Users are increasingly relying upon various electronic and computing devices to store, track, and update various types of information and handle various types of tasks. For example, many users rely upon computing devices to compose emails and notes and input and store information, user schedules, task lists, and other such information. The types of lists, alerts, and messages often include more information than can be displayed on a display screen at any one time. Conventional approaches show a portion of the text in such a situation, but a portion of the text, such as the first two lines of an email, is often inadequate to determine a context, key points, or the main point of the text. Accordingly, users often have to take time to open and read a message to determine whether it contains anything important, which can be time consuming and can distract the user from performing other tasks. As technology advances and as people are increasingly using and relying on computing devices in a wider variety of ways, it can be advantageous to adapt the ways in which information is presented to users and the ways in which users access the same.
Various embodiments in accordance with the present disclosure will be described with reference to the drawings, in which:
Systems and methods in accordance with various embodiments of the present disclosure may overcome one or more of the aforementioned and other deficiencies experienced in conventional approaches to presenting information via a computing device. In particular, various approaches can generate and provide summaries of information for display on a display screen or other such element of a computing device. In various embodiments, a body of text can be summarized, with the amount by which the body of text is summarized being determined based in part by the amount of presentable or displayable area available on a particular device, application, or combination thereof. For example, a two page email can be condensed or truncated in a first summarization to a single line to display in an email inbox view and a second summarization condensing the email to four lines could be generated to display as a header or introduction of the email to highlight key points, dates, times, or other information associated with a set of keywords singled out as having a particular importance or relevance.
Text summarization involves reducing a body of text into a short set of words, phrases, or a paragraph that convey the main point of the text. In at least one embodiment, text summaries are generated by analyzing a body of text to identify keywords from a library of action words associated with topics, such as dates, action required, friends, family, events, and so on. The action words include a predetermined rank and are weighted by importance or relevance to these and other topics. For example, this ranking can be based on a global ranking as determined by text mining large sources of textual information. The ranking can be based on text mining communications of the user, thereby determining a local or personalized ranking for the user. Or the action words can incorporate a ranking that includes a combination of global and local action word rankings. This ranking may change over time as life changes and new interests evolve for a particular user. Once keywords are identified, a relative ranking of the identified keywords is determined for the body of text based in part on the rank or weighting associated with each identified keyword from the library of action words. Subsequently, a summary is generated using the ranked identified keywords according to a text summary algorithm. This method of text summarization is known as an extractive method because the method selects a subset of existing words, phrases, or sentences from the original text and reduces the same down to those words, phrases, or sentences to form the summary. Abstractive text summarization methods can also be used, in accordance with various embodiments. Abstractive methods build an internal semantic representation of the body of text and subsequently use natural language generation algorithms to generate the summaries. These methods tend to be closer to natural human language and often contain words not explicitly present in the original body of text. Extraction methods tend to copy the information deemed most important by the system or algorithm to the summary, such as keyword or phrases, while abstraction methods involve paraphrasing sections of the body of text. Various other interaction and execution approaches can be utilized as well or in combination within the scope of the various embodiments.
Various other functions and advantages are described and suggested below as may be provided in accordance with the various embodiments.
Instead of representing a social feed for a social media website, application, or other entity,
The one or more servers 510 includes a server side text summary module 512 associated with database 514 and can, in various embodiments, generate summaries of appropriate lengths and provide the summaries to the client device 502. The one or more servers 510, when pushing or providing information, updates, or other content to the client device 502, may additionally provide the device with a summary of the information conveyed or contained therein for known applications. For example, a one line summary of an email for an inbox and a multiple line summary of the email for the header summary could be generated for each email as it is received by the server 510 from a 3rd party service provider to be forwarded to the device 502. In this example, the 3rd party service provider could also maintain the server 510. In some embodiments, a text summarizing application or client side text summary module 504 associated with local database 506 can be installed on the client device 502, such that much of the information gathering, summarizing, or other such aspects can be executed on the client device 502. In this example, the device 502 could generate summaries as information, such as emails, news updates, and the like, is received. Alternatively, or in addition, as information is received or pushed to the one or more device(s) 502, a device could forward the information to the server 510 to request the summaries. In some embodiments, default summaries could be automatically provided as a predetermined routine for certain information, data types, or particular applications. In this example, if text information not part of a predetermined routine is received, the device 502 could forward the information to the server 510 to request a summary of a particular length. Various other interaction and execution approaches can be utilized as well within the scope of the various embodiments.
