Identifying forces on a tooth

Information

  • Patent Grant
  • 11426259
  • Patent Number
    11,426,259
  • Date Filed
    Tuesday, June 28, 2016
    7 years ago
  • Date Issued
    Tuesday, August 30, 2022
    a year ago
Abstract
The present disclosure includes computing device related, systems, and methods for identifying force placed on a tooth are described herein. One method includes receiving initial orthodontic data (IOD) including teeth data; creating a virtual set of teeth from the IOD; receiving dental appliance information including at least one of dental appliance material properties and characteristics; virtually placing a dental appliance, formed from the dental appliance information, onto the virtual set of teeth; and determining one or more forces applied to the teeth based on information from the IOD and dental appliance information.
Description
TECHNICAL FIELD

The present disclosure relates to systems and methods for virtually identifying forces placed on teeth.


BACKGROUND

Many dental treatments involve repositioning misaligned teeth and changing bite configurations for improved cosmetic appearance and dental function. Orthodontic repositioning can be accomplished, for example, by applying controlled forces to one or more teeth over a period of time.


An example of orthodontic repositioning that can occur through a dental process uses one or more positioning dental appliances, such as aligners, for realigning teeth. Placement of an appliance over the teeth can provide controlled forces in specific locations to gradually move the teeth into a new configuration. Repetition of this process with successive appliances in progressive configurations can move the teeth through a series of intermediate arrangements to a final desired arrangement.


Typically, in order to design each aligner, the progression of the teeth from an initial position to a final position is determined, via a computing device. This progression is then segmented into a plurality of segments and an aligner is formed that is based upon each of the positions of the teeth at those segments.


Currently, a treatment plan is designed by beginning with a current teeth configuration, proposing an end configuration, generating, via a computing device, a path for the teeth from the current configuration to the end configuration, and segmenting that path into multiple segments and forming the appliances based on the data from each of these segments.


Each appliance may then be sequentially placed on a patient's teeth with the theory that the dental appliance will act on the teeth to move each tooth in a particular direction toward its position of the next progressive segment. However, in some instances, the appliance does not move the teeth to the position of the next progressive segment for a number of reasons, as discussed below. Accordingly, in these instances, the treatment plan then has to be revised and new aligners created to remedy the different than anticipated positioning of one or more of the teeth.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A illustrates an initial virtual dental model according to one or more embodiments of the present disclosure.



FIG. 1B illustrates a target virtual dental model corresponding to the initial virtual dental model illustrated in FIG. 1A according to the present disclosure.



FIG. 2 illustrates an example of an initial virtual dental model, a dental appliance, and an example of a user interface according to one or more embodiments of the present disclosure.



FIG. 3 illustrates an example of virtual three-dimensional dental appliances with identified forces and an example of a user interface according to one or more embodiments of the present disclosure.



FIG. 4 illustrates an example virtual three-dimensional tooth model and an example of a user interface for identifying force placed on a tooth according to one or more embodiments of the present disclosure.



FIG. 5 illustrates an example virtual three-dimensional tooth model and an example of a user interface for identifying force placed on a tooth according to one or more embodiments of the present disclosure.



FIG. 6 illustrates a system for virtually identifying force placed on a tooth according to one or more embodiments of the present disclosure.



FIG. 7 is a flow chart illustrating a method for identifying force placed on a tooth according to one or more embodiments of the present disclosure.





DETAILED DESCRIPTION

Embodiments of the present disclosure include computing device related, system, and method embodiments for virtually testing force placed on a tooth are described herein. For example, one or more embodiments include a method of virtually identifying force placed on a tooth. Some such methods can include, for example, receiving initial orthodontic data (IOD) including teeth data, creating a virtual set of teeth from the IOD, receiving dental appliance information including at least one of dental appliance material properties and characteristics, virtually placing a dental appliance, formed from the dental appliance information, onto the virtual set of teeth, and determining one or more forces applied to the teeth based on information from the IOD and dental appliance information.


One or more embodiments can virtually place a dental appliance with cavity geometry of the first stage of the treatment plan over the IOD and identifying actual forces applied to the teeth contained in the IOD by the dental appliance. One or more embodiments can include determining desired forces to be applied by the dental appliance to move the teeth to the first stage teeth positions, and designing optimized dental appliance cavity geometry and/or position to reach the desired forces to move teeth to the next stage teeth positions based on the dental appliance material properties, characteristics, and shape of teeth.


Embodiments of the present disclosure can be utilized in the design of dental appliance products for use in the mouth of a patient, such as anchors and other attachments and potentially to aligner surfaces (e.g., dimples, ridges, thickness, shape, orientation, etc.), material properties, and their interaction with the teeth. Embodiments can allow a user to identify the forces present on a set of teeth on one jaw of the mouth or on both jaws (e.g., as tooth and/or appliance surfaces on opposing jaws interact with each other).


Various embodiments can be beneficial in determining how much force to apply to each tooth and the teeth as a whole and components of force from what one or more directions and/or types (e.g., linear, torsional, etc). This information can be, for example, used to determine the shape and/or positioning of the dental appliance or other item for the movement of teeth to get closest to the force and/or direction desired for moving the teeth.


For example, at present, a dental appliance (e.g., an attachment or aligner) having an already designed shape may be placed on a patient's tooth or teeth with the theory that the dental appliance will act on the tooth to move it in a particular direction. However, this theory is typically part of a treatment plan selected, based upon experience with the type of dental appliance, by a treatment professional and the actual result, based on the actual forces at work including those from other teeth and other dental appliances and/or other items being utilized for the movement of the teeth, may result in a different orientation than expected. This can, therefore, result in more, less, or different movement to achieve the desired result.


Accordingly, the forces acting on the teeth and their movements have not previously been considered in the analysis of the appliance configurations. Through use of the embodiments of the present disclosure, it may be possible to shape the appliances based on force which may, for example, reduce the number of treatments or movements and/or reduce the amount of force used, which may result in less treatment time and/or reduced patient discomfort, among other benefits.


Embodiments of the present disclosure can allow the user to virtually test the shape and/or placement of an attachment and/or other appliance structure with the perspective of its effect on multiple teeth (e.g., the whole set of teeth on the jaw). Embodiments can also make adjustments to the shape and/or placement and/or retry the movement until the best or most satisfactory result is achieved.


In some embodiments, initial orthodontic data (IOD), for example, from an actual patient's mouth, typodont data, and/or scanned appliance data can be obtained and the forces, desired during a portion of a treatment plan to move a tooth from one position to another, can be determined. The use of actual case data (e.g., from a particular current patient's mouth or a prior patient's mouth) can be used, for example, where a dental appliance may be desired to perform a particular movement with respect to a particular tooth positioning due to a particular malocclusion.


Treatment plan case data can be analyzed to determine the movement of a particular tooth from one position to a subsequent position based upon the movements of the other teeth and/or other structures in the patient's mouth. This information can then be utilized, for example, in an embodiment's analysis of forces with respect to one or more proposed attachments and/or other aligner related movement analysis.


Embodiments of the present disclosure can provide a user interface where a virtual model of the teeth is presented in three dimensions. Once the forces and moments of the forces are determined (e.g., through use of IOD and/or dental appliance data), they can be presented on the user interface (e.g., they can be presented as vector arrows showing direction and/or magnitude of desired force) among other information about the force that may be helpful to the user.


These forces can, for example, include forces from any dental appliances on the tooth, forces from neighboring teeth, gingival forces applied and/or modified for effects from other teeth on the set and their forces and/or movements, forces from bone structures and/or other forces that may affect the tooth. Some embodiments can utilize appliance wall thickness and/or feature data (e.g., data about features such as dimples, reinforcement structures). This information can, for example, be measured based on an actual appliance, measurements taken from a virtual model, and/or estimated based upon thickness sampling of measurements taken from previous appliances.


In some instances, it can be this combination of forces (some forces can be additive, neutral, or subtractive to each other) that may be difficult to ascertain without use of embodiments of the present disclosure. Accordingly, embodiments of the present disclosure can more accurately estimate the forces that are to be used. In some instances, such analysis could move a tooth more directly to a targeted location and avoid additional movements that might be need if the analysis was not done. In some embodiments, a greater or lesser force can be determined to be used to begin tooth movement and therefore, the treatment can be more effective.


In some embodiments, the force can be quantified with respect to a single point, such as the center of mass or the center of rotation, associated with a tooth or can be associated with one or more contact surfaces of a tooth (e.g., contact with other teeth or contact with the appliance).


Embodiments of the present disclosure can include many tools for the creation and alteration of the dental appliances or other items related to the movement of the tooth. These items can include one or more libraries of tooth shapes and treatment plan data (e.g., orthodontic data such as typodonts, actual patient tooth data, and/or treatment plan data), dental appliance shapes, data regarding mounting materials that could be used, and/or data regarding other characteristics of a dental appliance or tooth or mouth structure that may be beneficial in determining a force.


Some embodiments also include editing tools to change the shape of the dental appliances or other items related to the movement of the tooth. For example, suitable tools could include those typically provided with respect to drafting and/or computer aided design software applications.


In some embodiments, the desired forces and the actual forces can be illustrated on the virtual model so that the user can see the differences between the actual and desired forces (e.g., force and/or magnitude vectors for both the desired and actual forces). This can be helpful, for example, by allowing the user to see the differences and adjust the shape or position of the dental appliance or other item related to the movement of the tooth.


The actual force can then be recalculated and then illustrated to show the revised force of the revised shape and/or position, in some embodiments. The resulting effect can be shown on the other teeth of the set in some embodiments, which may help the user identify any incidental issues with a proposed treatment plan or dental appliance position and/or shape.


In some embodiments, multiple calculated positions and/or shapes can be illustrated (e.g., the forces generated from a first position and a second position can be illustrated together and, in some instances, with the desired forces). This can be beneficial, for example, to identify how the change from a first to a second position affected the forces. It can also be beneficial to identify if the change from a first to a second position is adjusting the forces created closer to those of the desired forces, among other benefits.


Embodiments can, for example, utilize Discrete Differential Geometry for its calculations versus other systems using Finite Element Analysis. The can be beneficial, for example because, such embodiments can do calculations much quicker and/or with less computing time and/or resources, in many instances.


Various embodiments, can be used to determine what the resulting configuration of teeth would be based upon the appliance proposed in the treatment plan. This can be beneficial, for example, to determine whether the appliance proposed would move the tooth as desired, if another type of appliance should be used, or if the appliance should be redesigned to provide the desired movement of the tooth.


Some embodiments can identify if the appliance will stretch and where such stretching will occur. This can be beneficial, for example, to identify points in which the appliance should be reinforced to reduce or eliminate the stretching.


One proposed method includes: receive initial orthodontic data (IOD) of teeth of a patient, identify a virtual target dental model of the teeth based on the IOD representing a treatment plan, identify one or more virtually created dental appliances utilized in the treatment plan, compute one or more desired force parameters of a dental appliance to achieve a final position of a particular segment of the treatment plan, and estimate actual forces generated by the virtually created dental appliance as applied to one or more teeth and verify the virtually created dental appliance is applying a desired force parameter to the one or more teeth.


Another method includes the following elements: receiving initial orthodontic data (IOD) of teeth, receiving desired tooth positions of a treatment plan for the teeth contained in the IOD, computing a desired force and a desired torque to be applied to the teeth to reach the desired tooth positions, and designing an optimized dental appliance shape and position to move teeth to the desired tooth positions.


Embodiments of the present disclosure can also be beneficial for reasons including, utilizing real world force information, tooth data, and/or other structural data to calculate the position for placement and/or potential shape of an dental appliance or other appliance feature and/or general shaping of an appliance without actually having to test all of these iterations in an actual patient or group of patients.


In the following section of the detailed description of the present disclosure, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration how a number of embodiments of the disclosure may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice a number of embodiments of this disclosure, and it is to be understood that other embodiments may be utilized and that process, electrical, or mechanical changes may be made without departing from the scope of the present disclosure.


The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits. For example, 208 may reference element “8” in FIG. 2, and a similar element may be referenced as 408 in FIG. 4.


As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. In addition, as will be appreciated, the proportion and the relative scale of the elements provided in the figures are intended to illustrate the embodiments of the present disclosure, and should not be taken in a limiting sense. As used herein, “a number of” something can refer to one or more such things.


Although the overarching term “orthodontics” is used herein, the present disclosure may relate to treatments of an orthognathic nature. For example, in cases including treatment of a patient's underlying skeletal structure, teeth may be rearranged by surgically repositioning underlying bones that hold the teeth in order to achieve a desired final bite arrangement. In both orthodontic and orthognathic treatment approaches, alignment of the teeth may be evaluated pre-, mid-, and/or post-treatment.


Treatment professionals typically select a treatment plan for a patient's teeth based upon experience with certain types of physical features and/or dental appliances to be used. An assumption is often made that the dental appliance will move the teeth or a certain tooth in a particular direction based on the shape of the dental appliance.


However, an actual result based on the actual forces at work may result in a different orientation than expected, which may be an undesired result. With the use of computing device executable instructions, a treatment professional can establish a custom treatment target specific to each tooth or a set of teeth for each individual patient. With this treatment target in mind, a force applied to a tooth by a dental appliance can be virtually identified and tested.


Virtual dental models from a scan of a patient's dentition can be provided with computer-aided design and/or manufacturing systems, including tooth-treatment systems. An initial orthodontic data (IOD) representing an initial tooth arrangement may be obtained in a variety of ways.


For example, the patient's teeth may be imaged to obtain digital data using direct and/or indirect structured light, X-rays, three-dimensional X-rays, lasers, destructive scanning, computer-aided tomographic images or data, magnetic resonance images, intra-oral scanning technology, photographic reconstruction, and/or other imaging techniques. The IOD can include an entire mouth tooth arrangement, some, but not all teeth in the mouth, and/or it can include a single tooth.


A positive model and/or negative impression of the patient's teeth or a tooth may be scanned using an X-ray, laser scanner, destructive scanner, structured light, and/or other range acquisition system to produce the IOD. The data produced by the range acquisition system may be converted to other formats to be compatible with the software which is used for manipulating images within the data, as described herein.


Referring now to FIG. 1A, there is illustrated an initial virtual dental model 100 according to one or more embodiments of the present disclosure. As described herein, the initial virtual dental model 100 can be obtained from a first scan of a patient dentition prior to treatment or at an intermediate state of treatment (e.g., before treatment has been completed) or the final scan of a certain treatment phase. One or more embodiments of the present disclosure include receiving a virtual IOD and a desired position of a tooth contained in the virtual IOD. The initial virtual dental model (e.g., virtual IOD) can also include a model of an individual tooth (e.g., tooth 102-1) that is part of a full dental model, such as full virtual dental model 100.



FIG. 1B illustrates a target virtual dental model 104. The target virtual dental model 104 can be created by modifying the initial virtual dental model 100 according to one or more treatment goals of a treatment plan. The one or more treatment goals can be case-specific (e.g., specific to the particular patient on which the initial virtual dental model 100 was based). The target virtual dental model 104 can also include a target model of an individual tooth (e.g., tooth 102-2) that is part of a full dental model similar to full target dental model 104. In some embodiments, the virtual IOD 100 and the target virtual dental model 104 can be displayed via a user interface in three dimensions.


Treatment plans are designed by beginning with a current teeth configuration (e.g., the virtual IOD 100), determining the target virtual dental model 104, generating a path for the teeth from the virtual IOD to the target configuration, and segmenting that path into multiple segments to form the appliances. Embodiments of the present disclosure can virtually identify and test the force applied to teeth by a designed appliance or physical feature can be used to determine what the actual resulting configuration of teeth would be based upon the aligner proposed in the treatment plan versus the intended configuration.


In some embodiments, these forces can include forces from any dental appliances on the tooth, forces from neighboring teeth, gingival forces applied and modified based on effects from other teeth on the set and their forces and/or movements, forces from bone structures and/or other forces that may affect the tooth. In some embodiments, the appliance wall thickness and feature data (e.g., dimples, reinforcement structures, shape, orientation with respect to one or more teeth, etc) can be used to determine the actual resulting configuration of teeth versus the intended configuration. The force information can be measured based on an actual appliance and/or estimated based upon thickness sampling of measurements taken from other appliances that have been previously measured.


Virtually identifying and/or testing forces can be utilized in the optimization for products for use in the mouth of a patient, such as aligners, anchors, attachments, and other dental appliances, and potentially to appliance surfaces (e.g., dimples, ridges, thickness, shape, orientation, etc.), appliance material properties, and their interaction with the teeth. Virtually identifying and testing one or more applied forces allows a user to identify the forces present on a set of teeth from a dental appliance and to optimize the dental appliance shape and/or position such that desired forces are acting on the teeth to move teeth along a particular segment of the treatment plan.


Virtually testing an applied force to a tooth can also be beneficial in determining how much force to apply to the tooth and from what one or more directions. This information can be used to determine the shape and/or positioning of the dental appliance to get closest to the necessary force and/or direction desired for moving the tooth.



FIG. 2 illustrates an example three-dimensional model of teeth (e.g., the IOD 200), an appliance 204, and an example of a user interface 208 for identifying force placed on the teeth 200 according to one or more embodiments of the present disclosure. The model of teeth can be the IOD 200 or can be a position of the teeth in a particular tooth path segment of the treatment plan (e.g., position subsequent to the starting position of the treatment plan). For example, each tooth path segment of the treatment plan can have corresponding dental appliances or appliance configured to move the teeth from a subsequent position of the tooth path segment to another position closer to a final position of the treatment plan.


