by inter-detector scattering and background radiation from the scintillator crystals) for each detector element is measured to determine if an arrangement error exists. In another embodiment, another distance metric could be used, such as median distance, mode distance, etc.
In another embodiment, the relative correlation between assembly events for each detector element is measured to determine arrangement errors.
Arrangement errors for different detector elements can be identified, such as errors between crystals, modules or detector units.
Additionally, techniques to remove noise and/or bias caused from random assembly events (similar to but slightly different than random coincidence events; see detailed description for more detail) are disclosed.
Further, in another embodiment, a machine learning system and/or look up tables (LUTs) can be incorporated to specifically identify the type of layout error and correct it.
This summary section does not specify every embodiment and/or incrementally novel aspect of the present disclosure or claimed invention. Instead, this summary only provides a preliminary discussion of different embodiments and corresponding points of novelty. For additional details and/or possible perspectives of the invention and embodiments, the reader is directed to the Detailed Description section and corresponding figures of the present disclosure as further discussed below.
The application will be better understood in light of the description which is given in a non-limiting manner, accompanied by the attached drawings in which:
The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
The order of discussion of the different steps as described herein has been presented for the sake of clarity. In general, these steps can be performed in any suitable order. Additionally, although each of the different features, techniques, configurations, etc. herein may be discussed in different places of this disclosure, it is intended that each of the concepts can be executed independently of each other or in combination with each other. Accordingly, the present invention can be embodied and viewed in many different ways. This disclosure describes a PET detector system comprising scintillator crystals, photosensors and associated electronics to illustrate the various embodiments, but these concepts can be applied to similar ionizing radiation detector systems, such as gamma-ray and x-ray detectors. Examples of other systems to which this disclosure could be applied include direct conversion semiconductor detectors using materials such as cadmium telluride, cadmium zinc telluride, silicon, and germanium.
It can be appreciated that the methods of the present disclosure may be implemented within a PET scanner, as shown in
In
According to an embodiment, the processor 207 of the PET scanner 100 of
Alternatively, the CPU in the processor 207 can execute a computer program including a set of computer-readable instructions that perform methods described herein, the program being stored in any of the above-described non-transitory electronic memories and/or a hard disk drive, CD, DVD, FLASH drive or any other known storage media. Further, the computer-readable instructions may be provided as a utility application, background daemon, or component of an operating system, or combination thereof, executing in conjunction with a processor, such as a Xenon processor from Intel of America or an Opteron processor from AMD of America and an operating system, such as Microsoft VISTA, UNIX, Solaris, LINUX, Apple, MAC-OS and other operating systems known to those skilled in the art. Further, CPU can be implemented as multiple processors cooperatively working in parallel to perform the instructions.
In one implementation, the PET scanner may include a display for displaying a reconstructed image and the like. The display can be an LCD display, CRT display, plasma display, OLED, LED or any other display known in the art.
The network controller 203, such as an Intel Ethernet PRO network interface card from Intel Corporation of America, can interface between the various parts of the PET imager. Additionally, the network controller 203 can also interface with an external network. As can be appreciated, the external network can be a public network, such as the Internet, or a private network such as an LAN or WAN network, or any combination thereof and can also include PSTN or ISDN sub-networks. The external network can also be wired, such as an Ethernet network, or can be wireless such as a cellular network including EDGE, 3G and 4G wireless cellular systems. The wireless network can also be WiFi, Bluetooth, or any other wireless form of communication that is known.
Detector elements, which are electrically and/or optically independent, can often form coincidence events due to inter-detector scattering or energy escape of the multi-stage background radiation in the crystal. These multi-detector events between detector elements (i.e. between crystals, between modules, between detector units) can be used to verify the relative positioning of detector elements and detect errors in layout.
An example of inter-detector scattering is shown in
Additionally, some scintillator materials are radioactive (i.e. the scintillator crystal produces background/intrinsic radiation). For example, in LYSO or LSO (two common PET scintillators), Lu-176 is naturally present. As shown in
Because these types of coincident events normally happen between detector elements that are close to each other compared to detector elements that are farther apart, these coincidence events can be tracked, measured and compared to a threshold or designed layout to estimate arrangement errors.