In various embodiments, the summaries are generated using any text summary method or algorithm to identify relevant portions of a body of text to display to a user. Text summary methods or algorithms search portions of text to identify keywords or words that imply an action, such as nouns or pronouns and verbs to identify key topics or actions associated with a body of text. This method of text summarization is known as an extractive method because the method selects a subset of existing words, phrases, or sentences from the original text and reduces the same down to those words, phrases, or sentences to form the summary. Extraction methods tend to copy the information deemed most important by the system or algorithm to the summary, such as keyword or phrases, while abstraction methods involve paraphrasing sections of the body of text. In one embodiment, a text summary method could include identifying a keyword(s) or action word(s) and incorporating a predetermined number of words before and/or after the keyword(s) or action word(s) as determined by a machine learning algorithm, for example. Various other types of information and techniques can be utilized as well within the scope of the various embodiments.
In one embodiment, the identified the keyword(s) or action word(s), such as verbs and nouns, can be pieced together to create the summaries. For example, from a voicemail, email, or text message, the message “Pick up mom at 5:30” could be pieced together by including the verb pick up, the noun mom, and the time. In another embodiment, a summary algorithm can be tipped off to important information based on the type of application the text comes from. For example, a body of text from a calendar application can tip off a text summary algorithm to the importance of a date, time, and location. Therefore, in this example, the algorithm can be more sensitive to keywords associated with a date, time, and location. This example can be extended to other applications or sources of information within the scope of various embodiments.
The text summary methods or algorithms may also include supervised and/or machine learning techniques. Supervised learning is a machine learning technique of inferring a summary from training data. A supervised learning algorithm, therefore, analyzes the training data and produces an inferred summary based thereon. The training data can consist of a set of training examples, such as literary work, a user's past communications, and the like. The training data can be determined by a technique called text mining which is a process of deriving information from various text sources. This information is typically derived through the devising of patterns and trends through means such as statistical pattern learning. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output. Typical text mining tasks include text categorization, text clustering, concept/entity extraction, production of granular taxonomies, sentiment analysis, document summarization, and entity relation modeling (i.e., learning relations between named entities). Analysis of this information involves information retrieval, lexical analysis to study word frequency distributions, pattern recognition, tagging/annotation, information extraction, data mining techniques including link and association analysis, visualization, and predictive analytics. This information can be used to train a text summary method or algorithm to pick out keywords, key components of sentences, and/or key sentences from a body of text.
Abstractive text summarization methods can also be used, in accordance with various embodiments. Abstractive methods build an internal semantic representation of the body of text and subsequently use natural language generation algorithms to generate the summaries. These methods tend to be closer to natural human language and often contain words not explicitly present in the original body of text. Various other methods, techniques, and approaches can be utilized as well or in combination within the scope of the various embodiments.
In this example, the computing device 700 has a display screen 702 (e.g., an LCD element) operable to display information or image content to one or more users or viewers of the device. The display screen of some embodiments displays information to the viewers facing the display screen (e.g., on the same side of the computing device as the display screen). The computing device in this example can include one or more imaging elements, in this example including two image capture elements 704 on the front of the device and at least one image capture element 710 on the back of the device. It should be understood, however, that image capture elements could also, or alternatively, be placed on the sides or corners of the device, and that there can be any appropriate number of capture elements of similar or different types. Each image capture element 704 and 710 may be, for example, a camera, a charge-coupled device (CCD), a motion detection sensor or an infrared sensor, or other image capturing technology.
As discussed, the device can use the images (e.g., still or video) captured from the imaging elements 704 and 710 to generate a three-dimensional simulation of the surrounding environment (e.g., a virtual reality of the surrounding environment for display on the display element of the device). Further, the device can utilize outputs from at least one of the image capture elements 704 and 710 to assist in determining the location and/or orientation of a user and in recognizing nearby persons, objects, or locations. For example, if the user is holding the device, the captured image information can be analyzed (e.g., using mapping information about a particular area) to determine the approximate location and/or orientation of the user. The captured image information may also be analyzed to recognize nearby persons, objects, or locations (e.g., by matching parameters or elements from the mapping information).
The computing device can also include at least one microphone or other audio capture elements capable of capturing audio data, such as words spoken by a user of the device, music being hummed by a person near the device, or audio being generated by a nearby speaker or other such component, although audio elements are not required in at least some devices. In this example there are three microphones, one microphone 708 on the front side, one microphone 712 on the back, and one microphone 706 on or near a top or side of the device. In some devices there may be only one microphone, while in other devices there might be at least one microphone on each side and/or corner of the device, or in other appropriate locations.