In one or more embodiments, a user can virtually place the dental appliance 204 with, for example, a cavity geometry of the first stage of the treatment plan over the IOD 200 and identify actual forces applied to the teeth contained in the IOD 200 from the dental appliance 204 based on the dental appliance material properties, characteristics, and/or shape of the teeth.


For example, the elastic deformation of the dental appliance based on the appliance material properties, characteristics, and shape of teeth can determine an amount of stress on the appliance, a force and/or torque applied to each tooth, and/or individual contacts of the aligner on teeth and their relative strength. Knowing the forces acting on the dental appliance and on the teeth allows a user to more accurately create the dental appliance characteristics to most efficiently move the teeth from an initial position to a final position of the treatment plan corresponding to a dental appliance.



FIG. 3 illustrates examples of three-dimensional dental appliances and an example of a user interface 308 for identifying force on the dental appliance and applied to the virtual set of teeth (e.g., the IOD 200 in FIG. 2) according to one or more embodiments of the present disclosure. In one or more embodiments, a user can virtually identify force placed on the dental appliance and to the teeth when the dental appliance is placed over the IOD.


As seen in FIG. 3, there are three three-dimensional dental appliances displayed on the user interface 308. The first dental appliance 310 illustrates an amount of internal stress acting on the dental appliance when placed on the IOD. The amount of stress is indicated as a light number of dots to a heavier number of dots scale. For example, areas of the dental appliance 310 that have a low amount of stress are displayed as a light number of dots, whereas areas of the dental appliance 310 having higher amounts of stress are displayed as heavier number of dots.


The second dental appliance 312 in the user interface 308 illustrates a force and torque applied to each tooth. Vectors 314 can represent the force applied to a tooth by the dental appliance. Additionally, the vectors 316 can represent the torque applied to the teeth from the dental appliances. The vectors can represent the force, the torque, and/or the magnitude of each.


The third dental appliance 318 in the user interface 308 illustrates individual contacts of the dental appliance on the teeth and the relative strength of the contact. For example, arrows 320 can illustrate the direction and the magnitude of the local force where the dental appliance contacts the teeth.


By identifying the actual forces acting on the dental appliance and on the teeth, the dental appliance and features of the dental appliance may be editable by a user such that the actual forces are sufficiently similar to desired forces as discussed further herein.


For one or more embodiments, once the actual forces of the dental appliance on the tooth are identified, one or more desired forces to be applied by the dental appliance to move the teeth to the first stage teeth positions are determined. FIG. 4 illustrates an example three-dimensional tooth model and an example of a user interface 408 for determining desired force and torque placed on a tooth 422 according to one or more embodiments of the present disclosure.


In one or more embodiments, a user can virtually test the shape and/or placement of a dental appliance or other appliance structure (e.g., physical feature 421-1) and make adjustments to the shape or placement and retry the movement until the best or most satisfactory result is achieved.


The model of tooth 422 includes arrows 426-1 and 426-2 representing a desired force and torque components for movement of tooth 422. For example, arrows 426-1 and 426-2 can represent an ideal force and torque components for movement.


The model of tooth 422 also includes tooth surface feature 424-1 (e.g., dental appliance, dimple, etc.) and an arrow 424-2 that can represent a desired feature force direction and/or magnitude, given a set of physical and/or appliance characteristics. A feature or features (e.g., feature 424-1) can apply a force and/or torque to the tooth 422, which can be represented by arrow 424-2.


A possible location 428 where a feature 424-1 can be placed on tooth 422 can also be available on the tooth model and user interface 408. The tooth, as well as features of the dental appliance may be editable by a user as further discussed herein.


For one or more embodiments, once the desired forces for moving one or more teeth are identified, an aligner cavity geometry and/or position to reach the desired forces can be optimized to move the teeth to the desired teeth positions based on the dental appliance material properties, characteristics, and shape of teeth. Designing optimized aligner cavity geometry and/or position can include virtually testing and adjusting the dental appliance iteratively to reach the desired forces for moving the teeth to the first stage teeth location.



FIG. 5 illustrates an example three-dimensional tooth model and an example of a user interface 508 for testing force placed on a tooth 522 according to one or more embodiments of the present disclosure. In some embodiments, a user can take data from an actual patient's mouth or a typodont and determine the forces desired during a portion of a treatment plan to move a tooth from one position to another. A typodont can refer to a virtual dental model including a number of ideal tooth shapes (e.g., from a reference library of idealized tooth shapes).


The use of actual case data may be useful, for example, where a dental appliance may be desired to perform a particular movement with respect to a particular tooth positioning due to a particular malocclusion. In some embodiments, a user can enter physical parameters of a dental appliance (e.g., appliance, aligner, dimple, etc.) to be created or altered into a location and orientation window 530.


For example, a user can enter such parameters as a length 532, a width 534, a prominence 536, a depth 538 of inside tooth 522, an activation angle 540, and an activator offset on inactive surfaces 542. In some embodiments, the system can be configured to allow a user to other settings, such as an iso-surface gradient width 544 and a voxel size 546. In various embodiments, a user can choose to identify tooth 522 by a number or some other identifier and enter or choose the identifier in a drop-down box such as box 548. A user can also choose to enter parameters for a center of the dental appliance and an active surface (e.g., parameters 550 and 552).


In some embodiments, a user interface (e.g., user interface 508) is provided where a virtual model of the tooth is presented in three dimensions. Once the forces and moments of the forces on the tooth are determined, they can be presented on the user interface (e.g., they can be presented as vector arrows showing direction and/or magnitude of desired force or stress) among other information about the force that may be helpful to the user.


Vector arrows 526-1 and 526-2 can represent desired (e.g., ideal) force and/or torque for movement of tooth 522, and vector arrow 554 can represent a force and torque applied to tooth 522 by a feature 524-1. Vector arrow 524-2 can represent a desired (e.g., optimal) feature force direction and magnitude, given a set of features (e.g., dental appliance, dimple, etc).


Treatment plan case data can be analyzed to determine the movement of a particular tooth from a first position e.g., initial position or intermediate position that is prior to the subsequent position) to a subsequent (e.g., desired) position. This information can then be utilized in an analysis of forces with respect to proposed dental appliances or other aligner related movement analysis.


Tools for the creation and/or alteration of the dental appliances or other items related to the movement of the tooth can be utilized to virtually test force placed on a tooth in some embodiments. These items can include one or more libraries of tooth shapes and treatment plan data (e.g., typodonts, actual patient tooth data, and/or treatment plan data), dental appliance shapes, data regarding mounting materials that could be used, and/or data regarding other characteristics of an aligner, tooth, and/or mouth structure.


The items can also include editing tools to change the shape of the dental appliances or other items related to the movement of the tooth. For example, suitable tools could include those typically provided with respect to drafting and/or computer aided design software applications.


As discussed, in some embodiments, the desired forces and the actual forces can be illustrated on the virtual model so that the user can see the differences between the actual and desired forces (e.g., force and/or magnitude vectors for both the desired and actual forces). This can be helpful, for example, by allowing the user to see the differences and adjust the shape or position of the dental appliance or other item related to the movement of the tooth. The actual force can then be recalculated and/or illustrated to show the revised force of the revised shape and/or position.


Also as discussed above, in some embodiments, multiple calculated positions and/or shapes can be illustrated (e.g., the forces generated from a first position and a second position can be illustrated together and, in some instances, with the desired forces). This can be beneficial, for example, to identify how the change from a first to a second position affected the forces. It can also be beneficial to identify if the change from a first to a second position is adjusting the forces created closer to those of the desired forces.


It should be noted that one force that may be quantified for movement of the tooth is for total movement of the tooth from a first position to a second position. However, forces from the gingiva and bone interactions for some force calculations can also be incorporated and, therefore, in some embodiments, forces for different stages of movement can be determined, such as initial force needed for bone breakdown versus force needed for movement once the bone restructuring has occurred. For example, in some embodiments, the movement from a first position to a second position may be determined by calculating the force sufficient to enable the tooth to begin to move (e.g., the first and second positions could be relatively close or adjacent and therefore the force to create that movement would be the force needed to begin moving the tooth).


Modeling techniques involving gingival or bone structures can, for example, be accomplished by modeling the root structure and/or the structure of the jaw bone and/or gingiva. This can, for instance, be accomplished using patient data and/or typodont data.


In some embodiments, a center of mass can be calculated for the tooth, and the forces (e.g., desired forces) can be associated with the center of mass. In some embodiments, a center of rotation can be calculated, and the forces can be associated with the center of rotation.


In some embodiments, a possible placement area 528 in which an attachment can be positioned on a tooth can be identified. This information can be obtained through experiential data programmed into the software and/or entered by the user or multiple users. Additionally, this can be calculated based upon the forces that are to be generated.


For example, in some embodiments, the forces generated can be determined for an attachment that has been selected by the user for placement on the tooth and a possible placement area 528 can be identified for the placement of the attachment on the tooth. The possible placement area 528 can, for example, be based upon where the placement of the attachment would result in a certain result that would be within a threshold proximity to the desired result. In some embodiments, as the shape and/or orientation of the dental appliance is changed, the possible placement area can be recalculated.


The possible placement area 528 could, for instance, be based on areas where attachment could actually be achieved (e.g., portions of the tooth where an attachment would be sufficiently adhered to the tooth so that it does not come detached or obstructed by a structure such as a tooth surface not being shaped for attachment thereto or too far below the gingiva). This calculation could be determined through experiential data or based upon one or more characteristics of the tooth, and/or materials to be used (e.g., adhesion characteristics of the tooth surface, adhesion characteristics of the adhesion material, adhesion characteristics of the dental appliance material, shape of the adhesion surface of the attachment, and/or shape of the surface of the tooth, etc).


For example, the possible placement area 528 may not include the edge areas, overly curved surfaces, and/or contoured surfaces of the tooth because adhesion to those surfaces may be difficult, in some situations. It may not be reasonable to use some areas of the tooth, as certain areas would not properly associate or connect with a surface of an appliance, and as such, in some embodiments, association information and/or surface information can be used in determining possible placement areas.


For example, improper association can include, for instance, an appliance position that is calculated to be undesirably close to or in contact with a neighboring tooth, an appliance position that negatively impacts a neighboring tooth and/or area surrounding the possible placement area, a position that would not provide proper fit between the attachment and another appliance such as an aligner, and/or negatively impacting the area around an aligner and/or the appliance, among others. Improper connection with a surface of an appliance can include, for instance, can include not having a tooth surface that would provide a secure bonding surface for attachment of an appliance thereon, among others.


In some embodiments, the possible placement area 528 may by “dynamic” in that it can change as certain criteria (e.g., the shape and/or type of appliance, bonding material, material of the appliance, etc.) changes. For example, an attachment of a particular shape may have more preferable results when placed on a first area of a tooth than a second attachment having a second shape, perhaps, with a different surface shape on the surface to be bonded to the surface of the tooth and therefore, the possible placement area can be changed so that the user interface can indicate the changes to a user.


As discussed herein, in one or more embodiments, a user can virtually place a dental appliance such as an appliance over the IOD to identify forces acting on the appliance. For example, identifying forces acting on the appliance can determine if the appliance will relax and where such relaxation will occur. This can be beneficial, for example, to identify points in which the appliance should be reinforced to reduce or eliminate the relaxation.



FIG. 6 illustrates a system for virtually identifying force placed on a tooth according to one or more embodiments of the present disclosure. In the system illustrated in FIG. 6, the system includes a computing device 656 having a number of components coupled thereto. The computing device 656 includes a processor 658 and memory 660. The memory 660 can include various types of information including data 662 and executable instructions 664 discussed herein.


Memory and/or the processor may be located on the computing device 656 or off the device in some embodiments. As such, as illustrated in the embodiment of FIG. 6, a system can include a network interface 666. Such an interface can allow for processing on another networked computing device or such devices can be used to obtain information about the patient or executable instructions for use with various embodiments provided herein.


As illustrated in the embodiment of FIG. 6, a system can include one or more input and/or output interfaces 668. Such interfaces can be used to connect the computing device with one or more input or output devices.


For example, in the embodiment illustrated in FIG. 6, the system can include connectivity to a scanning device 670, a camera dock 672, an input device 674 (e.g., a keyboard, mouse, etc.), a display device 676 (e.g., a monitor), a printer 678, and one or more other input devices. The input/output interface 668 can receive data, storable in the data storage device (e.g., memory 660), representing a digital dental model of a patient's dentition.


In some embodiments, the scanning device 670 can be configured to scan one or more physical molds of a patient's dentition. In one or more embodiments, the scanning device 670 can be configured to scan the patient's dentition directly. The scanning device 670 can be configured to input data to the application modules 680.


The camera dock 672 can receive an input from an imaging device (e.g., a two-dimensional imaging device) such as a digital camera or a printed photograph scanner. The input from the imaging device can be stored in the data storage device (e.g., memory 660).


The processor 658 can be configured to provide a visual indication of a virtual dental model on the display 676 (e.g., on a GUI running on the processor 658 and visible on the display 676). The GUI can be configured to allow a treatment professional or other user to input treatment goals, to create a target virtual dental model 602, and/or enter desired or actual dental appliance parameters. Input received via the GUI can be sent to the processor 658 as data and/or can be stored in memory 660.


Such connectivity can allow for the input and/or output of data and/or instructions among other types of information. Although some embodiments may be distributed among various computing devices within one or more networks, such systems as illustrated in FIG. 6 can be beneficial in allowing for the capture, calculation, and/or analysis of information discussed herein.


The processor 658, in association with the data storage device (e.g., memory 660), can be associated with data and/or application modules 680. The processor 658, in association with the memory 660, can store and/or utilize data and/or execute instructions to provide a number of application modules for virtually testing force placed on a tooth.


Such data can include the initial virtual dental model 600 and the target virtual dental model 602. Such application modules can include a creation module 682, a verification module 684, an identification module 686, and/or a display module 688.


The computation module 684 can be configured to compute a desired position, a desired orientation, and a desired relative magnitude of point contact force of a dental appliance to achieve the target virtual dental model 602. Additionally, the computation module can determine a desired force that is present on the dental appliance based on the dental appliance material properties, characteristics, and shape of teeth.


The creation module 682 can be configured to virtually create a dental appliance based on a treatment plan. For example, the creation module 682 can create a plurality of dental appliances, such as appliances, that are configured to move teeth from the initial virtual dental model 600 to the target virtual dental model 602, where each appliance is configured to move the teeth a portion of the path from the initial dental model 600 to the target virtual dental model 602. In some embodiments, a single dental appliance can be used to move the teeth to the target virtual dental model 602.


The identification module 686 can be configured to identify actual forces present on the created dental appliance and on the teeth and verify the dental appliance is applying the desired force parameters to the teeth contained in the initial virtual dental model. For example, the identification module 686 can test the virtually created dental appliance and verify it has the desired position, orientation, relative magnitude of point contact force, a desired amount of stress, and desired individual contacts of the dental appliance.


The display module 688 can be configured to display the virtually created dental appliance and the point contact force. The display module 688 can be configured to display the information on display device 676.



FIG. 7 is a flow chart illustrating a method for identifying force placed on teeth according to one or more embodiments of the present disclosure. At 790, initial virtual orthodontic data (IOD) of teeth is received.


The IOD may be received in a variety of ways and may contain a variety of information. For example, the IOD can include a gum structure and a mouth bone structure, along with an initial teeth or tooth model.


The patient's teeth may be imaged to obtain digital data using direct and/or indirect structured light, X-rays, three-dimensional X-rays, lasers, destructive scanning, computer-aided tomographic images and/or data, magnetic resonance images, intra-oral scanning technology, photographic reconstruction, and/or other imaging techniques. The IOD can include any portion of the mouth, from an entire mouth tooth arrangement to a single tooth.


A positive model and/or negative impression of the patient's teeth or a tooth may be scanned using an X-ray, laser scanner, destructive scanner, structured light, and/or other scanning system to produce data for the IOD. In some embodiments, the data produced by the scanning system may be converted to other formats to be compatible with the software which is used for manipulating images within the data.


A desired tooth position of a treatment plan for the teeth contained in the virtual IOD is received at 792. The desired position may be the choice of a treatment professional and/or the patient. The desired position can also be a position that has been used for previous patients with similar teeth positioning.


At 794, a desired force and/or torque to be applied to the teeth in order to reach the desired tooth positions is computed. The force and/or torque can be applied using a dental appliance (e.g., appliance, dimple, etc.). Using this desired force and/or torque, a dental appliance can be virtually created using a number of aforementioned creation tools include editing tools to change the shape of the dental appliances or other items related to the movement of the tooth. The dental appliance can be optimally adjusted at 796 until the desired force and torque for moving the tooth from an initial position to the desired position is reached.


In some embodiments, an actual force generated by a dental appliance chosen by a patient, treatment professional, and/or other user can be determined. Based on this actual force, an area for the placement of the dental appliance on the tooth can be chosen.


An area for the placement of the dental appliance on the tooth can also be determined without the actual force determination. The desired force and torque to be applied to the tooth can be compared to the determined actual force, and the results can be presented to a user via a user interface.