As an example and introduction to the concept,
The preceding concepts can be applied in many different embodiments. The flowchart of
At step 810, the acquired radiation events data can be used to form coincidence events between detector elements. Coincidence events can be formed either in real-time through coincidence circuitry or offline through comparison of time measurements in software. Coincidence events, in the context of a traditional PET scan, typically refer to the events that originated as a result of positron annihilation along a line of response (LOR) between two detectors. Coincidence events, as described in the present disclosure, focus predominantly on coincidence events caused by inter-detector scattering or energy escape of multi-stage background radiation in the scintillator crystals. To this end, the coincidence events that are identified are events caused by inter-detector scattering and/or background radiation. Under normal operation, the coincidence events caused by inter-detector scattering or energy escape of the multi-stage background radiation in the scintillator crystals are more likely to occur in nearby detector elements (rather than detector elements on opposite ends of a LOR), and the frequency of these coincidence events usually decreases as a distance between the detector elements becomes larger. In order to differentiate between these specific coincidence events and the traditional coincidence events that typically happen between detectors along a LOR, geometric constraints (i.e. geometric cuts defining sub-regions) may be applied to the detector ring. In this way, hits that occur between multiple detector elements within a coincidence time window and within their respective geometrical constraints (i.e. sub-regions) can be identified as, or referred to as, an assembly event. The process of collecting the assembly events is referred to as assembling the events.
According to an embodiment, a geometric cut can divide the detector ring into fixed sub-regions. For example, as shown in
Returning now to
To elaborate on the latter point, the hits could be detected at different levels of the detector elements: (1) the crystal/pixel level, (2) the module level, or (3) the detector unit level. The crystal/pixel level is the lowest level, followed by the module level, and then the detector unit level. Other levels may be defined, as appropriate. Each of these levels refers to a detector element that is used in a position calculation. As an example, if an average distance between detector elements is calculated at the crystal level, then the position of each crystal is used in a position calculation. Alternatively, if an average distance is calculated at the module level or detector unit level, then only the positions of the module or detector unit (respectively) would be used in a position calculation. This concept of levels can also be applied when calculating a correlation between detector elements, which will be described in greater detail with reference to subsequent Figures.
In an embodiment, any level of calculation will be able to detect positioning or cabling errors at that same level. For example, if the calculation is performed on the module level, swapped modules could be detected. A lower level can also detect positioning or cabling errors at levels above it. For example, swapped modules within the same detector unit could also be detected at the crystal level, but not at the detector unit level.
In order to be sensitive to a rotation of a detector element, calculations must be performed on a level lower than the rotated detector element. For example, to be able to detect rotation errors of modules, the calculations must be performed on a lower level, which, in this instance, would be the crystal level. Similarly, in order to detect rotations on the detector unit level, calculations must be performed on the module or crystal level.
Returning again to
To this end,
At step 825, defects can be identified by values which exceed a threshold level. For instance, layout errors can be identified through a visual inspection of the collected data (e.g. inspecting the average distance map). The data could also be compared to a predetermined threshold level to identify any errors. In an embodiment, the predetermined threshold level may be set sufficiently low that all defects are identified but high enough that the rate of false positives is low. Noise and bias, for instance, may be determining factors in setting the predetermined threshold level for detecting defects. As an alternative to setting an explicit threshold, at step 825 a trained operator can inspect the image and identify defects based on experience from having viewed many examples of systems with and without defects.
Further to the above, random assembly events are a significant contributor to noise and bias. Before defining a random assembly, however, an understanding of an initiating event must be developed. An initiating event is an event which routinely causes a single hit (i.e. all energy is deposited in a single crystal—the energy might be deposited in separate discrete processes, such as Compton scattering followed by photo-electric absorption, but these are not resolved as separate detection events by the detector if they occur in the same pixel, since they occur nearly simultaneously). A single positron annihilation normally results in two initiating events because the two 511 keV gamma rays emitted from the annihilation will routinely cause two hits, wherein each 511 keV gamma ray will hit different crystals, and each is a separate initiating event. Lu-176 decay within a scintillator crystal in the detector, however, is typically a single initiating event. Even though Lu-176 decay creates a beta particle and a cascade of gamma rays, this decay often creates only a single hit as the beta particle and the cascade of gamma rays are normally absorbed within the scintillator crystal.