The device 700 in this example also includes one or more orientation- or position-determining elements 718 operable to provide information such as a position, direction, motion, or orientation of the device. These elements can include, for example, accelerometers, inertial sensors, electronic gyroscopes, and electronic compasses.
The example device also includes at least one communication mechanism 714, such as may include at least one wired or wireless component operable to communicate with one or more computing devices. The device also includes a power system 716, such as may include a battery operable to be recharged through conventional plug-in approaches, or through other approaches such as capacitive charging through proximity with a power mat or other such device. Various other elements and/or combinations are possible as well within the scope of various embodiments.
The device typically will include some type of display element 806, such as a touch screen, electronic ink (e-ink), organic light emitting diode (OLED) or liquid crystal display (LCD), although devices such as portable media players might convey information via other means, such as through audio speakers.
As discussed, the device in many embodiments will include at least one imaging element 808, such as one or more cameras that are able to capture images of the surrounding environment and that are able to image a user, people, or objects in the vicinity of the device. The image capture element can include any appropriate technology, such as a CCD image capture element having a sufficient resolution, focal range, and viewable area to capture an image of the user when the user is operating the device. Methods for capturing images using a camera element with a computing device are well known in the art and will not be discussed herein in detail. It should be understood that image capture can be performed using a single image, multiple images, periodic imaging, continuous image capturing, image streaming, etc. Further, a device can include the ability to start and/or stop image capture, such as when receiving a command from a user, application, or other device.
The example computing device 800 also includes at least one orientation determining element 710 able to determine and/or detect orientation and/or movement of the device. Such an element can include, for example, an accelerometer or gyroscope operable to detect movement (e.g., rotational movement, angular displacement, tilt, position, orientation, motion along a non-linear path, etc.) of the device 800. An orientation determining element can also include an electronic or digital compass, which can indicate a direction (e.g., north or south) in which the device is determined to be pointing (e.g., with respect to a primary axis or other such aspect).
As discussed, the device in many embodiments will include at least a positioning element 812 for determining a location of the device (or the user of the device). A positioning element can include or comprise a GPS or similar location-determining elements operable to determine relative coordinates for a position of the device. As mentioned above, positioning elements may include wireless access points, base stations, etc. that may either broadcast location information or enable triangulation of signals to determine the location of the device. Other positioning elements may include QR codes, barcodes, RFID tags, NFC tags, etc. that enable the device to detect and receive location information or identifiers that enable the device to obtain the location information (e.g., by mapping the identifiers to a corresponding location).
Various embodiments can include one or more such elements in any appropriate combination.
As mentioned above, some embodiments use the element(s) to track the location of a device. Upon determining an initial position of a device (e.g., using GPS), the device of some embodiments may keep track of the location of the device by using the element(s), or in some instances, by using the orientation determining element(s) as mentioned above, or a combination thereof. As should be understood, the algorithms or mechanisms used for determining a position and/or orientation can depend at least in part upon the selection of elements available to the device.
The example device also includes one or more wireless components 814 operable to communicate with one or more computing devices within a communication range of the particular wireless channel. The wireless channel can be any appropriate channel used to enable devices to communicate wirelessly, such as Bluetooth, cellular, NFC, or Wi-Fi channels. It should be understood that the device can have one or more conventional wired communications connections as known in the art.
The device also includes a power system 816, such as may include a battery operable to be recharged through conventional plug-in approaches, or through other approaches such as capacitive charging through proximity with a power mat or other such device. Various other elements and/or combinations are possible as well within the scope of various embodiments.
In some embodiments the device can include at least one additional input device 818 able to receive conventional input from a user. This conventional input can include, for example, a push button, touch pad, touch screen, wheel, joystick, keyboard, mouse, keypad, or any other such device or element whereby a user can input a command to the device. These I/O devices could even be connected by a wireless infrared or Bluetooth or other link as well in some embodiments. Some devices also can include a microphone or other audio capture element that accepts voice or other audio commands. For example, a device might not include any buttons at all, but might be controlled only through a combination of visual and audio commands, such that a user can control the device without having to be in contact with the device.