This can be helpful, for example, by allowing the user to see differences and adjust the shape or position of the dental appliance or other item related to the movement of the tooth. The actual force can be recalculated and/or illustrated to show a revised force of the revised shape and/or position.


For example, the desired position, desired orientation, and/or desired relative magnitude of point contact force can be recomputed with a new constraint if the dental appliance does reach the desired outcome, treatment goal, or model. The dental appliance can also be recreated with a different shape if desired outcomes are not met.


At 798, aligner structural elements are designed including optimized components given material properties to deliver a desired force. Once the forces and/or moments of the forces on the tooth are determined, they can be presented on the user interface (e.g., they can be presented as vector arrows showing direction and/or magnitude of desired force) among other information about the force that may be helpful to the user.


Virtually identifying force placed on a tooth and the dental appliance can be beneficial for many reasons, including the utilization of real world force information, tooth data, and/or other structural data to calculate the position for placement and/or potential shape of a dental appliance or other appliance feature without actually having to test all of these iterations in an actual patient or group of patients. The results can include more accurate movement of teeth, thereby reducing the time of treatment and increasing patient satisfaction, among others.


These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice one or more embodiments of this disclosure. It is to be understood that other embodiments may be utilized and that process, electrical, and/or structural changes may be made without departing from the scope of the present disclosure.


As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, combined, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. The proportion and the relative scale of the elements provided in the figures are intended to illustrate the embodiments of the present disclosure, and should not be taken in a limiting sense.


As used herein, “a” or “a number of” something can refer to one or more such things. For example, “a number of computing devices” can refer to one or more computing devices.


Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that any arrangement calculated to achieve the same techniques can be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments of the disclosure.


It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description.


The scope of the various embodiments of the disclosure includes any other applications in which the above structures and methods are used. Therefore, the scope of various embodiments of the disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.


In the foregoing Detailed Description, various features are grouped together in example embodiments illustrated in the figures for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim.


Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A computing device implemented method of virtually identifying and testing force applied to teeth, comprising: determining, via the computing device, a target virtual dental model for an initial virtual dental model that is based on initial orthodontic data (IOD) of physical teeth;generating, via the computing device, a treatment plan including a segmented path for virtual teeth from the initial virtual dental model to the target virtual dental model, each segment having a corresponding virtual dental appliance to move the virtual teeth to a subsequent segment;displaying, on a graphical user interface, a representation of a force applied to the virtual teeth by the corresponding virtual dental appliance of a particular segment of the treatment plan and a virtual tooth surface feature on one of the virtual teeth, wherein the displayed representation includes one or more of a line, an arrow, and a vector associated with one or more characteristics of the force applied to the virtual teeth;determining, via the computing device, a resulting configuration of the virtual teeth based on the force applied to the virtual teeth;receiving, via the computing device, an adjustment to a shape or placement of the virtual tooth surface feature to improve the resulting configuration;displaying, on the graphical user interface, a representation of a revised force applied to the virtual teeth by the corresponding virtual dental appliance and the virtual tooth surface feature after the adjustment;determining, via the computing device, a resulting configuration of the virtual teeth based on the revised force applied to the virtual teeth; andoutputting, via an output interface, an identification of a placement of an actual feature, corresponding to the placement of the virtual tooth surface feature, on an actual tooth, corresponding to the one of the virtual teeth.
  • 2. The method of claim 1, further including displaying a possible location where the virtual tooth surface feature can be placed on the one of the virtual teeth prior to receiving the adjustment.
  • 3. The method of claim 1, further including presenting an editing tool for the corresponding virtual dental appliance in response to the determined resulting configuration of the virtual teeth being different than a configuration of the virtual teeth in the particular segment of the treatment plan.
  • 4. The method of claim 1, further including illustrating the force applied to the virtual teeth by the corresponding virtual dental appliance on the initial virtual dental model and simultaneously illustrating a desired force on the initial virtual dental model.
  • 5. The method of claim 1, further comprising displaying, on the graphical user interface, a representation of a force from neighboring virtual teeth.
  • 6. The method of claim 1, further comprising displaying, on the graphical user interface, a representation of gingival force.
  • 7. The method of claim 1, further comprising displaying, on the graphical user interface, a representation of force from virtual bone structures.
  • 8. The method of claim 1, further comprising quantifying the force with respect to a single point of a virtual tooth.
  • 9. The method of claim 1, further including identifying where the corresponding virtual dental appliance will stretch based on the force applied to the virtual teeth.
  • 10. The method of claim 1, wherein the one or more characteristics includes one or more of a direction, a magnitude, a torque and a spatial relationship associated with the force with respect to the virtual teeth.
  • 11. The method of claim 1, further comprising receiving, from a user, one or more parameters associated with the force and the revised force applied to the virtual teeth.
  • 12. The method of claim 11, wherein the one or more parameters includes one or more of: a length of a tooth, a width of a tooth, a prominence of a tooth, a depth of a tooth, an activation angle, an activator offset on inactive surfaces, an iso-surface gradient width, a voxel size, a center of the corresponding virtual dental appliance, and an active surface.
  • 13. The method of claim 1, wherein the virtual tooth surface feature includes one or more of an attachment, an anchor and an aligner surface feature on one of the virtual teeth.
  • 14. The method of claim 1, further comprising dynamically adjusting a location of the virtual tooth surface feature on one of the virtual teeth based on user input.
PRIORITY INFORMATION

The present application is a continuation of U.S. patent application Ser. No. 13/365,167, filed on Feb. 2, 2012, the contents of which are incorporated herein by reference.