Further to the above, while an initiating event often causes only a single hit, a single initiating event may cause multiple hits. For example, as described in
During the assembly process, and as introduced above, random assemblies will occur. A random assembly occurs when an event is assembled from hits which originated from two or more initiating events.
One way to avoid significant contamination of data by random assemblies is to use a relatively low activity source. The number of random assemblies increases with the square of the activity. Lu-background is a good choice for scintillators in which it is present (such as LYSO, LSO, LGSO, etc.). The activity of Lu-background is low enough to prevent significant problems from random assemblies, yet it provides a high enough event rate so that enough data can be acquired in several seconds to a few minutes of acquisition time. Moreover, Lu-background is convenient because it is always present (i.e. no external source is required) and the half-life of Lu-176 is extremely long, making the Lu-background rate essentially constant over the life of a PET scanner.
In an embodiment, the region and/or sub-region made through geometric cuts in which assembly events are identified is referred to as the assembly region. The assembly region should be large enough (geometrically) to cover all of the defect-types that may be encountered. If there are no constraints on the type of defect that might be encountered, events can be assembled across the entire ring. If the source is a positron-emitter resulting in coincident back-to-back 511 keV gamma rays, geometric cuts should be made to the assembly region in order to eliminate a majority of the coincidences caused by separate 511 keV gamma rays so that hits from different 511 keV gamma rays are not assembled into a single event. Furthermore, limiting the assembly event region can reduce the contribution of random assemblies to noise and/or bias as there are fewer opportunities for random assemblies. Thus, one way to reduce the contribution of random assemblies to bias and noise is to limit the size of the assembly region that is used in the assembly process (e.g. the size of the assembly region should be only large enough to cover all desired defect-types). In other words, the assembly region only needs to be marginally larger than the largest deviation from the intended detector element arrangement error that needs to be detected. For instance, when detecting rotated modules, the assembly region only needs to be marginally larger than the diagonal length of one module As another example, when detecting swapped modules, the assembly region only needs to be marginally larger than the longest dimension of the module. In one exemplary embodiment, marginally larger can be the longest dimension or diagonal length of the detector element under inspection for arrangement errors rounded up to the nearest whole number of pixels (e.g. if the largest diagonal length of a module is 16.97 pixels, the assembly region has a radius of 17 pixels). Of course, it can be appreciated that marginally larger than the largest deviation can include other meanings, such increasing the longest dimension or diagonal length by a factor of 1-25%, or increasing the longest dimension or diagonal length by a fixed number of pixels,
The selection of the geometric assembly range can often be chosen based on knowledge of the manufacturing or service process. Detector layout errors often result from defects that occur over a known distance range. For example, two neighboring modules might be swapped by incorrectly connecting cables, or multiple modules in a detector unit might be swapped by incorrect cabling. In these cases, the maximum extent of a defect sets a scale of approximately the longest dimension of a module or detector unit, respectively. In another example, two neighboring detector units might be swapped by incorrectly connecting cables. Swapping detector unit cables across a longer distance would be relatively easy to catch by visual inspection. In this case, the maximum extent of a defect sets a scale of approximately the longest dimension of a detector unit. In a third example, a module might be rotated by 90 or 180 degrees. In this case, the maximum extent of a defect sets a scale of approximately the longest diagonal dimension of a module. In a fourth example, a detector unit might be rotated by 180 degrees. In this case, the maximum extent of a defect sets a scale of approximately the longest diagonal dimension of a detector unit.
To illustrate,
The bias from random assemblies can also be estimated and removed, thereby allowing the threshold level to be lowered. Recognizing that true and random assembly events contribute to the average distance map, the average distance map can be written as a weighted sum of two components, as follows:
where di is the average distance map, d_true, is the contribution from true assemblies, d_rand, is the contribution from random assemblies, the index i represents the pixel index in the map, T is the true assembly rate and R is the random assembly rate.