In some embodiments, a device can include the ability to activate and/or deactivate detection and/or command modes, such as when receiving a command from a user or an application, or retrying to determine an audio input or video input, etc. In some embodiments, a device can include an infrared detector or motion sensor, for example, which can be used to activate one or more detection modes. For example, a device might not attempt to detect or communicate with devices when there is not a user in the room. If an infrared detector (i.e., a detector with one-pixel resolution that detects changes in state) detects a user entering the room, for example, the device can activate a detection or control mode such that the device can be ready when needed by the user, but conserve power and resources when a user is not nearby.
A computing device, in accordance with various embodiments, may include a light-detecting element that is able to determine whether the device is exposed to ambient light or is in relative or complete darkness. Such an element can be beneficial in a number of ways. In certain conventional devices, a light-detecting element is used to determine when a user is holding a cell phone up to the user's face (causing the light-detecting element to be substantially shielded from the ambient light), which can trigger an action such as the display element of the phone to temporarily shut off (since the user cannot see the display element while holding the device to the user's ear). The light-detecting element could be used in conjunction with information from other elements to adjust the functionality of the device. For example, if the device is unable to detect a user's view location and a user is not holding the device but the device is exposed to ambient light, the device might determine that it has likely been set down by the user and might turn off the display element and disable certain functionality. If the device is unable to detect a user's view location, a user is not holding the device and the device is further not exposed to ambient light, the device might determine that the device has been placed in a bag or other compartment that is likely inaccessible to the user and thus might turn off or disable additional features that might otherwise have been available. In some embodiments, a user must either be looking at the device, holding the device or have the device out in the light in order to activate certain functionality of the device. In other embodiments, the device may include a display element that can operate in different modes, such as reflective (for bright situations) and emissive (for dark situations). Based on the detected light, the device may change modes.
Using the microphone, the device can disable other features for reasons substantially unrelated to power savings. For example, the device can use voice recognition to determine people near the device, such as children, and can disable or enable features, such as Internet access or parental controls, based thereon. Further, the device can analyze recorded noise to attempt to determine an environment, such as whether the device is in a car or on a plane, and that determination can help to decide which features to enable/disable or which actions are taken based upon other inputs. If voice recognition is used, words can be used as input, either directly spoken to the device or indirectly as picked up through conversation. For example, if the device determines that it is in a car, facing the user and detects a word such as “hungry” or “eat,” then the device might turn on the display element and display information for nearby restaurants, etc. A user can have the option of turning off voice recording and conversation monitoring for privacy and other such purposes.
In some of the above examples, the actions taken by the device relate to deactivating certain functionality for purposes of reducing power consumption. It should be understood, however, that actions can correspond to other functions that can adjust similar and other potential issues with use of the device. For example, certain functions, such as requesting Web page content, searching for content on a hard drive and opening various applications, can take a certain amount of time to complete. For devices with limited resources, or that have heavy usage, a number of such operations occurring at the same time can cause the device to slow down or even lock up, which can lead to inefficiencies, degrade the user experience and potentially use more power.
In order to address at least some of these and other such issues, approaches in accordance with various embodiments can also utilize information such as user gaze direction to activate resources that are likely to be used in order to spread out the need for processing capacity, memory space and other such resources.
In some embodiments, the device can have sufficient processing capability, and the imaging element and associated analytical algorithm(s) may be sensitive enough to distinguish between the motion of the device, motion of a user's head, motion of the user's eyes and other such motions, based on the captured images alone. In other embodiments, such as where it may be desirable for the process to utilize a fairly simple imaging element and analysis approach, it can be desirable to include at least one orientation determining element that is able to determine a current orientation of the device. In one example, the at least one orientation determining element is at least one single- or multi-axis accelerometer that is able to detect factors such as three-dimensional position of the device and the magnitude and direction of movement of the device, as well as vibration, shock, etc. Methods for using elements such as accelerometers to determine orientation or movement of a device are also known in the art and will not be discussed herein in detail. Other elements for detecting orientation and/or movement can be used as well within the scope of various embodiments for use as the orientation determining element. When the input from an accelerometer or similar element is used along with the input from the camera, the relative movement can be more accurately interpreted, allowing for a more precise input and/or a less complex image analysis algorithm.