US Referenced Citations (1017)
Number Name Date Kind
2171695 Harper Sep 1939 A
2194790 Gluck Mar 1940 A
2467432 Kesling Apr 1949 A
2531222 Kesling Nov 1950 A
2835628 Saffir May 1958 A
3089487 Enicks et al. May 1963 A
3092907 Traiger Jun 1963 A
3178820 Kesling Apr 1965 A
3211143 Grossberg Oct 1965 A
3379193 Monsghan Apr 1968 A
3385291 Martin May 1968 A
3407500 Kesling Oct 1968 A
3478742 Bohlmann Nov 1969 A
3496936 Gores Feb 1970 A
3503127 Kasdin et al. Mar 1970 A
3533163 Kirschenbaum Oct 1970 A
3556093 Quick Jan 1971 A
3600808 Reeve Aug 1971 A
3660900 Andrews May 1972 A
3683502 Wallshein Aug 1972 A
3724075 Kesling Apr 1973 A
3738005 Cohen et al. Jun 1973 A
3797115 Silverman et al. Mar 1974 A
3813781 Forgione Jun 1974 A
3860803 Levine Jan 1975 A
3885310 Northcutt May 1975 A
3916526 Schudy Nov 1975 A
3922786 Lavin Dec 1975 A
3949477 Cohen et al. Apr 1976 A
3950851 Bergersen Apr 1976 A
3955282 McNall May 1976 A
3983628 Acevedo Oct 1976 A
4014096 Dellinger Mar 1977 A
4039653 DeFoney et al. Aug 1977 A
4055895 Huge Nov 1977 A
4094068 Schinhammer Jun 1978 A
4117596 Wallshein Oct 1978 A
4129946 Kennedy Dec 1978 A
4134208 Pearlman Jan 1979 A
4139944 Bergersen Feb 1979 A
4179811 Hinz Dec 1979 A
4179812 White Dec 1979 A
4183141 Dellinger Jan 1980 A
4195046 Kesling Mar 1980 A
4204325 Kaelble May 1980 A
4253828 Coles et al. Mar 1981 A
4255138 Frohn Mar 1981 A
4278087 Theeuwes Jul 1981 A
4299568 Crowley Nov 1981 A
4324546 Heitlinger et al. Apr 1982 A
4324547 Arcan et al. Apr 1982 A
4348178 Kurz Sep 1982 A
4368040 Weissman Jan 1983 A
4419992 Chorbajian Dec 1983 A
4433956 Witzig Feb 1984 A
4433960 Gahto et al. Feb 1984 A
4439154 Mayclin Mar 1984 A
4449928 von Weissenfluh May 1984 A
4450150 Sidman May 1984 A
4478580 Barrut Oct 1984 A
4500294 Lewis Feb 1985 A
4505672 Kurz Mar 1985 A
4505673 Yoshii Mar 1985 A
4519386 Sullivan May 1985 A
4523908 Drisaldi et al. Jun 1985 A
4526540 Dellinger Jul 1985 A
4553936 Wang Nov 1985 A
4575330 Hull Mar 1986 A
4575805 Moermann et al. Mar 1986 A
4591341 Andrews May 1986 A
4608021 Barrett Aug 1986 A
4609349 Cain Sep 1986 A
4611288 Duret et al. Sep 1986 A
4629424 Lauks et al. Dec 1986 A
4638145 Sakuma et al. Jan 1987 A
4656860 Orthuber et al. Apr 1987 A
4663720 Duret et al. May 1987 A
4664626 Kesling May 1987 A
4665621 Ackerman et al. May 1987 A
4676747 Kesling Jun 1987 A
4741700 Barabe May 1988 A
4755139 Abbatte et al. Jul 1988 A
4757824 Chaumet Jul 1988 A
4763791 Halverson et al. Aug 1988 A
4764111 Knierim Aug 1988 A
4790752 Cheslak Dec 1988 A
4793803 Martz Dec 1988 A
4798534 Breads Jan 1989 A
4818542 De Luca et al. Apr 1989 A
4830612 Bergersen May 1989 A
4836778 Baumrind et al. Jun 1989 A
4837732 Brandestini et al. Jun 1989 A
4850864 Diamond Jul 1989 A
4850865 Napolitano Jul 1989 A
4856991 Breads et al. Aug 1989 A
4861268 Garay et al. Aug 1989 A
4877398 Kesling Oct 1989 A
4880380 Martz Nov 1989 A
4886451 Cetlin Dec 1989 A
4889238 Batchelor Dec 1989 A
4890608 Steer Jan 1990 A
4932866 Guis Jun 1990 A
4935635 O'Harra Jun 1990 A
4936862 Walker et al. Jun 1990 A
4937928 van der Zel Jul 1990 A
4941826 Loran et al. Jul 1990 A
4952928 Carroll et al. Aug 1990 A
4964770 Steinbichler et al. Oct 1990 A
4968251 Darnell Nov 1990 A
4971557 Martin Nov 1990 A
4975052 Spencer et al. Dec 1990 A
4983334 Adell Jan 1991 A
4997369 Shafir Mar 1991 A
5002485 Aagesen Mar 1991 A
5011405 Lemchen Apr 1991 A
5015183 Fenick May 1991 A
5017133 Miura May 1991 A
5018969 Andreiko et al. May 1991 A
5027281 Rekow et al. Jun 1991 A
5035613 Breads et al. Jul 1991 A
5037295 Bergersen Aug 1991 A
5049077 Goldin et al. Sep 1991 A
5055039 Abbatte et al. Oct 1991 A
5061839 Matsuno et al. Oct 1991 A
5083919 Quachi Jan 1992 A
5094614 Wildman Mar 1992 A
5100316 Wildman Mar 1992 A
5103838 Yousif Apr 1992 A
5114339 Guis May 1992 A
5121333 Riley et al. Jun 1992 A
5123425 Shannon et al. Jun 1992 A
5128870 Erdman et al. Jul 1992 A
5130064 Smalley et al. Jul 1992 A
5131843 Hilgers et al. Jul 1992 A
5131844 Marinaccio et al. Jul 1992 A
5139419 Andreiko et al. Aug 1992 A
5145364 Martz et al. Sep 1992 A
5176517 Truax Jan 1993 A
5194003 Garay et al. Mar 1993 A
5204670 Stinton Apr 1993 A
5222499 Allen et al. Jun 1993 A
5224049 Mushabac Jun 1993 A
5238404 Andreiko Aug 1993 A
5242304 Truax et al. Sep 1993 A
5245592 Kuemmel et al. Sep 1993 A
5273429 Rekow et al. Dec 1993 A
5278756 Lemchen et al. Jan 1994 A
5306144 Hibst et al. Apr 1994 A
5314335 Fung May 1994 A
5324186 Bakanowski Jun 1994 A
5328362 Watson et al. Jul 1994 A
5335657 Terry et al. Aug 1994 A
5338198 Wu et al. Aug 1994 A
5340309 Robertson Aug 1994 A
5342202 Deshayes Aug 1994 A
5344315 Hanson Sep 1994 A
5368478 Andreiko et al. Nov 1994 A
5372502 Massen et al. Dec 1994 A
D354355 Hilgers Jan 1995 S
5382164 Stern Jan 1995 A
5395238 Andreiko et al. Mar 1995 A
5415542 Kesling May 1995 A
5431562 Andreiko et al. Jul 1995 A
5440326 Quinn Aug 1995 A
5440496 Andersson et al. Aug 1995 A
5447432 Andreiko et al. Sep 1995 A
5449703 Mitra et al. Sep 1995 A
5452219 Dehoff et al. Sep 1995 A
5454717 Andreiko et al. Oct 1995 A
5456600 Andreiko et al. Oct 1995 A
5474448 Andreiko et al. Dec 1995 A
5487662 Kipke et al. Jan 1996 A
RE35169 Lemchen et al. Mar 1996 E
5499633 Fenton Mar 1996 A
5522725 Jordan et al. Jun 1996 A
5528735 Strasnick et al. Jun 1996 A
5533895 Andreiko et al. Jul 1996 A
5540732 Testerman Jul 1996 A
5542842 Andreiko et al. Aug 1996 A
5543780 McAuley et al. Aug 1996 A
5549476 Stern Aug 1996 A
5562448 Mushabac Oct 1996 A
5570182 Nathel et al. Oct 1996 A
5575655 Darnell Nov 1996 A
5583977 Seidl Dec 1996 A
5587912 Andersson et al. Dec 1996 A
5588098 Chen et al. Dec 1996 A
5605459 Kuroda et al. Feb 1997 A
5607305 Andersson et al. Mar 1997 A
5614075 Andre Mar 1997 A
5621648 Crump Apr 1997 A
5626537 Danyo et al. May 1997 A
5636736 Jacobs et al. Jun 1997 A
5645420 Bergersen Jul 1997 A
5645421 Slootsky Jul 1997 A
5651671 Seay et al. Jul 1997 A
5655653 Chester Aug 1997 A
5659420 Wakai et al. Aug 1997 A
5683243 Andreiko et al. Nov 1997 A
5683244 Truax Nov 1997 A
5691539 Pfeiffer Nov 1997 A
5692894 Schwartz et al. Dec 1997 A
5711665 Adam et al. Jan 1998 A
5711666 Hanson Jan 1998 A
5725376 Poirier Mar 1998 A
5725378 Wang Mar 1998 A
5730151 Summer et al. Mar 1998 A
5737084 Ishihara Apr 1998 A
5740267 Echerer et al. Apr 1998 A
5742700 Yoon et al. Apr 1998 A
5769631 Williams Jun 1998 A
5774425 Ivanov et al. Jun 1998 A
5790242 Stern et al. Aug 1998 A
5799100 Clarke et al. Aug 1998 A
5800162 Shimodaira et al. Sep 1998 A
5800174 Andersson Sep 1998 A
5813854 Nikodem Sep 1998 A
5816800 Brehm et al. Oct 1998 A
5818587 Devaraj et al. Oct 1998 A
5823778 Schmitt et al. Oct 1998 A
5848115 Little et al. Dec 1998 A
5857853 van Nifterick et al. Jan 1999 A
5866058 Batchelder et al. Feb 1999 A
5876199 Bergersen Mar 1999 A
5879158 Doyle et al. Mar 1999 A
5880961 Crump Mar 1999 A
5880962 Andersson et al. Mar 1999 A
5882192 Bergersen Mar 1999 A
5886702 Migdal et al. Mar 1999 A
5890896 Padial Apr 1999 A
5904479 Staples May 1999 A
5911576 Ulrich et al. Jun 1999 A
5934288 Avila et al. Aug 1999 A
5957686 Anthony Sep 1999 A
5964587 Sato Oct 1999 A
5971754 Sondhi et al. Oct 1999 A
5975893 Chishti et al. Nov 1999 A
5975906 Knutson Nov 1999 A
5980246 Ramsay et al. Nov 1999 A
5989023 Summer et al. Nov 1999 A
5993413 Aaltonen et al. Nov 1999 A
6002706 Staver et al. Dec 1999 A
6018713 Coli et al. Jan 2000 A
6044309 Honda Mar 2000 A
6049743 Baba Apr 2000 A
6053731 Heckenberger Apr 2000 A
6068482 Snow May 2000 A
6070140 Tran May 2000 A
6099303 Gibbs et al. Aug 2000 A
6099314 Kopelman et al. Aug 2000 A
6102701 Engeron Aug 2000 A
6120287 Chen Sep 2000 A
6123544 Cleary Sep 2000 A
6152731 Jordan et al. Nov 2000 A
6154676 Levine Nov 2000 A
6183248 Chishti et al. Feb 2001 B1
6183249 Brennan et al. Feb 2001 B1
6186780 Hibst et al. Feb 2001 B1
6190165 Andreiko et al. Feb 2001 B1
6200133 Kittelsen Mar 2001 B1
6201880 Elbaum et al. Mar 2001 B1
6210162 Chishti et al. Apr 2001 B1
6212435 Lattner et al. Apr 2001 B1
6213767 Dixon et al. Apr 2001 B1
6217334 Hultgren Apr 2001 B1
6227850 Chishti May 2001 B1
6230142 Benigno et al. May 2001 B1
6231338 de Josselin de Jong et al. May 2001 B1
6239705 Glen May 2001 B1
6243601 Wist Jun 2001 B1
6263234 Engelhardt et al. Jul 2001 B1
6283761 Joao Sep 2001 B1
6288138 Yamamoto Sep 2001 B1
6299438 Sahagian et al. Oct 2001 B1
6309215 Phan et al. Oct 2001 B1
6313432 Nagata et al. Nov 2001 B1
6315553 Sachdeva et al. Nov 2001 B1
6328745 Ascherman Dec 2001 B1
6332774 Chikami Dec 2001 B1
6334073 Levine Dec 2001 B1
6350120 Sachdeva et al. Feb 2002 B1
6364660 Durbin et al. Apr 2002 B1
6382975 Poirier May 2002 B1
6386878 Pavlovskaia et al. May 2002 B1
6394802 Hahn May 2002 B1
6402510 Williams Jun 2002 B1
6402707 Ernst Jun 2002 B1
6405729 Thornton Jun 2002 B1
6406292 Chishti et al. Jun 2002 B1
6409504 Jones et al. Jun 2002 B1
6413086 Womack Jul 2002 B1
6414264 von Falkenhausen Jul 2002 B1
6414708 Carmeli et al. Jul 2002 B1
6435871 Inman Aug 2002 B1
6436058 Krahner et al. Aug 2002 B1
6441354 Seghatol et al. Aug 2002 B1
6450167 David et al. Sep 2002 B1
6450807 Chishti et al. Sep 2002 B1
6462301 Scott et al. Oct 2002 B1
6470338 Rizzo et al. Oct 2002 B1
6471511 Chishti Oct 2002 B1
6471512 Sachdeva et al. Oct 2002 B1
6471970 Fanara et al. Oct 2002 B1
6482002 Jordan et al. Nov 2002 B2
6482298 Bhatnagar Nov 2002 B1
6496814 Busche Dec 2002 B1
6496816 Thiesson et al. Dec 2002 B1
6499026 Rivette et al. Dec 2002 B1
6499995 Schwartz Dec 2002 B1
6507832 Evans et al. Jan 2003 B1
6514074 Chishti et al. Feb 2003 B1
6515593 Stark et al. Feb 2003 B1
6516288 Bagne Feb 2003 B2
6516805 Thornton Feb 2003 B1
6520772 Williams Feb 2003 B2
6523009 Wilkins Feb 2003 B1
6523019 Borthwick Feb 2003 B1
6524101 Phan et al. Feb 2003 B1
6526168 Ornes et al. Feb 2003 B1
6526982 Strong Mar 2003 B1
6529891 Heckerman Mar 2003 B1
6529902 Kanevsky et al. Mar 2003 B1
6532455 Martin et al. Mar 2003 B1
6535865 Skaaning et al. Mar 2003 B1
6540512 Sachdeva et al. Apr 2003 B1
6540707 Stark et al. Apr 2003 B1
6542593 Bowman Amuah Apr 2003 B1
6542881 Meidan et al. Apr 2003 B1
6542894 Lee et al. Apr 2003 B1
6542903 Hull et al. Apr 2003 B2
6551243 Bocionek et al. Apr 2003 B2
6554837 Hauri et al. Apr 2003 B1
6556659 Bowman Amuah Apr 2003 B1
6556977 Lapointe et al. Apr 2003 B1
6560592 Reid et al. May 2003 B1
6564209 Dempski et al. May 2003 B1
6567814 Bankier et al. May 2003 B1
6571227 Agrafiotis et al. May 2003 B1
6572372 Phan et al. Jun 2003 B1
6573998 Cohen Sabban Jun 2003 B2
6574561 Alexander et al. Jun 2003 B2
6578003 Camarda et al. Jun 2003 B1
6580948 Haupert et al. Jun 2003 B2
6587529 Staszewski et al. Jul 2003 B1
6587828 Sachdeva Jul 2003 B1
6592368 Weathers Jul 2003 B1
6594539 Geng Jul 2003 B1
6595342 Maritzen et al. Jul 2003 B1
6597934 de Jong et al. Jul 2003 B1
6598043 Baclawski Jul 2003 B1
6599250 Webb et al. Jul 2003 B2
6602070 Miller et al. Aug 2003 B2
6604527 Palmisano Aug 2003 B1
6606744 Mikurak Aug 2003 B1
6607382 Kuo et al. Aug 2003 B1
6611783 Kelly et al. Aug 2003 B2
6611867 Bowman Amuah Aug 2003 B1
6613001 Dworkin Sep 2003 B1
6615158 Wenzel et al. Sep 2003 B2
6616447 Rizoiu et al. Sep 2003 B1
6616579 Reinbold et al. Sep 2003 B1
6621491 Baumrind et al. Sep 2003 B1
6623698 Kuo Sep 2003 B2
6624752 Klitsgaard et al. Sep 2003 B2
6626180 Kittelsen et al. Sep 2003 B1
6626569 Reinstein et al. Sep 2003 B2
6626669 Zegarelli Sep 2003 B2
6633772 Ford et al. Oct 2003 B2
6640128 Vilsmeier et al. Oct 2003 B2
6643646 Su et al. Nov 2003 B2
6647383 August et al. Nov 2003 B1
6650944 Goedeke et al. Nov 2003 B2
6671818 Mikurak Dec 2003 B1
6675104 Paulse et al. Jan 2004 B2
6678669 Lapointe et al. Jan 2004 B2
6682346 Chishti et al. Jan 2004 B2
6685469 Chishti et al. Feb 2004 B2
6689055 Mullen et al. Feb 2004 B1
6690761 Lang et al. Feb 2004 B2
6691110 Wang et al. Feb 2004 B2
6694234 Lockwood et al. Feb 2004 B2
6697164 Babayoff et al. Feb 2004 B1
6697793 McGreevy Feb 2004 B2
6702765 Robbins et al. Mar 2004 B2
6702804 Ritter et al. Mar 2004 B1
6705863 Phan et al. Mar 2004 B2
6729876 Chishti et al. May 2004 B2
6733289 Manemann et al. May 2004 B2
6736638 Sachdeva et al. May 2004 B1
6739869 Taub et al. May 2004 B1
6744932 Rubbert et al. Jun 2004 B1
6749414 Hanson et al. Jun 2004 B1
6769913 Hurson Aug 2004 B2
6772026 Bradbury et al. Aug 2004 B2
6790036 Graham Sep 2004 B2
6802713 Chishti et al. Oct 2004 B1
6814574 Abolfathi et al. Nov 2004 B2
6830450 Knopp et al. Dec 2004 B2
6832912 Mao Dec 2004 B2
6832914 Bonnet et al. Dec 2004 B1
6843370 Tuneberg Jan 2005 B2
6845175 Kopelman et al. Jan 2005 B2
6885464 Pfeiffer et al. Apr 2005 B1
6890285 Rahman et al. May 2005 B2
6951254 Morrison Oct 2005 B2
6976841 Osterwalder Dec 2005 B1
6978268 Thomas et al. Dec 2005 B2
6983752 Garabadian Jan 2006 B2
6984128 Breining et al. Jan 2006 B2
6988893 Haywood Jan 2006 B2
7016952 Mullen et al. Mar 2006 B2
7020963 Cleary et al. Apr 2006 B2
7036514 Heck May 2006 B2
7040896 Pavlovskaia et al. May 2006 B2
7106233 Schroeder et al. Sep 2006 B2
7112065 Kopelman et al. Sep 2006 B2
7121825 Chishti et al. Oct 2006 B2
7134874 Chishti et al. Nov 2006 B2
7137812 Cleary et al. Nov 2006 B2
7138640 Delgado et al. Nov 2006 B1
7140877 Kaza Nov 2006 B2
7142312 Quadling et al. Nov 2006 B2
7155373 Jordan et al. Dec 2006 B2
7156655 Sachdeva et al. Jan 2007 B2
7156661 Choi et al. Jan 2007 B2
7166063 Rahman et al. Jan 2007 B2
7184150 Quadling et al. Feb 2007 B2
7191451 Nakagawa Mar 2007 B2
7192273 McSurdy Mar 2007 B2
7194781 Orjela Mar 2007 B1
7217131 Vuillemot May 2007 B2
7220122 Chishti May 2007 B2
7220124 Taub et al. May 2007 B2
7229282 Andreiko et al. Jun 2007 B2
7234937 Sachdeva et al. Jun 2007 B2
7241142 Abolfathi et al. Jul 2007 B2
7244230 Duggirala et al. Jul 2007 B2
7245753 Squilla et al. Jul 2007 B2
7257136 Mori et al. Aug 2007 B2
7286954 Kopelman et al. Oct 2007 B2
7292759 Boutoussov et al. Nov 2007 B2
7294141 Bergersen Nov 2007 B2
7302842 Biester et al. Dec 2007 B2
7320592 Chishti et al. Jan 2008 B2
7328706 Barach et al. Feb 2008 B2
7329122 Scott Feb 2008 B1
7338327 Sticker et al. Mar 2008 B2
D565509 Fechner et al. Apr 2008 S
7351116 Dold Apr 2008 B2
7354270 Abolfathi et al. Apr 2008 B2
7357637 Liechtung Apr 2008 B2
7435083 Chishti et al. Oct 2008 B2
7450231 Johs et al. Nov 2008 B2
7458810 Bergersen Dec 2008 B2
7460230 Johs et al. Dec 2008 B2
7462076 Walter et al. Dec 2008 B2
7463929 Simmons Dec 2008 B2
7476100 Kuo Jan 2009 B2
7500851 Williams Mar 2009 B2
D594413 Palka et al. Jun 2009 S
7543511 Kimura et al. Jun 2009 B2
7544103 Walter et al. Jun 2009 B2
7553157 Abolfathi et al. Jun 2009 B2
7561273 Stautmeister et al. Jul 2009 B2
7577284 Wong et al. Aug 2009 B2
7596253 Wong et al. Sep 2009 B2
7597594 Stadler et al. Oct 2009 B2
7609875 Liu et al. Oct 2009 B2
D603796 Sticker et al. Nov 2009 S
7616319 Woollam et al. Nov 2009 B1
7626705 Altendorf Dec 2009 B2
7632216 Rahman et al. Dec 2009 B2
7633625 Woollam et al. Dec 2009 B1
7637262 Bailey Dec 2009 B2
7637740 Knopp Dec 2009 B2
7641473 Sporbert et al. Jan 2010 B2
7668355 Wong et al. Feb 2010 B2
7670179 Müller Mar 2010 B2
7695327 Bäuerle et al. Apr 2010 B2
7698068 Babayoff Apr 2010 B2
7711447 Lu et al. May 2010 B2
7724378 Babayoff May 2010 B2
D618619 Walter Jun 2010 S
7728848 Petrov et al. Jun 2010 B2
7731508 Borst Jun 2010 B2
7735217 Borst Jun 2010 B2
7740476 Rubbert et al. Jun 2010 B2
7744369 Imgrund et al. Jun 2010 B2
7746339 Matov et al. Jun 2010 B2
7780460 Walter Aug 2010 B2
7787132 Körner et al. Aug 2010 B2
7791810 Powell Sep 2010 B2
7796243 Choo-Smith et al. Sep 2010 B2
7806687 Minagi et al. Oct 2010 B2
7806727 Dold et al. Oct 2010 B2