Furthermore, it can be written that:
R=αT2(Δt) (2)
where Δt is the assembly coincidence window width and α is a proportionality constant (i.e. R is proportional to the square of the trues rate, T, and the coincidence window width, Δt). With this substitution, Equation (1) becomes:
According to an embodiment, if the data are acquired as a single hits list (i.e. event assembly is done off-line in a post-processing step), then the data from a single acquisition can be assembled with multiple values of Δt, where Δt should be large enough so that all trues events are assembled. The value chosen for Δt depends on the calibration state of the system. If timing channel offsets and energy-walk calibrations have not yet been performed, larger values of Δt must be used to ensure that all trues assembly events are assembled. With an uncalibrated system, a Δt in the range of 3-10 ns is often reasonable, though the choice depends on the details of the system. On a pixel-by-pixel basis, [di(Δt) vs. Δt] can be fit to Equation (3) to determine d_truei, d_randi, and αT. Note that if the event assembly is done in real-time, the same approach can be used, but multiple data sets must be acquired.
According to an embodiment of the present disclosure, the above described approach will now be described. First, as shown in
In an embodiment, the general pattern of the random assemblies average distance map (d_randi) for each pixel i can also be pre-determined in order to avoid dependence on the experimental conditions and parameters (e.g. activity and Δt), using:
where d_randi is an average distance due to random assembly events for pixel i, and rmax is a maximum assembly radius (a parameter that depends on the chosen assembly process). The term in the denominator of Equation (4) is a normalization factor. C(r) is the circumference of the circle with radius r that encloses all the pixels/crystals whose number of random assembly events need to be tracked. In an infinitely large detector, as represented in
C(r)=(2π−Σi=18θi)r. (5)
Furthermore, when fixed assembly regions are used, such as dividing into quadrants, the following equation may be used:
rmax=max[rmax1rmax2rmax3rmax4]. (6)
An example of results from pre-calculating the random average map are shown in
For a selected set of experimental conditions (e.g. isotope, activity, etc.), it can be written that:
di=βd_truei+(1−β)d_randi (7)
where a constant of proportionality (β) must be determined. The following will describe two methods to determine β, but other methods to determine β may be possible. Both of the methods described herein determine a value of β for a system (or systems) which is known to be defect-free. This value of β can then be applied to all other systems.
One method for obtaining β is by selecting the value of β that minimizes variance, which will be referred to as Method A. For a selected set of experimental conditions (isotope, activity, etc.), it can written that:
where d_true_esti is an estimated true average distance for a specific value of the constant of proportionality, β, d_true_esti is the map that is desired for defect detection because it excludes bias from random assemblies. At the outset of Method A, an average distance map, or di (i is the pixel index), can be measured for a selected value of Δt. Then, based on a known-defect free system, β can be varied and the variance of d_true_esti can be measured. The value of β which results in the lowest value for the variance can then be selected.
In a second method for obtaining β, which will be referred to hereinafter as Method B, it can be written that:
where Ti is a true assembly rate and Ri is a random assembly rate for pixel i. The prompt assembly rate, Pi, is a total rate in a pixel, Pi=Ti+Ri. This means:
Since Pi can be easily measured, the random assembly rate for each pixel, Ri, must be estimated in order to estimate βi. Because Ri is proportional to ∫1r
Ri=γi∫1r
where γi is a proportionality constant. Next, it can be assumed that the majority of true assembly events involve hits which are in close proximity (for a defect free system). Therefore, a relatively large threshold radius, rthreshold, can be selected and known-defect-free data can be processed in order to only calculate Pi(r>rthreshold) (i.e. the prompt (total) rate for hits which have distances greater than rthreshold). This will be approximately equal to Ri(r>rthreshold) (i.e. the random assembly rate for hits which have distances greater than rthreshold):
Ri(r>rthreshold)≅Pi(r>rthreshold)=γi∫r
which can be re-arranged to arrive at:
The random events assembly rate for all r can then be estimated using:
where βi can be calculated from obtained Pi and Ri values. The average of βi can be calculated and used as β to calculate d_true_esti.