7813787 de Josselin de Jong et al. Oct 2010 B2
7824180 Abolfathi et al. Nov 2010 B2
7828601 Pyczak Nov 2010 B2
7841464 Cinader et al. Nov 2010 B2
7845969 Stadler et al. Dec 2010 B2
7854609 Chen et al. Dec 2010 B2
7862336 Kopelman et al. Jan 2011 B2
7869983 Raby et al. Jan 2011 B2
7872760 Ertl Jan 2011 B2
7874836 McSurdy Jan 2011 B2
7874837 Chishti et al. Jan 2011 B2
7874849 Sticker et al. Jan 2011 B2
7878801 Abolfathi et al. Feb 2011 B2
7878805 Moss et al. Feb 2011 B2
7880751 Kuo et al. Feb 2011 B2
7892474 Shkolnik et al. Feb 2011 B2
7904308 Arnone et al. Mar 2011 B2
7905725 Chishti et al. Mar 2011 B2
7907280 Johs et al. Mar 2011 B2
7929151 Liang et al. Apr 2011 B2
7930189 Kuo Apr 2011 B2
7947508 Tricca et al. May 2011 B2
7959308 Freeman et al. Jun 2011 B2
7963766 Cronauer Jun 2011 B2
7970627 Kuo et al. Jun 2011 B2
7972134 Lai et al. Jul 2011 B2
7985414 Knaack et al. Jul 2011 B2
7986415 Thiel et al. Jul 2011 B2
7987099 Kuo et al. Jul 2011 B2
7991485 Zakim Aug 2011 B2
8017891 Nevin Sep 2011 B2
8026916 Wen Sep 2011 B2
8027709 Arnone et al. Sep 2011 B2
8029277 Imgrund et al. Oct 2011 B2
8038444 Kitching et al. Oct 2011 B2
8045772 Kosuge et al. Oct 2011 B2
8054556 Chen et al. Nov 2011 B2
8070490 Roetzer et al. Dec 2011 B1
8075306 Kitching et al. Dec 2011 B2
8077949 Liang et al. Dec 2011 B2
8083556 Stadler et al. Dec 2011 B2
D652799 Mueller Jan 2012 S
8092215 Stone-Collonge et al. Jan 2012 B2
8095383 Arnone et al. Jan 2012 B2
8099268 Kitching et al. Jan 2012 B2
8099305 Kuo et al. Jan 2012 B2
8108189 Chelnokov et al. Jan 2012 B2
8118592 Tortorici Feb 2012 B2
8126025 Takeda Feb 2012 B2
8136529 Kelly Mar 2012 B2
8144954 Quadling et al. Mar 2012 B2
8152518 Kuo Apr 2012 B2
8160334 Thiel et al. Apr 2012 B2
8172569 Matty et al. May 2012 B2
8197252 Harrison Jun 2012 B1
8201560 Dembro Jun 2012 B2
8215312 Garabadian et al. Jul 2012 B2
8240018 Walter et al. Aug 2012 B2
8275180 Kuo Sep 2012 B2
8279450 Oota et al. Oct 2012 B2
8292617 Brandt et al. Oct 2012 B2
8294657 Kim et al. Oct 2012 B2
8296952 Greenberg Oct 2012 B2
8297286 Smernoff Oct 2012 B2
8306608 Mandelis et al. Nov 2012 B2
8314764 Kim et al. Nov 2012 B2
8332015 Ertl Dec 2012 B2
8354588 Sticker et al. Jan 2013 B2
8366479 Borst et al. Feb 2013 B2
8401826 Cheng et al. Mar 2013 B2
8419428 Lawrence Apr 2013 B2
8433083 Abolfathi et al. Apr 2013 B2
8465280 Sachdeva et al. Jun 2013 B2
8477320 Stock et al. Jul 2013 B2
8488113 Thiel et al. Jul 2013 B2
8517726 Kakavand et al. Aug 2013 B2
8520922 Wang et al. Aug 2013 B2
8520925 Duret et al. Aug 2013 B2
8523565 Matty et al. Sep 2013 B2
8545221 Stone-Collonge et al. Oct 2013 B2
8556625 Lovely Oct 2013 B2
8570530 Liang Oct 2013 B2
8573224 Thornton Nov 2013 B2
8577212 Thiel Nov 2013 B2
8601925 Coto Dec 2013 B1
8639477 Chelnokov et al. Jan 2014 B2
8650586 Lee et al. Feb 2014 B2
8675706 Seurin et al. Mar 2014 B2
8723029 Pyczak et al. May 2014 B2
8738394 Kuo May 2014 B2
8743923 Geske et al. Jun 2014 B2
8753114 Vuillemot Jun 2014 B2
8767270 Curry et al. Jul 2014 B2
8768016 Pan et al. Jul 2014 B2
8771149 Rahman et al. Jul 2014 B2
8839476 Adachi Sep 2014 B2
8843381 Kuo et al. Sep 2014 B2
8856053 Mah Oct 2014 B2
8870566 Bergersen Oct 2014 B2
8874452 Kuo Oct 2014 B2
8878905 Fisker et al. Nov 2014 B2
8899976 Chen et al. Dec 2014 B2
8936463 Mason et al. Jan 2015 B2
8944812 Kuo Feb 2015 B2
8956058 Rösch Feb 2015 B2
8992216 Karazivan Mar 2015 B2
9004915 Moss et al. Apr 2015 B2
9022792 Sticker et al. May 2015 B2
9039418 Rubbert May 2015 B1
9084535 Girkin et al. Jul 2015 B2
9084657 Matty et al. Jul 2015 B2
9108338 Sirovskiy et al. Aug 2015 B2
9144512 Wagner Sep 2015 B2
9211166 Kuo et al. Dec 2015 B2
9214014 Levin Dec 2015 B2
9220580 Borovinskih et al. Dec 2015 B2
9241774 Li et al. Jan 2016 B2
9242118 Brawn Jan 2016 B2
9277972 Brandt et al. Mar 2016 B2
9336336 Deichmann et al. May 2016 B2
9375300 Matov et al. Jun 2016 B2
9403238 Culp Aug 2016 B2
9408743 Wagner Aug 2016 B1
9414897 Wu et al. Aug 2016 B2
9433476 Khardekar et al. Sep 2016 B2
9444981 Bellis et al. Sep 2016 B2
9463287 Lorberbaum et al. Oct 2016 B1
9492243 Kuo Nov 2016 B2
9506808 Jeon et al. Nov 2016 B2
9566132 Stone-Collonge et al. Feb 2017 B2
9584771 Mandells et al. Feb 2017 B2
9589329 Levin Mar 2017 B2
9675427 Kopelman Jun 2017 B2
9730769 Chen et al. Aug 2017 B2
9820829 Kuo Nov 2017 B2
9830688 Levin Nov 2017 B2
9844421 Moss et al. Dec 2017 B2
9848985 Yang et al. Dec 2017 B2
10123706 Elbaz et al. Nov 2018 B2
10123853 Moss et al. Nov 2018 B2
10154889 Chen et al. Dec 2018 B2
10172693 Brandt et al. Jan 2019 B2
10195690 Culp Feb 2019 B2
10231801 Korytov et al. Mar 2019 B2
10238472 Levin Mar 2019 B2
10248883 Borovinskih et al. Apr 2019 B2
10258432 Webber Apr 2019 B2
10275862 Levin Apr 2019 B2
20010002310 Chishti et al. May 2001 A1
20010032100 Mahmud et al. Oct 2001 A1
20010038705 Rubbert et al. Nov 2001 A1
20010041320 Phan et al. Nov 2001 A1
20020004727 Knaus et al. Jan 2002 A1
20020007284 Schurenberg et al. Jan 2002 A1
20020010568 Rubbert et al. Jan 2002 A1
20020015934 Rubbert et al. Feb 2002 A1
20020025503 Chapoulaud et al. Feb 2002 A1
20020026105 Drazen Feb 2002 A1
20020028417 Chapoulaud et al. Mar 2002 A1
20020035572 Takatori et al. Mar 2002 A1
20020064752 Durbin et al. May 2002 A1
20020064759 Durbin et al. May 2002 A1
20020087551 Hickey et al. Jul 2002 A1
20020107853 Hofmann et al. Aug 2002 A1
20020188478 Breeland et al. Dec 2002 A1
20020192617 Phan et al. Dec 2002 A1
20030000927 Kanaya et al. Jan 2003 A1
20030008259 Kuo et al. Jan 2003 A1
20030009252 Pavlovskaia et al. Jan 2003 A1
20030019848 Nicholas et al. Jan 2003 A1
20030021453 Weise et al. Jan 2003 A1
20030035061 Iwaki et al. Feb 2003 A1
20030049581 Deluke Mar 2003 A1
20030057192 Patel Mar 2003 A1
20030059736 Lai et al. Mar 2003 A1
20030060532 Subelka et al. Mar 2003 A1
20030068598 Vallittu et al. Apr 2003 A1
20030095697 Wood et al. May 2003 A1
20030101079 McLaughlin May 2003 A1
20030103060 Anderson et al. Jun 2003 A1
20030120517 Eida et al. Jun 2003 A1
20030139834 Nikolskiy et al. Jul 2003 A1
20030144886 Taira Jul 2003 A1
20030172043 Guyon et al. Sep 2003 A1
20030190575 Hilliard Oct 2003 A1
20030192867 Yamazaki et al. Oct 2003 A1
20030207224 Lotte Nov 2003 A1
20030211440 Kuo et al. Nov 2003 A1
20030215764 Kopelman et al. Nov 2003 A1
20030224311 Cronauer Dec 2003 A1
20030224313 Bergersen Dec 2003 A1
20030224314 Bergersen Dec 2003 A1
20040002873 Sachdeva Jan 2004 A1
20040009449 Mah et al. Jan 2004 A1
20040013994 Goldberg et al. Jan 2004 A1
20040019262 Perelgut Jan 2004 A1
20040029078 Marshall Feb 2004 A1
20040038168 Choi et al. Feb 2004 A1
20040054304 Raby Mar 2004 A1
20040054358 Cox et al. Mar 2004 A1
20040058295 Bergersen Mar 2004 A1
20040068199 Echauz et al. Apr 2004 A1
20040078222 Khan et al. Apr 2004 A1
20040080621 Fisher et al. Apr 2004 A1
20040094165 Cook May 2004 A1
20040107118 Harnsberger et al. Jun 2004 A1
20040133083 Comaniciu et al. Jul 2004 A1
20040152036 Abolfathi Aug 2004 A1
20040158194 Wolff et al. Aug 2004 A1
20040161722 Lai et al. Aug 2004 A1
20040166463 Wen et al. Aug 2004 A1
20040167646 Jelonek et al. Aug 2004 A1
20040170941 Phan et al. Sep 2004 A1
20040193036 Zhou et al. Sep 2004 A1
20040197728 Abolfathi et al. Oct 2004 A1
20040214128 Sachdeva et al. Oct 2004 A1
20040219479 Malin et al. Nov 2004 A1
20040220691 Hofmeister et al. Nov 2004 A1
20040229185 Knopp Nov 2004 A1
20040259049 Kopelman et al. Dec 2004 A1
20050003318 Choi et al. Jan 2005 A1
20050023356 Wiklof et al. Feb 2005 A1
20050031196 Moghaddam et al. Feb 2005 A1
20050037312 Uchida Feb 2005 A1
20050038669 Sachdeva et al. Feb 2005 A1
20050040551 Biegler et al. Feb 2005 A1
20050042569 Plan et al. Feb 2005 A1
20050042577 Kvitrud et al. Feb 2005 A1
20050048433 Hilliard Mar 2005 A1
20050074717 Cleary et al. Apr 2005 A1
20050089822 Geng Apr 2005 A1
20050100333 Kerschbaumer et al. May 2005 A1
20050108052 Omaboe May 2005 A1
20050131738 Morris Jun 2005 A1
20050144150 Ramamurthy et al. Jun 2005 A1
20050171594 Machan et al. Aug 2005 A1
20050171630 Dinauer et al. Aug 2005 A1
20050181333 Karazivan et al. Aug 2005 A1
20050186524 Abolfathi et al. Aug 2005 A1
20050186526 Stewart et al. Aug 2005 A1
20050216314 Secor Sep 2005 A1
20050233276 Kopelman et al. Oct 2005 A1
20050239013 Sachdeva Oct 2005 A1
20050244781 Abels et al. Nov 2005 A1
20050244791 Davis et al. Nov 2005 A1
20050271996 Sporbert et al. Dec 2005 A1
20060056670 Hamadeh Mar 2006 A1
20060057533 McGann Mar 2006 A1
20060063135 Mehl Mar 2006 A1
20060078842 Sachdeva et al. Apr 2006 A1
20060084024 Farrell Apr 2006 A1
20060093982 Wen May 2006 A1
20060098007 Rouet et al. May 2006 A1
20060099545 Lia et al. May 2006 A1
20060099546 Bergersen May 2006 A1
20060110698 Robson May 2006 A1
20060111631 Kelliher et al. May 2006 A1
20060115782 Li et al. Jun 2006 A1
20060115785 Li et al. Jun 2006 A1
20060137813 Robrecht et al. Jun 2006 A1
20060147872 Andreiko Jul 2006 A1
20060154198 Durbin et al. Jul 2006 A1
20060154207 Kuo Jul 2006 A1
20060173715 Wang Aug 2006 A1
20060183082 Quadling et al. Aug 2006 A1
20060188834 Hilliard Aug 2006 A1
20060188848 Tricca et al. Aug 2006 A1
20060194163 Tricca et al. Aug 2006 A1
20060199153 Liu et al. Sep 2006 A1
20060204078 Orth et al. Sep 2006 A1
20060223022 Solomon Oct 2006 A1
20060223023 Lai et al. Oct 2006 A1
20060223032 Fried et al. Oct 2006 A1
20060223342 Borst et al. Oct 2006 A1
20060234179 Wen et al. Oct 2006 A1
20060257815 De Dominicis Nov 2006 A1
20060275729 Fornoff Dec 2006 A1
20060275731 Wen et al. Dec 2006 A1
20060275736 Wen Dec 2006 A1
20060277075 Salwan Dec 2006 A1
20060290693 Zhou et al. Dec 2006 A1
20060292520 Dillon et al. Dec 2006 A1
20070031775 Andreiko Feb 2007 A1
20070046865 Umeda et al. Mar 2007 A1
20070053048 Kumar et al. Mar 2007 A1
20070054237 Neuschafer Mar 2007 A1
20070065768 Nadav Mar 2007 A1
20070087300 Willison et al. Apr 2007 A1
20070087302 Raising et al. Apr 2007 A1
20070106138 Beiski et al. May 2007 A1
20070122592 Anderson et al. May 2007 A1
20070128574 Kuo et al. Jun 2007 A1
20070141525 Cinader, Jr. Jun 2007 A1
20070141526 Eisenberg et al. Jun 2007 A1
20070143135 Lindquist et al. Jun 2007 A1
20070168152 Matov et al. Jul 2007 A1
20070172112 Paley et al. Jul 2007 A1
20070172291 Yokoyama Jul 2007 A1
20070178420 Keski-Nisula et al. Aug 2007 A1
20070183633 Hoffmann Aug 2007 A1
20070184402 Boutoussov et al. Aug 2007 A1
20070185732 Hicks et al. Aug 2007 A1
20070192137 Ombrellaro Aug 2007 A1
20070199929 Rippl et al. Aug 2007 A1
20070207434 Kuo et al. Sep 2007 A1
20070212659 Andreiko et al. Sep 2007 A1
20070215582 Roeper et al. Sep 2007 A1
20070218422 Ehrenfeld Sep 2007 A1
20070231765 Phan et al. Oct 2007 A1
20070238065 Sherwood et al. Oct 2007 A1
20070239488 DeRosso Oct 2007 A1
20070263226 Kurtz et al. Nov 2007 A1
20080013727 Uemura Jan 2008 A1
20080020350 Matov et al. Jan 2008 A1
20080045053 Stadler et al. Feb 2008 A1
20080057461 Cheng et al. Mar 2008 A1
20080057467 Gittelson Mar 2008 A1
20080057479 Grenness Mar 2008 A1
20080059238 Park et al. Mar 2008 A1
20080090208 Rubbert Apr 2008 A1
20080094389 Rouet et al. Apr 2008 A1
20080113317 Kemp et al. May 2008 A1
20080115791 Heine May 2008 A1
20080118882 Su May 2008 A1
20080118886 Liang et al. May 2008 A1
20080141534 Hilliard Jun 2008 A1
20080169122 Shiraishi et al. Jul 2008 A1
20080171934 Greenan et al. Jul 2008 A1
20080176448 Muller et al. Jul 2008 A1
20080182220 Chishti et al. Jul 2008 A1
20080233530 Cinader Sep 2008 A1
20080242144 Dietz Oct 2008 A1
20080254403 Hilliard Oct 2008 A1
20080268400 Moss et al. Oct 2008 A1
20080306724 Kitching et al. Dec 2008 A1
20090029310 Pumphrey et al. Jan 2009 A1
20090030290 Kozuch et al. Jan 2009 A1
20090030347 Cao Jan 2009 A1
20090040740 Muller et al. Feb 2009 A1
20090061379 Yamamoto et al. Mar 2009 A1
20090061381 Durbin et al. Mar 2009 A1
20090075228 Kumada et al. Mar 2009 A1
20090087050 Gandyra Apr 2009 A1
20090098502 Andreiko Apr 2009 A1
20090099445 Burger Apr 2009 A1
20090103579 Ushimaru et al. Apr 2009 A1
20090105523 Kassayan et al. Apr 2009 A1
20090130620 Yazdi et al. May 2009 A1
20090136890 Kang et al. May 2009 A1
20090136893 Zegarelli May 2009 A1
20090148809 Kuo et al. Jun 2009 A1
20090170050 Marcus Jul 2009 A1
20090181346 Orth Jul 2009 A1
20090191502 Cao et al. Jul 2009 A1
20090191503 Matov et al. Jul 2009 A1
20090210032 Beiski et al. Aug 2009 A1
20090218514 Klunder et al. Sep 2009 A1
20090281433 Saadat et al. Nov 2009 A1
20090286195 Sears et al. Nov 2009 A1
20090298017 Boerjes et al. Dec 2009 A1
20090305540 Stadler et al. Dec 2009 A1
20090316966 Marshall et al. Dec 2009 A1
20090317757 Lemchen Dec 2009 A1
20100015565 Carrillo Gonzalez et al. Jan 2010 A1
20100019170 Hart et al. Jan 2010 A1
20100028825 Lemchen Feb 2010 A1
20100045902 Ikeda et al. Feb 2010 A1
20100062394 Jones et al. Mar 2010 A1
20100068676 Mason et al. Mar 2010 A1
20100138025 Morton et al. Jun 2010 A1
20100142789 Chang et al. Jun 2010 A1
20100145664 Hultgren et al. Jun 2010 A1
20100145898 Malfliet et al. Jun 2010 A1
20100152599 DuHamel et al. Jun 2010 A1
20100165275 Tsukamoto et al. Jul 2010 A1
20100167225 Kuo Jul 2010 A1
20100179789 Sachdeva et al. Jul 2010 A1
20100193482 Ow et al. Aug 2010 A1
20100196837 Farrell Aug 2010 A1
20100216085 Kopelman Aug 2010 A1
20100217130 Weinlaender Aug 2010 A1
20100231577 Kim et al. Sep 2010 A1
20100268363 Karim et al. Oct 2010 A1
20100268515 Vogt et al. Oct 2010 A1
20100279243 Cinader et al. Nov 2010 A1
20100280798 Pattijn Nov 2010 A1
20100281370 Rohaly et al. Nov 2010 A1
20100303316 Bullis et al. Dec 2010 A1
20100312484 DuHamel et al. Dec 2010 A1
20100327461 Co et al. Dec 2010 A1
20110007920 Abolfathi et al. Jan 2011 A1
20110012901 Kaplanyan Jan 2011 A1
20110045428 Boltunov et al. Feb 2011 A1
20110056350 Gale et al. Mar 2011 A1
20110065060 Teixeira et al. Mar 2011 A1
20110081625 Fuh Apr 2011 A1
20110091832 Kim et al. Apr 2011 A1
20110102549 Takahashi May 2011 A1
20110102566 Zakian et al. May 2011 A1
20110104630 Matov et al. May 2011 A1
20110136072 Li et al. Jun 2011 A1
20110136090 Kazemi Jun 2011 A1
20110143300 Villaalba Jun 2011 A1
20110143673 Landesman et al. Jun 2011 A1
20110159452 Huang Jun 2011 A1
20110164810 Zang et al. Jul 2011 A1
20110207072 Schiemann Aug 2011 A1
20110212420 Vuillemot Sep 2011 A1
20110220623 Beutler Sep 2011 A1
20110235045 Koerner et al. Sep 2011 A1
20110269092 Kuo et al. Nov 2011 A1
20110316994 Lemchen Dec 2011 A1
20120028210 Hegyi et al. Feb 2012 A1
20120029883 Heinz et al. Feb 2012 A1
20120040311 Nilsson Feb 2012 A1
20120064477 Schmitt Mar 2012 A1
20120081786 Mizuyama et al. Apr 2012 A1
20120086681 Kim et al. Apr 2012 A1
20120115107 Adams May 2012 A1
20120129117 McCance May 2012 A1
20120147912 Moench et al. Jun 2012 A1
20120150494 Anderson et al. Jun 2012 A1
20120166213 Arnone et al. Jun 2012 A1
20120172678 Logan et al. Jul 2012 A1
20120281293 Gronenborn et al. Nov 2012 A1
20120295216 Dykes et al. Nov 2012 A1
20120322025 Ozawa et al. Dec 2012 A1
20130029284 Teasdale Jan 2013 A1
20130081272 Johnson et al. Apr 2013 A1
20130089828 Borovinskih et al. Apr 2013 A1
20130095446 Andreiko et al. Apr 2013 A1
20130103176 Kopelman et al. Apr 2013 A1
20130110469 Kopelman May 2013 A1
20130163627 Seurin et al. Jun 2013 A1
20130204599 Matov et al. Aug 2013 A1
20130235165 Gharib et al. Sep 2013 A1
20130266326 Joseph et al. Oct 2013 A1
20130286174 Urakabe Oct 2013 A1
20130293824 Yoneyama et al. Nov 2013 A1
20130325431 See et al. Dec 2013 A1
20130337412 Kwon Dec 2013 A1
20140081091 Abolfathi et al. Mar 2014 A1
20140136222 Arnone et al. May 2014 A1
20140142902 Chelnokov et al. May 2014 A1
20140178829 Kim Jun 2014 A1