According to an embodiment,
Furthermore, if β is determined for one set of conditions (activity and Δt), a new value of β can be estimated for a different choice of activity and Δt. Assuming that β0 is determined for activity Activity0 and coincidence window Δt0, a new value of β1 for each pixel i can be calculated by substituting the following:
and re-calculating the average value of β to obtain
According to an exemplary embodiment of the present disclosure, the preceding methods can also be applied to geometric cuts centered on the maximum energy hit. Referring back to
can be used to calculate angles comprising C(r).
In another exemplary embodiment, bias can be removed by acquiring uncorrected distance maps (i.e. no bias correction applied) from one or more known-defect-free systems. If multiple known-defect-free systems are available, their respective uncorrected distance maps can be averaged to create an average uncorrected distance map. In either case, distance maps acquired by the new system (i.e. system-under-test) not yet known to be defect-free can be corrected by normalizing its distance maps using a distance map resulting from a known-defect-free case. That is, the distance map can be divided by the known-defect-free map on an element-by-element basis to arrive at a corrected or normalized distance map. In another exemplary aspect, the distance map from the new system can be corrected by subtracting the known-defect-free distance map on an element-by-element basis. Either method produces corrected distance maps with very little bias.
Another way to deal with bias and its effect on the threshold level is to have a threshold level map (i.e. a threshold level which varies with position). The way the map varies in position is determined by bias. The threshold level map could be determined empirically or by calculating the bias level as described previously. As an example of the empirical method, the threshold level map could be determined by averaging results from several defect-free scanners and then increasing the threshold level by a multiple of the local standard deviation to prevent false positives.
Because defects are equivalent to a change in a LUT, defects can be corrected by using a different LUT, according to an exemplary embodiment of the present disclosure. Furthermore, real data can be used to create data with any conceivable defect. Many different defective datasets can be created, which lends itself to machine learning applications and could enable the ability to identify defects and determine how to correct them. The training data could be generated by creating defective LUTs, which are used to relate each detector element to its physical location.
According to an exemplary embodiment of the present disclosure, and with reference now to the flow diagram of
First, radiation events data can be acquired in step 2605. This includes coincidence events between detector elements using the crystal's natural multi-stage radiation background or with an external radiation source. The captured radiation events data can include position information (e.g. location of detector element where the hit occurred), time of hit occurring, and amount of energy deposited for each hit in the PET detector.
At step 2610, the acquired radiation events data can be used to identify coincidence events using an appropriately chosen geometric cut. Similar logic to that described above can be applied in choosing a geometric cut in this embodiment. Additionally, it is optional to process the coincidence events with time or energy calibration and further filter events with additional time or energy cuts.
Next, a relative correlation between detector elements can be determined at step 2615. Such a correlation should be normalized to minimize impact from variable efficiency of the detector, strength of background, and exposure to an external energy source. One way to define the correlation is to calculate a fraction of coincidence events among total number of events detected by two detectors, such as:
where p(a, b) is a correlation between elements a and b, Ncoincidence(a, b) is a number of coincidence events shared between elements a and b, and Nsingles(a) and Nsingles(b) are a number of coincidence events detected by detector element a and b, respectively. The correlation between detector elements could be obtained at different levels, such as the crystal level, module level, or detector unit levels. Note that the correlation of combinations which are geometrically excluded is set to 0. Furthermore, it is optional to translate the correlation into other quantities to reduce uncertainty in positioning for better interpretation or to suppress statistical noise. One example is to convert the correlation value to an effective distance (DEff), where a strong correlation corresponds to a shorter DEff. The conversion could be done using a translation function (DEff=DEff(P)) or a LUT, for example.
Next, the correlation (or effective distance) data could be converted into a correlation (or effective distance) score at step 2620. As an example,
where the elements 1-10 were each paired with their closest neighboring elements.
Referring back to
When all the detector elements are positioned correctly, the correlations score should be the maximum value (correlation between elements is high). If an effective distance score is used, the effective distance should be the minimum value (distance between assembled events is low). A predefined threshold could be used against the overall score to judge whether the layout is correct or not. In the case no threshold can be applied, scores for all possible layout configurations can be calculated, and if the default configuration is not the extreme score (maximum for correlation score, minimum for effective distance) compared to the other configurations, a layout defect is likely to exist. Due to system symmetry, multiple configurations may all give extreme scores. In this case, the configuration which is most similar to the default configuration could be used as the correct one. Moreover, as was the case with previously-described embodiments, the correlation can be calculated at different levels (e.g. crystal level, module level, detector unit level).
Depending on manufacturing uniformity of a detector, some calibration of detectors may be needed. Detectors generally fall into two categories. The first category of detectors, which will be referred to as Category 1 detectors, are designed such that a signal from a scintillator crystal shared to multiple photosensors/electronics channels (i.e. scintillator pitch is not equal to photosensor pitch). The second category of detectors, which will be referred to as Category 2 detectors, minimize a signal shared from a scintillator crystal so that scintillator pitch is equal to photosensor pitch. Generally, Category 1 detectors require a position calibration to be performed before individual scintillator elements can be determined for hits. On the other hand, Category 2 detectors are able to identify the individual crystal of hits without any calibration. The methods described in this disclosure can work for Category 2 detectors, as well as Category 1 detectors that have been properly calibrated.
In view of the above, a full position calibration can be slow, and sometimes require manual checking and adjustment of segmentation results. However, for the purpose of this invention, a full position calibration of the Category 1 detector is not always required. To calculate distance maps or correlation metrics on a level lower than the module level, it is only required that spatial information within the module is available. Thus, a partial position calibration of Category 1 detectors could also be performed, which would allow the methods described in this disclosure to be implemented without requiring a full calibration process.
The following is an example of a method where a partial position calibration can be performed to achieve sufficient accuracy and produce distance maps or correlation metrics on a level lower than the module level. In this example, the module will be divided into nine regions of a 3×3 pattern. Generally, anything with more than 2×2 divisions will work, and the number of divisions in the X and Y directions does not need to be the same.
The first step is to start with a flood histogram (two dimensions). A flood histogram is typically made by flooding the detector with incident radiation, calculating locations (X,Y) for each detected event by Anger logic (which often contains significant spatial distortions), for example, and making a two-dimensional histogram of the locations (X, Y) of all the hits. Next, sum the histogram in the X-direction to collapse the flood histogram to one-dimension. Next, calculate the cumulative sum of the one-dimensional collapsed flood, then normalize the cumulative sum so that the final value of the cumulative sum is one (unity). Find the Y-values where the cumulative sum is closest to ⅓ and ⅔, which will be referred to as Y1 and Y2, respectively. Use these values of Y1 and Y2 as boundaries to define three horizontal regions, Region A, Region B and Region C. For each of these regions, from the flood histogram, sum in the Y-direction to collapse to one-dimension. For each region, calculate the cumulative sum of the one-dimensional collapsed flood, then normalize the cumulative sum so that the final value of the cumulative sum is one (unity). For each region, find the X-values where the cumulative sum is closest to ⅓ and ⅔. Call these values X1(R) and X2(R), respectively, where R represents the region label (A, B, C). Use these values of X1(R) and X2(R) as boundaries to define three regions within each of the original horizontal regions. These nine regions can be used as a sub-module region LUT, which is analogous to a crystal ID LUT, with an (X′,Y′) value assigned to each, or to generate X′ and Y′ LUTs. One of these types of LUTs (sub-module or combination of X′ and Y′) can then be used to assign an X′ and Y′ position to each hit (X,Y) for the purpose of calculating sub-module level distance maps or correlation metrics with Category 1 detectors.