20140280376 Kuo Sep 2014 A1
20140294273 Jaisson Oct 2014 A1
20150004553 Li et al. Jan 2015 A1
20150132708 Kuo May 2015 A1
20150173856 Iowe et al. Jun 2015 A1
20150182303 Abraham et al. Jul 2015 A1
20150238283 Tanugula et al. Aug 2015 A1
20150306486 Logan et al. Oct 2015 A1
20150320320 Kopelman et al. Nov 2015 A1
20150320532 Matty et al. Nov 2015 A1
20160003610 Lampert et al. Jan 2016 A1
20160051345 Levin Feb 2016 A1
20160064898 Atiya et al. Mar 2016 A1
20160067013 Morton et al. Mar 2016 A1
20160081768 Kopelman et al. Mar 2016 A1
20160081769 Kimura et al. Mar 2016 A1
20160095668 Kuo et al. Apr 2016 A1
20160106520 Borovinskih et al. Apr 2016 A1
20160120621 Li et al. May 2016 A1
20160135924 Choi et al. May 2016 A1
20160135925 Mason et al. May 2016 A1
20160163115 Furst Jun 2016 A1
20160217708 Levin et al. Jul 2016 A1
20160246936 Kahn Aug 2016 A1
20160338799 Wu et al. Nov 2016 A1
20160367339 Khardekar et al. Dec 2016 A1
20170007366 Kopelman et al. Jan 2017 A1
20170007367 Li et al. Jan 2017 A1
20170007368 Boronkay Jan 2017 A1
20170020633 Stone-Collonge et al. Jan 2017 A1
20170071705 Kuo Mar 2017 A1
20170100212 Sherwood et al. Apr 2017 A1
20170100213 Kuo Apr 2017 A1
20170105815 Matov et al. Apr 2017 A1
20170135792 Webber May 2017 A1
20170135793 Webber et al. May 2017 A1
20170156821 Kopelman et al. Jun 2017 A1
20170165032 Webber et al. Jun 2017 A1
20170258555 Kopelman Sep 2017 A1
20170319296 Webber et al. Nov 2017 A1
20170340415 Choi et al. Nov 2017 A1
20180000563 Shanjani et al. Jan 2018 A1
20180000565 Shanjani et al. Jan 2018 A1
20180028064 Elbaz et al. Feb 2018 A1
20180028065 Elbaz et al. Feb 2018 A1
20180055602 Kopelman et al. Mar 2018 A1
20180071055 Kuo Mar 2018 A1
20180125610 Carrier et al. May 2018 A1
20180153648 Shanjani et al. Jun 2018 A1
20180153649 Wu et al. Jun 2018 A1
20180153733 Kuo Jun 2018 A1
20180168788 Fernie Jun 2018 A1
20180192877 Atiya et al. Jul 2018 A1
20180228359 Meyer et al. Aug 2018 A1
20180280118 Cramer Oct 2018 A1
20180284727 Cramer et al. Oct 2018 A1
20180318043 Li et al. Nov 2018 A1
20180353264 Riley et al. Dec 2018 A1
20180360567 Xue et al. Dec 2018 A1
20180368944 Sato et al. Dec 2018 A1
20180368961 Shanjani et al. Dec 2018 A1
20190019187 Miller et al. Jan 2019 A1
20190021817 Sato et al. Jan 2019 A1
20190029522 Sato et al. Jan 2019 A1
20190029784 Moalem et al. Jan 2019 A1
20190046296 Kopelman et al. Feb 2019 A1
20190046297 Kopelman et al. Feb 2019 A1
20190069975 Cam et al. Mar 2019 A1
20190076026 Elbaz et al. Mar 2019 A1
20190076214 Nyukhtikov et al. Mar 2019 A1
20190076216 Moss et al. Mar 2019 A1
20190090983 Webber et al. Mar 2019 A1
20190095539 Elbaz et al. Mar 2019 A1
20190099129 Kopelman et al. Apr 2019 A1
20190105130 Grove et al. Apr 2019 A1
20190125494 Li et al. May 2019 A1
20190183614 Levin Jun 2019 A1
Foreign Referenced Citations (98)
Number Date Country
517102 Nov 1977 AU
3031677 Nov 1977 AU
1121955 Apr 1982 CA
1655732 Aug 2005 CN
1655733 Aug 2005 CN
1867317 Nov 2006 CN
102017658 Apr 2011 CN
103889364 Jun 2014 CN
2749802 May 1978 DE
3526198 Feb 1986 DE
4207169 Sep 1993 DE
69327661 Jul 2000 DE
102005043627 Mar 2007 DE
202010017014 Mar 2011 DE
102011051443 Jan 2013 DE
0428152 May 1991 EP
490848 Jun 1992 EP
541500 May 1993 EP
714632 May 1997 EP
774933 Dec 2000 EP
731673 May 2001 EP
1941843 Jul 2008 EP
2437027 Apr 2012 EP
2447754 May 2012 EP
1989764 Jul 2012 EP
2332221 Nov 2012 EP
2596553 Dec 2013 EP
2612300 Feb 2015 EP
463897 Jan 1980 ES
2369828 Jun 1978 FR
2867377 Sep 2005 FR
2930334 Oct 2009 FR
1550777 Aug 1979 GB
53-058191 May 1978 JP
04-028359 Jan 1992 JP
08-508174 Sep 1996 JP
09-19443 Jan 1997 JP
2003245289 Sep 2003 JP
2000339468 Sep 2004 JP
2005527320 Sep 2005 JP
2005527321 Sep 2005 JP
2006043121 Feb 2006 JP
2007151614 Jun 2007 JP
2007260158 Oct 2007 JP
2007537824 Dec 2007 JP
2008067732 Mar 2008 JP
2008523370 Jul 2008 JP
04184427 Nov 2008 JP
2009000412 Jan 2009 JP
2009018173 Jan 2009 JP
2009078133 Apr 2009 JP
2009101386 May 2009 JP
2009205330 Sep 2009 JP
2010017726 Jan 2010 JP
2011087733 May 2011 JP
2012045143 Mar 2012 JP
2013007645 Jan 2013 JP
10-20020062793 Jul 2002 KR
10-20070108019 Nov 2007 KR
10-20090065778 Jun 2009 KR
480166 Mar 2002 TW
WO91004713 Apr 1991 WO
WO9203102 Mar 1992 WO
WO94010935 May 1994 WO
WO9623452 Aug 1996 WO
WO98032394 Jul 1998 WO
WO98044865 Oct 1998 WO
WO0108592 Feb 2001 WO
0185047 Nov 2001 WO
WO02017776 Mar 2002 WO
WO02024100 Mar 2002 WO
WO02058583 Aug 2002 WO
WO02062252 Aug 2002 WO
WO02095475 Nov 2002 WO
WO03003932 Jan 2003 WO
WO2005114183 Dec 2005 WO
WO2006096558 Sep 2006 WO
WO2006100700 Sep 2006 WO
WO2006133548 Dec 2006 WO
WO2007019709 Feb 2007 WO
WO2007071341 Jun 2007 WO
WO2007103377 Sep 2007 WO
2007133422 Nov 2007 WO
WO2008115654 Sep 2008 WO
WO2009016645 Feb 2009 WO
WO2009085752 Jul 2009 WO
WO2009089129 Jul 2009 WO
WO2009146788 Dec 2009 WO
WO2009146789 Dec 2009 WO
2010059988 May 2010 WO
WO2010123892 Oct 2010 WO
WO2012007003 Jan 2012 WO
WO2012064684 May 2012 WO
WO2012074304 Jun 2012 WO
WO2012078980 Jun 2012 WO
WO2012083968 Jun 2012 WO
WO2012140021 Oct 2012 WO
WO2013058879 Apr 2013 WO
Non-Patent Literature Citations (249)
Entry
International Search Report from related PCT Application No. PCT/IB2013/000143, dated Jun. 6, 2013, 10 pages.
Communication Pursuant to Article 94(3) EPC from related European Application No. 13707434.0, dated Nov. 27, 2017, 5 pages.
Office Action from related Japan Patent Application No. 20140555325, dated Dec. 20, 2016, 4 pp.
Office Action from related China Patent Application No. 201380007617 dated Sep. 29, 2016, 4 pp.
Examination Report from related Australia Patent Application No. 2013213871, dated Jan. 9, 2017, 4 pp.
AADR. American Association for Dental Research; Summary of Activities; Los Angeles, CA; p. 195; Mar. 20-23,(year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980.
Alcaniz et aL; An Advanced System for the Simulation and Planning of Orthodontic Treatments; Karl Heinz Hohne and Ron Kikinis (eds.); Visualization in Biomedical Computing, 4th Intl. Conf, VBC '96, Hamburg, Germany; Springer-Verlag; pp. 511-520; Sep. 22-25, 1996.
Alexander et al.; The DigiGraph Work Station Part 2 Clinical Management; J. Clin. Orthod.; pp. 402-407; (Author Manuscript); Jul. 1990.
Align Technology; Align technology announces new teen solution with introduction of invisalign teen with mandibular advancement; 2 pages; retrieved from the internet (http://investor.aligntech.com/static-files/eb4fa6bb-3e62-404f-b74d-32059366a01b); Mar. 6, 2017.
Allesee Orthodontic Appliance: Important Tip About Wearing the Red White & Blue Active Clear Retainer System; Allesee Orthodontic Appliances-Pro Lab; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1998.
Allesee Orthodontic Appliances: DuraClearTM; Product information; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1997.
Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; ( product information for doctors); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/doctorhtml); 5 pages on May 19, 2003.
Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; (product information), 6 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2003.
Allesee Orthodontic Appliances; The Choice is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment;(Patient Information); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/patients.html); 2 pages on May 19, 2003.
Allesee Orthodontic Appliances; The Red, White & Blue Way to Improve Your Smile; (information for patients), 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992.
Allesee Orthodontic Appliances; You may be a candidate for this invisible no-braces treatment; product information for patients; 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002.
Altschuler et al.; Analysis of 3-D Data for Comparative 3-D Serial Growth Pattern Studies of Oral-Facial Structures; AADR Abstracts, Program and Abstracts of Papers, 57th General Session, IADR Annual Session, Mar. 29, 1979-Apr. 1, 1979, New Orleans Marriot; Journal of Dental Research; vol. 58, Special Issue A, p. 221; Jan. 1979.
Altschuler et al.; Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces; Optical Engineering; 20(6); pp. 953-961; Dec. 1981.
Altschuler et al.; Measuring Surfaces Space-Coded by a Laser-Projected Dot Matrix; SPIE Imaging q Applications for Automated Industrial Inspection and Assembly; vol. 182; pp. 187-191; Oct. 10, 1979.
Altschuler; 3D Mapping of Maxillo-Facial Prosthesis; AADR Abstract #607; 2 pages total, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980.
Andersson et al.; Clinical Results with Titanium Crowns Fabricated with Machine Duplication and Spark Erosion; Acta Odontologica Scandinavica; 47(5); pp. 279-286; Oct. 1989.
Andrews, The Six Keys to Optimal Occlusion Straight Wire, Chapter 3, L.A. Wells; pp. 13-24; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1989.
Bartels et al.; An Introduction to Splines for Use in Computer Graphics and Geometric Modeling; Morgan Kaufmann Publishers; pp. 422-425 Jan. 1, 1987.
Baumrind et al, “Mapping the Skull in 3-D,” reprinted from J. Calif. Dent. Assoc, 48(2), 11 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Fall Issue 1972.
Baumrind et al.; A Stereophotogrammetric System for the Detection of Prosthesis Loosening in Total Hip Arthroplasty; NATO Symposium on Applications of Human Biostereometrics; SPIE; vol. 166; pp. 112-123; Jul. 9-13, 1978.
Baumrind; A System for Cranio facial Mapping Through the Integration of Data from Stereo X-Ray Films and Stereo Photographs; an invited paper submitted to the 1975 American Society of Photogram Symposium on Close-Range Photogram Systems; University of Illinois; pp. 142-166; Aug. 26-30, 1975.
Baumrind; Integrated Three-Dimensional Craniofacial Mapping: Background, Principles, and Perspectives; Seminars in Orthodontics; 7(4); pp. 223-232; Dec. 2001.
beautyworlds.com; Virtual plastic surgery—beautysurge.com announces launch of cosmetic surgery digital imaging services; 5 pages; retrieved from the internet (http://www.beautyworlds.com/cosmossurgdigitalimagning.htm); Mar. 2004.
Begole et al.; A Computer System for the Analysis of Dental Casts; The Angle Orthodontist; 51(3); pp. 252-258; Jul. 1981.
Berland; The use of smile libraries for cosmetic dentistry; Dental Tribune: Asia Pacific Edition; pp. 16-18; Mar. 29, 2006.
Bernard et al; Computerized Diagnosis in Orthodontics for Epidemiological Studies: A ProgressReport; (Abstract Only), J. Dental Res. Special Issue, vol. 67, p. 169, paper presented at International Association for Dental Research 66th General Session, Montreal Canada; Mar. 9-13, 1988.
Bhatia et al.; A Computer-Aided Design for Orthognathic Surgery; British Journal of Oral and Maxillofacial Surgery; 22(4); pp. 237-253; Aug. 1, 1984.
Biggerstaff et al.; Computerized Analysis of Occlusion in the Postcanine Dentition; American Journal of Orthodontics; 61(3); pp. 245-254; Mar. 1972.
Biggerstaff; Computerized Diagnostic Setups and Simulations; Angle Orthodontist; 40(I); pp. 28-36; Jan. 1970.
Biostar Operation & Training Manual. Great Lakes Orthodontics, Ltd. 199 Fire Tower Drive,Tonawanda, New York. 14150-5890, 20 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990.
Blu et al.; Linear interpolation revitalized; IEEE Transactions on Image Processing; 13(5); pp. 710-719; May 2004.
Bookstein; Principal warps: Thin-plate splines and decomposition of deformations; IEEE Transactions on pattern analysis and machine intelligence; 11(6); pp. 567-585; Jun. 1989.
Bourke, Coordinate System Transformation; 1 page; retrived from the internet (http://astronomy.swin.edu.au/{grave over ( )} pbourke/prolection/coords) on Nov. 5, 2004; Jun. 1996.
Boyd et al.; Three Dimensional Diagnosis and Orthodontic Treatment of Complex Malocclusions With the Invisalipn Appliance; Seminars in Orthodontics; 7(4); pp. 274-293; Dec. 2001.
Brandestini et al.; Computer Machined Ceramic Inlays: In Vitro Marginal Adaptation; J. Dent. Res. Special Issue; (Abstract 305); vol. 64; p. 208; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1985.
Brook et al.; An Image Analysis System for the Determination of Tooth Dimensions from Study Casts: Comparison with Manual Measurements of Mesio-distal Diameter; Journal of Dental Research; 65(3); pp. 428-431; Mar. 1986.
Burstone et al.; Precision Adjustment of the Transpalatal Lingual Arch: Computer Arch Form Predetermination; American Journal of Orthodontics; 79(2);pp. 115-133; Feb. 1981.
Burstone; Dr. Charles J. Burstone on The Uses of the Computer in Orthodontic Practice (Part 1); Journal of Clinical Orthodontics; 13(7); pp. 442-453; (interview); Jul. 1979.
Burstone; Dr. Charles J. Burstone on The Uses of the Computer in Orthodontic Practice (Part 2); journal of Clinical Orthodontics; 13(8); pp. 539-551 (interview); Aug. 1979.
Cadent Inc.; OrthoCAD ABO user guide; 38 pages; Dec. 21, 2005.
Cadent Inc.; Reviewing and modifying an orthoCAD case; 4 pages; Feb. 14, 2005.
Cardinal Industrial Finishes; Powder Coatings; 6 pages; retrieved from the internet (http://www.cardinalpaint.com) on Aug. 25, 2000.
Carnaghan, An Alternative to Holograms for the Portrayal of Human Teeth; 4th Int'l. Conf. on Holographic Systems, Components and Applications; pp. 228-231; Sep. 15, 1993.
Chaconas et al,; The DigiGraph Work Station, Part 1, Basic Concepts; Journal of Clinical Orthodontics; 24(6); pp. 360-367; (Author Manuscript); Jun. 1990.
Chafetz et al.; Subsidence of the Femoral Prosthesis, A Stereophotogrammetric Evaluation; Clinical Orthopaedics and Related Research; No. 201; pp. 60-67; Dec. 1985.
Chiappone; Constructing the Gnathologic Setup and Positioner; Journal of Clinical Orthodontics; 14(2); pp. 121-133; Feb. 1980.
Chishti et al.; U.S. Appl. No. 60/050,342 entitled “Procedure for moving teeth using a seires of retainers,” filed Jun. 20, 1997.
Collins English Dictionary; Teeth (definition); 9 pages; retrieved from the internet (https:www.collinsdictionary.com/us/dictionary/english/teeth) on May 13, 2019.
Cottingham; Gnathologic Clear Plastic Positioner; American Journal of Orthodontics; 55(1); pp. 23-31; Jan. 1969.
Crawford; CAD/CAM in the Dental Office: Does It Work?; Canadian Dental Journal; 57(2); pp. 121-123 Feb. 1991.
Crawford; Computers in Dentistry: Part 1: CAD/CAM: The Computer Moves Chairside, Part 2: F. Duret A Man With A Vision, Part 3: The Computer Gives New Vision—Literally, Part 4: Bytes 'N Bites The Computer Moves From The Front Desk To The Operatory; Canadian Dental Journal; 54(9); pp. 661-666 Sep. 1988.
Crooks; CAD/CAM Comes to USC; USC Dentistry; pp. 14-17; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Spring 1990.
CSI Computerized Scanning and Imaging Facility; What is a maximum/minimum intensity projection (MIP/MinIP); 1 page; retrived from the internet (http://csi.whoi.edu/content/what-maximumminimum-intensity-projection-mipminip); Jan. 4, 2010.
Cureton; Correcting Malaligned Mandibular Incisors with Removable Retainers; Journal of Clinical Orthodontics; 30(7); pp. 390-395; Jul. 1996.
Curry et al.; Integrated Three-Dimensional Craniofacial Mapping at the Craniofacial Research InstrumentationLaboratory/University of the Pacific; Seminars in Orthodontics; 7(4); pp. 258-265; Dec. 2001.
Cutting et al.; Three-Dimensional Computer-Assisted Design of Craniofacial Surgical Procedures: Optimization and Interaction with Cephalometric and CT-Based Models; Plastic and Reconstructive Surgery; 77(6); pp. 877-885; Jun. 1986.
Daniels et al.; The development of the index of complexity outcome and need (ICON); British Journal of Orthodontics; 27(2); pp. 149-162; Jun. 2000.