Also note that PET systems generally require energy and timing offset calibration in order to achieve sufficient energy and timing resolution prior to clinical use. The techniques described in this disclosure enable a way to identify arrangement errors prior to calibration of the system. In one embodiment, a distance metric was used to aid in identifying arrangement errors. For multi-element detection events, distance metrics and time metrics can be related to each other based on the speed of light, since multi-element events require a gamma ray (either emitted or scattered at a first crystal) to travel the distance between the crystal elements involved in the multi-element event. It is important, however, to consider the effect of timing offset calibration. Timing offset calibration is required due to unavoidable manufacturing tolerances such as differences in cable lengths or timing response of different photosensors in the detectors, etc. Prior to calibration, timing offsets in a system can vary over a range of +/−1 ns or more, and the standard deviation of timing offsets is often in the range of several hundred picoseconds. Often, the arrangement errors that need to be detected are on the module level (e.g. swapped or rotated modules). Taking a typical lateral dimension of a module to be approximately 2 cm, and assuming that the gamma rays in multi-element events typically travel to neighboring modules, typical distances involved in the calculation will be on the order of 4 cm or less. With the speed of light being approximately 2.998×1010 cm/sec, the typical distances correspond to approximately 130 ps or less of gamma ray time-of-flight. Since this value is a fraction of the typical offset values measured prior to timing offset calibration, the timing differences that would be measured for module-level arrangement errors prior to timing offset calibration would be difficult to correlate with distances because of the large timing offset errors.
In the preceding description, specific details have been set forth, such as a particular method and system for detecting arrangement errors of PET detectors. It should be understood, however, that techniques herein may be practiced in other embodiments that depart from these specific details, and that such details are for purposes of explanation and not limitation. Embodiments disclosed herein have been described with reference to the accompanying drawings. Similarly, for purposes of explanation, specific numbers, materials, and configurations have been set forth in order to provide a thorough understanding. Nevertheless, embodiments may be practiced without such specific details. Components having substantially the same functional constructions are denoted by like reference characters, and thus any redundant descriptions may be omitted.
Various techniques have been described as multiple discrete operations to assist in understanding the various embodiments. The order of description should not be construed as to imply that these operations are necessarily order dependent. Indeed, these operations need not be performed in the order of presentation. Operations described may be performed in a different order than the described embodiment. Various additional operations may be performed and/or described operations may be omitted in additional embodiments.
Those skilled in the art will also understand that there can be many variations made to the operations of the techniques explained above while still achieving the same objectives of the invention. Such variations are intended to be covered by the scope of this disclosure. As such, the foregoing descriptions of embodiments of the invention are not intended to be limiting. Rather, any limitations to embodiments of the invention are presented in the following claims.
Embodiments of the present disclosure may also be as set forth in the following parentheticals.
Thus, the foregoing discussion discloses and describes merely exemplary embodiments of the present invention. As will be understood by those skilled in the art, the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Accordingly, the disclosure of the present invention is intended to be illustrative, but not limiting of the scope of the invention, as well as other claims. The disclosure, including any readily discernible variants of the teachings herein, defines, in part, the scope of the foregoing claim terminology such that no inventive subject matter is dedicated to the public.
Number | Name | Date | Kind |
---|---|---|---|
8471211 | Yamada | Jun 2013 | B2 |
9360570 | Rothfuss | Jun 2016 | B2 |
10527741 | Cho | Jan 2020 | B2 |
10603515 | Olcott | Mar 2020 | B2 |
10698125 | Wang | Jun 2020 | B2 |
10775520 | Cho | Sep 2020 | B2 |
10914851 | Wang | Feb 2021 | B2 |
20100327168 | Yamada | Dec 2010 | A1 |
20150301201 | Rothfuss | Oct 2015 | A1 |
20160299240 | Cho et al. | Oct 2016 | A1 |
20170276811 | Wang | Sep 2017 | A1 |
20190070437 | Olcott et al. | Mar 2019 | A1 |
20200072988 | Cho | Mar 2020 | A1 |
20200363543 | Wang | Nov 2020 | A1 |
20220252746 | Burr | Aug 2022 | A1 |
20230102139 | Lyu | Mar 2023 | A1 |
Number | Date | Country |
---|---|---|
107456235 | Dec 2017 | CN |
111685785 | Sep 2020 | CN |
WO-2021238929 | Dec 2021 | WO |
Entry |
---|
Wei. “Intrinsic Radiation in Lutetium Based PET Detector: Advantages and Disadvantages” arXiv: 1501.05372 (Year: 2015). |
Machine translation of CN 111685785 A (Year: 2020). |
Machine translation of WO 2021/238929 A1 (Year: 2021). |
Number | Date | Country | |
---|---|---|---|
20220252746 A1 | Aug 2022 | US |