DCS Dental AG; The CAD/CAM ‘DCS Titan System’ for Production of Crowns/Bridges; DSC Production; pp. 1-7; Jan. 1992.
Defranco et al.; Three-Dimensional Large Displacement Analysis of Orthodontic Appliances; Journal of Biomechanics; 9(12); pp. 793-801; Jan. 1976.
Dental Institute University of Zurich Switzerland; Program for International Symposium on Computer Restorations: State of the Art of the CEREC-Method; 2 pages; May 1991.
Dentrac Corporation; Dentrac document; pp. 4-13; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992.
Dentrix; Dentrix G3, new features; 2 pages; retrieved from the internet (http://www.dentrix.com/g3/new_features/index.asp); on Jun. 6, 2008.
DENT-X; Dentsim . . . Dent-x's virtual reality 3-D training simulator . . . A revolution in dental education; 6 pages; retrieved from the internet (http://www.dent-x.com/DentSim.htm); on Sep. 24, 1998.
dictionary.com; Plural (definition); 6 pages; retrieved from the internet ( https://www.dictionary.com/browse/plural#) on May 13, 2019.
dictionary.com; Quadrant (definition); 6 pages; retrieved from the internet ( https://www.dictionary.com/browse/quadrant?s=t) on May 13, 2019.
DICOM to surgical guides; (Screenshot)1 page; retrieved from the internet at YouTube (https://youtu.be/47KtOmCEFQk); Published Apr. 4, 2016.
Di Giacomo et al.; Clinical application of sterolithographic surgical guides for implant placement: Preliminary results; Journal Periodontolgy; 76(4); pp. 503-507; Apr. 2005.
Di Muzio et al.; Minimum intensity projection (MinIP); 6 pages; retrieved from the internet (https://radiopaedia.org/articles/minimum-intensity-projection-minip) on Sep. 6, 2018.
Doruk et al.; The role of the headgear timer in extraoral co-operation; European Journal of Orthodontics; 26; pp. 289-291; Jun. 1, 2004.
Doyle; Digital Dentistry; Computer Graphics World; pp. 50-52 andp. 54; Oct. 2000.
Dummer et al.; Computed Radiography Imaging Based on High-Density 670 nm VCSEL Arrays; International Society for Optics and Photonics; vol. 7557; p. 75570H; 7 pages; (Author Manuscript); Feb. 24, 2010.
Duret et al.; CAD/CAM Imaging in Dentistry; Current Opinion in Dentistry; 1 (2); pp. 150-154; Apr. 1991.
Duret et al; CAD-CAM in Dentistry; Journal of the American Dental Association; 117(6); pp. 715-720; Nov. 1988.
Duret; The Dental CAD/CAM, General Description of the Project; Hennson International Product Brochure, 18 pages; Jan. 1986.
Duret; Vers Une Prosthese Informatisee; Tonus; 75(15); pp. 55-57; (English translation attached); 23 pages; Nov. 15, 1985.
Economides; The Microcomputer in the Orthodontic Office; Journal of Clinical Orthodontics; 13(11); pp. 767-772; Nov. 1979.
Elsasser; Some Observations on the History and Uses of the Kesling Positioner; American Journal of Orthodontics; 36(5); pp. 368-374; May 1, 1950.
English translation of Japanese Laid-Open Publication No. 63-11148 to inventor T. Ozukuri (Laid-Open on Jan. 18, 1998) pp. 1-7.
Faber et al.; Computerized Interactive Orthodontic Treatment Planning; American Journal of Orthodontics; 73(1); pp. 36-46; Jan. 1978.
Felton et al.; A Computerized Analysis of the Shape and Stability of Mandibular Arch Form; American Journal of Orthodontics and Dentofacial Orthopedics; 92(6); pp. 478-483; Dec. 1987.
Friede et al.; Accuracy of Cephalometric Prediction in Orthognathic Surgery; Journal of Oral and Maxillofacial Surgery; 45(9); pp. 754-760; Sep. 1987.
Friedrich et al; Measuring system for in vivo recording of force systems in orthodontic treatment—concept and analysis of accuracy; J. Biomech.; 32(1); pp. 81-85; (Abstract Only) Jan. 1999.
Futterling et al.; Automated Finite Element Modeling of a Human Mandible with Dental Implants; JS WSCG '98—Conference Program; 8 pages; retrieved from the Internet (https://dspace5.zcu.ez/bitstream/11025/15851/1/Strasser_98.pdf); on Aug. 21, 2018.
Gansky; Dental data mining: potential pitfalls and practical issues; Advances in Dental Research; 17(1); pp. 109-114; Dec. 2003.
Gao et al.; 3-D element Generation for Multi-Connected Complex Dental and Mandibular Structure; IEEE Proceedings International Workshop in Medical Imaging and Augmented Reality; pp. 267-271; Jun. 12, 2001.
Geomagic; Dental reconstruction; 1 page; retrieved from the internet (http://geomagic.com/en/solutions/industry/detal_desc.php) on Jun. 6, 2008.
Gim-Alldent Deutschland, “Das DUX System: Die Technik,” 3 pages; (English Translation Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2002.
Gottleib et al.; JCO Interviews Dr. James A. McNamura, Jr., on the Frankel Appliance: Part 2: Clinical 1-1 Management; Journal of Clinical Orthodontics; 16(6); pp. 390-407; retrieved from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1982&Month=06&ArticleNum+); 21 pages; Jun. 1982.
Gottschalk et al.; OBBTree: A hierarchical structure for rapid interference detection; 12 pages; (http://www.cs.unc.edu/?geom/OBB/OBBT.html); relieved from te internet (https://www.cse.iitk.ac.in/users/amit/courses/RMP/presentations/dslamba/presentation/sig96.pdf) on Apr. 25, 2019.
gpsdentaire.com; Get a realistic smile simulation in 4 steps with GPS; a smile management software; 10 pages; retrieved from the internet (http://www.gpsdentaire.com/en/preview/) on Jun. 6, 2008.
Grayson; New Methods for Three Dimensional Analysis of Craniofacial Deformity, Symposium: Computerized Facial Imaging in Oral and Maxillofacial Surgery; American Association of Oral and Maxillofacial Surgeons; 48(8) suppl 1; pp. 5-6; Sep. 13, 1990.
Grest, Daniel; Marker-Free Human Motion Capture in Dynamic Cluttered Environments from a Single View-Point, PhD Thesis; 171 pages; Dec. 2007.
Guess et al.; Computer Treatment Estimates In Orthodontics and Orthognathic Surgery; Journal of Clinical Orthodontics; 23(4); pp. 262-268; 11 pages; (Author Manuscript); Apr. 1989.
Heaven et al.; Computer-Based Image Analysis of Artificial Root Surface Caries; Abstracts of Papers #2094; Journal of Dental Research; 70:528; (Abstract Only); Apr. 17-21, 1991.
Highbeam Research; Simulating stress put on jaw. (ANSYS Inc.'s finite element analysis software); 2 pages; retrieved from the Internet (http://static.highbeam.eom/t/toolingampproduction/november011996/simulatingstressputonfa..); on Nov. 5, 2004.
Hikage; Integrated Orthodontic Management System for Virtual Three-Dimensional Computer Graphic Simulation and Optical Video Image Database for Diagnosis and Treatment Planning; Journal of Japan KA Orthodontic Society; 46(2); pp. 248-269; 56 pages; (English Translation Included); Feb. 1987.
Hoffmann et al.; Role of Cephalometry for Planning of Jaw Orthopedics and Jaw Surgery Procedures; Informatbnen, pp. 375-396; (English Abstract Included); Mar. 1991.
Hojjatie et al.; Three-Dimensional Finite Element Analysis of Glass-Ceramic Dental Crowns; Journal of Biomechanics; 23(11); pp. 1157-1166; Jan. 1990.
Huckins; CAD-CAM Generated Mandibular Model Prototype from MRI Data; AAOMS, p. 96; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1999.
Invisalign; You were made to move. There's never been a better time to straighten your teeth with the most advanced clear aligner in the world; Product webpage; 2 pages; retrieved from the internet (www.invisalign.com/) on Dec. 28, 2017.
JCO Interviews; Craig Andreiko , DDS, MS on the Elan and Orthos Systems; Interview by Dr. Larry W. White; Journal of Clinical Orthodontics; 28(8); pp. 459-468; 14 pages; (Author Manuscript); Aug. 1994.
JCO Interviews; Dr. Homer W. Phillips on Computers in Orthodontic Practice, Part 2; Journal of Clinical Orthodontics; 17(12); pp. 819-831; 19 pages; (Author Manuscript); Dec. 1983.
Jerrold; The Problem, Electronic Data Transmission and the Law; American Journal of Orthodontics and Dentofacial Orthopedics; 113(4); pp. 478-479; 5 pages; (Author Manuscript); Apr. 1998.
Jones et al.; An Assessment of the Fit of a Parabolic Curve to Pre- and Post-Treatment Dental Arches; British Journal of Orthodontics; 16(2); pp. 85-93; May 1989.
Kamada et.al.; Case Reports On Tooth Positioners Using LTV Vinyl Silicone Rubber; J. Nihon University School of Dentistry; 26(1); pp. 11-29; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1984.
Kamada et.al.; Construction of Tooth Positioners with LTV Vinyl Silicone Rubber and Some Case KJ Reports; J. Nihon University School of Dentistry; 24(1); pp. 1-27; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1982.
Kanazawa et al.; Three-Dimensional Measurements of the Occlusal Surfaces of Upper Molars in a Dutch Population; Journal of Dental Research; 63(11); pp. 1298-1301; Nov. 1984.
Karaman et al.; A practical method of fabricating a lingual retainer; Am. Journal of Orthodontic and Dentofacial Orthopedics; 124(3); pp. 327-330; Sep. 2003.
Kesling et al.; The Philosophy of the Tooth Positioning Appliance; American Journal of Orthodontics and Oral surgery; 31(6); pp. 297-304; Jun. 1945.
Kesling; Coordinating the Predetermined Pattern and Tooth Positioner with Conventional Treatment; American Journal of Orthodontics and Oral Surgery; 32(5); pp. 285-293; May 1946.
Kleeman et al.; The Speed Positioner; J. Clin. Orthod.; 30(12); pp. 673-680; Dec. 1996.
Kochanek; Interpolating Splines with Local Tension, Continuity and Bias Control; Computer Graphics; 18(3); pp. 33-41; Jan. 1, 1984.
Kumar et al.; Rapid maxillary expansion: A unique treatment modality in dentistry; J. Clin. Diagn. Res.; 5(4); pp. 906-911; Aug. 2011.
Kunii et al.; Articulation Simulation for an Intelligent Dental Care System; Displays; 15(3); pp. 181-188; Jul. 1994.
Kuroda et al.; Three-Dimensional Dental Cast Analyzing System Using Laser Scanning; American Journal of Orthodontics and Dentofacial Orthopedics; 110(4); pp. 365-369; Oct. 1996.
Laurendeau et al.; A Computer-Vision Technique for the Acquisition and Processing of 3-D Profiles of 7 Dental Imprints: An Application in Orthodontics; IEEE Transactions on Medical Imaging; 10(3); pp. 453-461; Sep. 1991.
Leinfelder et al.; A New Method for Generating Ceramic Restorations: a CAD-CAM System; Journal of the American Dental Association; 118(6); pp. 703-707; Jun. 1989.
Manetti et al.; Computer-Aided Cefalometry and New Mechanics in Orthodontics; Fortschr Kieferorthop; 44; pp. 370-376; 8 pages; (English Article Summary Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1983.
Mantzikos et al.; Case report: Forced eruption and implant site development; The Angle Orthodontist; 68(2); pp. 179-186; Apr. 1998.
McCann; Inside the ADA; J. Amer. Dent. Assoc, 118:286-294; Mar. 1989.
McNamara et al.; Invisible Retainers; J. Clin Orthod.; pp. 570-578; 11 pages; (Author Manuscript); Aug. 1985.
McNamara et al.; Orthodontic and Orthopedic Treatment in the Mixed Dentition; Needham Press; pp. 347-353; Jan. 1993.
Methot; Get the picture with a gps for smile design in 3 steps; Spectrum; 5(4); pp. 100-105; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2006.
Moermann et al, Computer Machined Adhesive Porcelain Inlays: Margin Adaptation after Fatigue Stress; IADR Abstract 339; J. Dent. Res.; 66(a):763; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1987.
Moles; Correcting Mild Malalignments—As Easy As One, Two, Three; AOA/Pro Corner; 11(2); 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002.
Mormann et al.; Marginale Adaptation von adhasuven Porzellaninlays in vitro; Separatdruck aus:Schweiz. Mschr. Zahnmed.; 95; pp. 1118-1129; 8 pages; (Machine Translated English Abstract); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1985.
Nahoum; The Vacuum Formed Dental Contour Appliance; N. Y. State Dent. J.; 30(9); pp. 385-390; Nov. 1964.
Nash; CEREC CAD/CAM Inlays: Aesthetics and Durability in a Single Appointment; Dentistry Today; 9(8); pp. 20, 22-23 and 54; Oct. 1990.
Newcombe; DTAM: Dense tracking and mapping in real-time; 8 pages; retrieved from the internet (http://www.doc.ic.ac.uk/?ajd/Publications/newcombe_etal_iccv2011.pdf; on Dec. 2011.
Nishiyama et al.; A New Construction of Tooth Repositioner by LTV Vinyl Silicone Rubber; The Journal of Nihon University School of Dentistry; 19(2); pp. 93-102 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1977.
Ogawa et al.; Mapping, profiling and clustering of pressure pain threshold (PPT) in edentulous oral muscosa; Journal of Dentistry; 32(3); pp. 219-228; Mar. 2004.
Ogimoto et al.; Pressure-pain threshold determination in the oral mucosa; Journal of Oral Rehabilitation; 29(7); pp. 620-626; Jul. 2002.
ormco.com; Increasing clinical performance with 3D interactive treatment planning and patient-specific appliances; 8 pages; retrieved from the internet (http://www.konsident.com/wp-content/files_mf/1295385693http___ormco.com_index_cmsfilesystemaction_fileOrmcoPDF_whitepapers.pdf) on Feb. 27, 2019.
OrthoCAD downloads; retrieved Jun. 27, 2012 from the internet (www.orthocad.com/download/downloads.asp); 2 pages; Feb. 14, 2005.
Page et al.; Validity and accuracy of a risk calculator in predicting periodontal disease; Journal of the American Dental Association; 133(5); pp. 569-576; May 2002.
Patterson Dental; Cosmetic imaging; 2 pages retrieved from the internet (http://patterson.eaglesoft.net/cnt_di_cosimg.html) on Jun. 6, 2008.
Paul et al.; Digital Documentation of Individual Human Jaw and Tooth Forms for Applications in Orthodontics; Oral Surgery and Forensic Medicine Proc. of the 24th Annual Conf. of the IEEE Industrial Electronics Society (IECON '98); vol. 4; pp. 2415-2418; Sep. 4, 1998.
Pinkham; Foolish Concept Propels Technology; Dentist, 3 pages , Jan./Feb. 1989.
Pinkham; Inventor's CAD/CAM May Transform Dentistry; Dentist; pp. 1 and 35, Sep. 1990.
Ponitz; Invisible retainers; Am. J. Orthod.; 59(3); pp. 266-272; Mar. 1971.
Procera Research Projects; Procera Research Projects 1993 Abstract Collection; 23 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1993.
Proffit et al.; The first stage of comprehensive treatment alignment and leveling; Contemporary Orthodontics, 3rd Ed.; Chapter 16; Mosby Inc.; pp. 534-537; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2000.
Proffit et al.; The first stage of comprehensive treatment: alignment and leveling; Contemporary Orthodontics; (Second Ed.); Chapter 15, MosbyYear Book; St. Louis, Missouri; pp. 470-533 Oct. 1993.
Raintree Essix & ARS Materials, Inc., Raintree Essix, Technical Magazine Table of contents and Essix Appliances, 7 pages; retrieved from the internet (http://www.essix.com/magazine/defaulthtml) on Aug. 13, 1997.
Redmond et al.; Clinical Implications of Digital Orthodontics; American Journal of Orthodontics and Dentofacial Orthopedics; 117(2); pp. 240-242; Feb. 2000.
Rekow et al.; CAD/CAM for Dental Restorations—Some of the Curious Challenges; IEEE Transactions on Biomedical Engineering; 38(4); pp. 314-318; Apr. 1991.
Rekow et al.; Comparison of Three Data Acquisition Techniques for 3-D Tooth Surface Mapping; Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 13(1); pp. 344-345 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1991.
Rekow; A Review of the Developments in Dental CAD/CAM Systems; Current Opinion in Dentistry; 2; pp. 25-33; Jun. 1992.
Rekow; CAD/CAM in Dentistry: A Historical Perspective and View of the Future; Journal Canadian Dental Association; 58(4); pp. 283, 287-288; Apr. 1992.
Rekow; Computer-Aided Design and Manufacturing in Dentistry: A Review of the State of the Art; Journal of Prosthetic Dentistry; 58(4); pp. 512-516; Dec. 1987.
Rekow; Dental CAD-CAM Systems: What is the State of the Art?; The Journal of the American Dental Association; 122(12); pp. 43-48; Dec. 1991.
Rekow; Feasibility of an Automated System for Production of Dental Restorations, Ph.D. Thesis; Univ. of Minnesota, 250 pages, Nov. 1988.
Richmond et al.; The Development of the PAR Index (Peer Assessment Rating): Reliability and Validity.; The European Journal of Orthodontics; 14(2); pp. 125-139; Apr. 1992.
Richmond et al.; The Development of a 3D Cast Analysis System; British Journal of Orthodontics; 13(1); pp. 53-54; Jan. 1986.
Richmond; Recording The Dental Cast In Three Dimensions; American Journal of Orthodontics and Dentofacial Orthopedics; 92(3); pp. 199-206; Sep. 1987.
Rose et al.; The role of orthodontics in implant dentistry; British Dental Journal; 201(12); pp. 753-764; Dec. 23, 2006.
Rubin et al.; Stress analysis of the human tooth using a three-dimensional finite element model; Journal of Dental Research; 62(2); pp. 82-86; Feb. 1983.
Rudge; Dental Arch Analysis: Arch Form, A Review of the Literature; The European Journal of Orthodontics; 3(4); pp. 279-284; Jan. 1981.
Sahm et al.; “Micro-Electronic Monitoring Of Functional Appliance Wear”; Eur J Orthod.; 12(3); pp. 297-301; Aug. 1990.
Sahm; Presentation of a wear timer for the clarification of scientific questions in orthodontic orthopedics; Fortschritte der Kieferorthopadie; 51 (4); pp. 243-247; (Translation Included) Jul. 1990.
Sakuda et al.; Integrated Information-Processing System In Clinical Orthodontics: An Approach with Use of a Computer Network System; American Journal of Orthodontics and Dentofacial Orthopedics; 101(3); pp. 210-220; 20 pages; (Author Manuscript) Mar. 1992.
Sarment et al.; Accuracy of implant placement with a sterolithographic surgical guide; journal of Oral and Maxillofacial Implants; 118(4); pp. 571-577; Jul. 2003.
Schellhas et al.; Three-Dimensional Computed Tomography in Maxillofacial Surgical Planning; Archives of Otolaryngology—Head and Neck Surgery; 114(4); pp. 438-442; Apr. 1988.
Schroeder et al; Eds. The Visual Toolkit, Prentice Hall PTR, New Jersey; Chapters 6, 8 & 9, (pp. 153-210,309-354, and 355-428; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1998.
Shilliday; Minimizing finishing problems with the mini-positioner; American Journal of Orthodontics; 59(6); pp. 596-599; Jun. 1971.
Siemens; CEREC—Computer-Reconstruction, High Tech in der Zahnmedizin; 15 pagesl; (Includes Machine Translation); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2004.
Sinclair; The Readers' Corner; Journal of Clinical Orthodontics; 26(6); pp. 369-372; 5 pages; retrived from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1992&Month=06&ArticleNum=); Jun. 1992.
Sirona Dental Systems GmbH, CEREC 3D, Manuel utiiisateur, Version 2.0X (in French); 114 pages; (English translation of table of contents included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2003.
Smalley; Implants for tooth movement: Determining implant location and orientation: Journal of Esthetic and Restorative Dentistry; 7(2); pp. 62-72; Mar. 1995.
Smart Technology; Smile library II; 1 page; retrieved from the internet (http://smart-technology.net/) on Jun. 6, 2008.
Smile-Vision_The smile-vision cosmetic imaging system; 2 pages; retrieved from the internet (http://www.smile-vision.net/cos_imaging.php) on Jun. 6, 2008.
Stoll et al.; Computer-aided Technologies in Dentistry; Dtsch Zahna'rztl Z 45, pp. 314-322; (English Abstract Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990.
Sturman; Interactive Keyframe Animation of 3-D Articulated Models; Proceedings Graphics Interface '84; vol. 86; pp. 35-40; May-Jun. 1984.
Szeliski; Introduction to computer vision: Structure from motion; 64 pages; retrieved from the internet (http://robots.stanford.edu/cs223b05/notes/CS%20223-B%20L10%structurefrommotion1b.ppt, on Feb. 3, 2005.
The American Heritage, Stedman's Medical Dictionary; Gingiva; 3 pages; retrieved from the interent (http://reference.com/search/search?q=gingiva) on Nov. 5, 2004.
Thera Mon; “Microsensor”; 2 pages; retrieved from the internet (www.english.thera-mon.com/the-product/transponder/index.html); on Sep. 19, 2016.
Thorlabs; Pellin broca prisms; 1 page; retrieved from the internet (www.thorlabs.com); Nov. 30, 2012.
Tiziani et al.; Confocal principle for macro and microscopic surface and defect analysis; Optical Engineering; 39(1); pp. 32-39; Jan. 1, 2000.
Truax; Truax Clasp-Less(TM) Appliance System; The Functional Orthodontist; 9(5); pp. 22-24, 26-28; Sep.-Oct. 1992.
TRU-TATN Orthodontic & Dental Supplies, Product Brochure, Rochester, Minnesota 55902, 16 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1996.
U.S. Department of Commerce, National Technical Information Service, Holodontography: An Introduction to Dental Laser Holography; School of Aerospace Medicine Brooks AFB Tex; Mar. 1973, 40 pages; Mar. 1973.
U.S. Department of Commerce, National Technical Information Service; Automated Crown Replication Using Solid Photography SM; Solid Photography Inc., Melville NY,; 20 pages; Oct. 1977.
Vadapalli; Minimum intensity projection (MinIP) is a data visualization; 7 pages; retrieved from the internet (https://prezi.com/tdmttnmv2knw/minimum-intensity-projection-minip-is-a-data-visualization/) on Sep. 6, 2018.
Van Der Linden et al.; Three-Dimensional Analysis of Dental Casts by Means of the Optocom; Journal of Dental Research; 51(4); p. 1100; Jul.-Aug. 1972.
Van Der Linden; A New Method to Determine Tooth Positions and Dental Arch Dimensions; Journal of Dental Research; 51(4); p. 1104; Jul.-Aug. 1972.
Van Der Zel; Ceramic-Fused-to-Metal Restorations with a New CAD/CAM System; Quintessence International; 24(A); pp. 769-778; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1993.
Varady et al.; Reverse Engineering Of Geometric Models An Introduction; Computer-Aided Design; 29(4); pp. 255-268; 20 pages; (Author Manuscript); Apr. 1997.
Verstreken et al.; An Image-Guided Planning System for Endosseous Oral Implants; IEEE Transactions on Medical Imaging; 17(5); pp. 842-852; Oct. 1998.
Vevin et al.; Pose estimation of teeth through crown-shape matching; In Medical Imaging: Image Processing of International Society of Optics and Photonics; vol. 4684; pp. 955-965; May 9, 2002.
Virtual Orthodontics; Our innovative software; 2 pages; (http://www.virtualorthodontics.com/innovativesoftware.html); retrieved from the internet (https://web.archive.org/web/20070518085145/http://www.virtualorthodontics.com/innovativesoftware.html); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2005.
Warunek et al.; Physical and Mechanical Properties of Elastomers in Orthodonic Positioners; American Journal of Orthodontics and Dentofacial Orthopedics; 95(5); pp. 388-400; 21 pages; (Author Manuscript); May 1989.
Warunek et.al.; Clinical Use of Silicone Elastomer Applicances; JCO; 23(10); pp. 694-700; Oct. 1989.
Watson et al.; Pressures recorded at te denture base-mucosal surface interface in complete denture wearers; Journal of Oral Rehabilitation 14(6); pp. 575-589; Nov. 1987.
Wells; Application of the Positioner Appliance in Orthodontic Treatment; American Journal of Orthodontics; 58(4); pp. 351-366; Oct. 1970.
Wiedmann; According to the laws of harmony to find the right tooth shape with assistance of the computer; Digital Dental News; 2nd Vol.; pp. 0005-0008; (English Version Included); Apr. 2008.
Wikipedia; Palatal expansion; 3 pages; retrieved from the internet (https://en.wikipedia.org/wiki/Palatal_expansion) on Mar. 5, 2018.
Williams; Dentistry and CAD/CAM: Another French Revolution; J. Dent. Practice Admin.; 4(1); pp. 2-5 Jan./Mar. 1987.
Williams; The Switzerland and Minnesota Developments in CAD/CAM; Journal of Dental Practice Administration; 4(2); pp. 50-55; Apr./Jun. 1987.
Wishan; New Advances in Personal Computer Applications for Cephalometric Analysis, Growth Prediction, Surgical Treatment Planning and Imaging Processing; Symposium: Computerized Facial Imaging in Oral and Maxilofacial Surgery; p. 5; Presented on Sep. 13, 1990.
Witt et al.; The wear-timing measuring device in orthodontics-cui bono? Reflections on the state-of-the-art in wear-timing measurement and compliance research in orthodontics; Fortschr Kieferorthop.; 52(3); pp. 117-125; (Translation Included) Jun. 1991.
Wolf; Three-dimensional structure determination of semi-transparent objects from holographic data; Optics Communications; 1(4); pp. 153-156; Sep. 1969.
Wong et al.; Computer-aided design/computer-aided manufacturing surgical guidance for placement of dental implants: Case report; Implant Dentistry; 16(2); pp. 123-130; Sep. 2007.
Wong et al.; The uses of orthodontic study models in diagnosis and treatment planning; Hong Kong Dental Journal; 3(2); pp. 107-115; Dec. 2006.
WSCG'98—Conference Program, The Sixth International Conference in Central Europe on Computer Graphics and Visualization '98; pp. 1-7; retrieved from the Internet on Nov. 5, 2004, (http://wscg.zcu.cz/wscg98/wscg98.htm); Feb. 9-13, 1998.
Xia et al.; Three-Dimensional Virtual-Reality Surgical Planning and Soft-Tissue Prediction for Orthognathic Surgery; IEEE Transactions on Information Technology in Biomedicine; 5(2); pp. 97-107; Jun. 2001.
Yaltara Software; Visual planner; 1 page; retrieved from the internet (http://yaltara.com/vp/) on Jun. 6, 2008.
Yamada et al.; Simulation of fan-beam type optical computed-tomography imaging of strongly scattering and weakly absorbing media; Applied Optics; 32(25); pp. 4808-4814; Sep. 1, 1993.
Yamamoto et al.; Optical Measurement of Dental Cast Profile and Application to Analysis of Three-Dimensional Tooth Movement in Orthodontics; Front. Med. Biol. Eng., 1(2); pp. 119-130; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1988.
Yamamoto et al.; Three-Dimensional Measurement of Dental Cast Profiles and Its Applications to Orthodontics; Conf. Proc. IEEE Eng. Med. Biol. Soc.; 12(5); pp. 2052-2053; Nov. 1990.
Yamany et al.; A System for Human Jaw Modeling Using Intra-Oral Images; Proc. of the 20th Annual Conf. of the IEEE Engineering in Medicine and Biology Society; vol. 2; pp. 563-566; Oct. 1998.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); 111. The General Concept of the D.P. Method and Its Therapeutic Effect, Part 1, Dental and Functional Reversed Occlusion Case Reports; Nippon Dental Review; 457; pp. 146-164; 43 pages; (Author Manuscript); Nov. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); I. The D.P. Concept and Implementation of Transparent Silicone Resin (Orthocon); Nippon Dental Review; 452; pp. 61-74; 32 pages; (Author Manuscript); Jun. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); II. The D.P. Manufacturing Procedure and Clinical Applications; Nippon Dental Review; 454; pp. 107-130; 48 pages; (Author Manuscript); Aug. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); III—The General Concept of the D.P. Method and Its Therapeutic Effect, Part 2. Skeletal Reversed Occlusion Case Reports; Nippon Dental Review; 458; pp. 112-129; 40 pages; (Author Manuscript); Dec. 1980.
Zhang et al.; Visual speech features extraction for improved speech recognition; 2002 IEEE International conference on Acoustics, Speech and Signal Processing; vol. 2; 4 pages; May 13-17, 2002.
Zhou et al.; Biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review; Electroanalysis; 24(2); pp. 197-209; Feb. 2012.
Zhou et al.; Bio-logic analysis of injury biomarker patterns in human serum samples; Talanta; 83(3); pp. 955-959; Jan. 15, 2011.
Morton et al.; U.S. Appl. No. 16/177,067 entitled “Dental appliance having selective occlusal loading and controlled intercuspation,” filed Oct. 31, 2018.
Akopov et al.; U.S. Appl. No. 16/178,491 entitled “Automatic treatment planning,” filed Nov. 1, 2018.
O'Leary et al.; U.S. Appl. No. 16/195,701 entitled “Orthodontic retainers,” filed Nov. 19, 2018.
Shanjani et al., U.S. Appl. No. 16/206,894 entitled “Sensors for monitoring oral appliances,” filed Nov. 28, 2019.
Shanjani et al., U.S. Appl. No. 16/231,906 entitled “Augmented reality enhancements for dental practitioners,” filed Dec. 24, 2018.
Kopleman et al., U.S. Appl. No. 16/220,381 entitled “Closed loop adaptive orthodontic treatment methods and apparatuses,” filed Dec. 14, 2018.
Sabina et al., U.S. Appl. No. 16/258,516 entitled “Diagnostic intraoral scanning”, filed Jan. 25, 2019.
Sabina et al., U.S. Appl. No. 16/258,523 entitled “Diagnostic intraoral tracking”, filed Jan. 25, 2019.
Sabina et al., U.S. Appl. No. 16/258,527 entitled “Diagnostic intraoral methods and apparatuses”, filed Jan. 25, 2019.
Culp; U.S. Appl. No. 16/236,220 entitled “Laser cutting,” filed Dec. 28, 2018.
Culp; U.S. Appl. No. 16/265,287 entitled “Laser cutting,” filed Feb. 1, 2019.
Arnone et al.; U.S. Appl. No. 16/235,449 entitled “Method and system for providing indexing and cataloguing of orthodontic related treatment profiles and options,” filed Dec. 28, 2018.
Mason et al.; U.S. Appl. No. 16/374,648 entitled “Dental condition evaluation and treatment,” filed Apr. 3, 2019.
Brandt et al.; U.S. Appl. No. 16/235,490 entitled “Dental wire attachment,” filed Dec. 28, 2018.
Kuo; U.S. Appl. No. 16/270,891 entitled “Personal data file,” filed Feb. 8, 2019.
Bernabe et al.; Are the lower incisors the best predictors for the unerupted canine and premolars sums? An analysis of Peruvian sample; The Angle Orthodontist; 75(2); pp. 202-207; Mar. 2005.
Dental Monitoring; Basics: How to put the cheek retractor?; 1 page (Screenshot); retrieved from the interenet (https://www.youtube.com/watch?v=6K1HXw4Kq3c); May 27, 2016.
Dental Monitoring; Dental monitoring tutorial; 1 page (Screenshot); retrieved from the internet (https:www.youtube.com/watch?v=Dbe3udOf9_c); Mar. 18, 2015.
Ecligner Selfie; Change your smile; 1 page (screenshot); retrieved from the internet (https:play.google.com/store/apps/details?id=parklict.ecligner); on Feb. 13, 2018.
Lawrence; Salivary markers of systemic disease: noninvasive diagnosis of disease and monitoring of general health; Journal of the Canadian Dental Association Clinical Practice; 68(3); pp. 170-174; Mar. 2002.
Martinelli et al.; Prediction of lower permanent canine and premolars width by correlation methods; The Angle Orthodontist; 75(5); pp. 805-808; Sep. 2005.
Nishanian et al.; Oral fluids as an alternative to serum for measurement of markers of immune activation; Clinical and Diagnostic Laboratory Immunology; 5(4); pp. 507-512; Jul. 1998.
Nourallah et al.; New regression equations for prediciting the size of unerupted canines and premolars in a contemporary population; The Angle Orthodontist; 72(3); pp. 216-221; Jun. 2002.
Paredes et al.; A new, accurate and fast digital method to predict unerupted tooth size; The Angle Orthodontist; 76(1); pp. 14-19; Jan. 2006.
Svec et al.; Molded rigid monolithic porous polymers: an inexpensive, efficient, and versatile alternative to beads for design of materials for numerous applications; Industrial and Engineering Chemistry Research; 38(1); pp. 34-48; Jan. 4, 1999.
U.S. Food and Drug Administration; Color additives; 3 pages; retrieved from the internet (https://websrchive.org/web/20070502213911/http://www.cfsan.fda.gov/˜dms/col-toc.html); last known as May 2, 2007.
Chen et al.; U.S. Appl. No. 16/223,019 entitled “Release agent receptacle,” filed Dec. 17, 2018.
Related Publications (1)
Number Date Country
20160302885 A1 Oct 2016 US
Continuations (1)
Number Date Country
Parent 13365167 Feb 2012 US
Child 15195588 US