When using an imaging element of the computing device to detect motion of the device and/or user, for example, the computing device can use the background in the images to determine movement. For example, if a user holds the device at a fixed orientation (e.g. distance, angle, etc.) to the user and the user changes orientation to the surrounding environment, analyzing an image of the user alone will not result in detecting a change in an orientation of the device. Rather, in some embodiments, the computing device can still detect movement of the device by recognizing the changes in the background imagery behind the user. So, for example, if an object (e.g. a window, picture, tree, bush, building, car, etc.) moves to the left or right in the image, the device can determine that the device has changed orientation, even though the orientation of the device with respect to the user has not changed. In other embodiments, the device may detect that the user has moved with respect to the device and adjust accordingly. For example, if the user tilts their head to the left or right with respect to the device, the content rendered on the display element may likewise tilt to keep the content in orientation with the user.
As discussed, different approaches can be implemented in various environments in accordance with the described embodiments. For example,
The illustrative environment includes at least one application server 908 and a data store 910. It should be understood that there can be several application servers, layers or other elements, processes or components, which may be chained or otherwise configured, which can interact to perform tasks such as obtaining data from an appropriate data store. As used herein, the term “data store” refers to any device or combination of devices capable of storing, accessing and retrieving data, which may include any combination and number of data servers, databases, data storage devices and data storage media, in any standard, distributed or clustered environment. The application server 908 can include any appropriate hardware and software for integrating with the data store 910 as needed to execute aspects of one or more applications for the client device and handling a majority of the data access and business logic for an application. The application server provides access control services in cooperation with the data store and is able to generate content such as text, graphics, audio and/or video to be transferred to the user, which may be served to the user by the Web server 906 in the form of HTML, XML or another appropriate structured language in this example. The handling of all requests and responses, as well as the delivery of content between the client device 902 and the application server 908, can be handled by the Web server 906. It should be understood that the Web and application servers are not required and are merely example components, as structured code discussed herein can be executed on any appropriate device or host machine as discussed elsewhere herein.
The data store 910 can include several separate data tables, databases or other data storage mechanisms and media for storing data relating to a particular aspect. For example, the data store illustrated includes mechanisms for storing content (e.g., production data) 912 and user information 916, which can be used to serve content for the production side. The data store is also shown to include a mechanism for storing log or session data 914. It should be understood that there can be many other aspects that may need to be stored in the data store, such as page image information and access rights information, which can be stored in any of the above listed mechanisms as appropriate or in additional mechanisms in the data store 910. The data store 910 is operable, through logic associated therewith, to receive instructions from the application server 908 and obtain, update or otherwise process data in response thereto. In one example, a user might submit a search request for a certain type of item. In this case, the data store might access the user information to verify the identity of the user and can access the catalog detail information to obtain information about items of that type. The information can then be returned to the user, such as in a results listing on a Web page that the user is able to view via a browser on the user device 902. Information for a particular item of interest can be viewed in a dedicated page or window of the browser.
Each server typically will include an operating system that provides executable program instructions for the general administration and operation of that server and typically will include computer-readable medium storing instructions that, when executed by a processor of the server, allow the server to perform its intended functions. Suitable implementations for the operating system and general functionality of the servers are known or commercially available and are readily implemented by persons having ordinary skill in the art, particularly in light of the disclosure herein.
The environment in one embodiment is a distributed computing environment utilizing several computer systems and components that are interconnected via communication links, using one or more computer networks or direct connections. However, it will be appreciated by those of ordinary skill in the art that such a system could operate equally well in a system having fewer or a greater number of components than are illustrated in
The various embodiments can be further implemented in a wide variety of operating environments, which in some cases can include one or more user computers or computing devices which can be used to operate any of a number of applications. User or client devices can include any of a number of general purpose personal computers, such as desktop or laptop computers running a standard operating system, as well as cellular, wireless and handheld devices running mobile software and capable of supporting a number of networking and messaging protocols. Such a system can also include a number of workstations running any of a variety of commercially-available operating systems and other known applications for purposes such as development and database management. These devices can also include other computing devices, such as dummy terminals, thin-clients, gaming systems and other devices capable of communicating via a network.
Most embodiments utilize at least one network that would be familiar to those skilled in the art for supporting communications using any of a variety of commercially-available protocols, such as TCP/IP, OSI, FTP, UPnP, NFS, CIFS and AppleTalk. The network can be, for example, a local area network, a wide-area network, a virtual private network, the Internet, an intranet, an extranet, a public switched telephone network, an infrared network, a wireless network and any combination thereof.
In embodiments utilizing a Web server, the Web server can run any of a variety of server or mid-tier applications, including HTTP servers, FTP servers, CGI servers, data servers, Java servers and business application servers. The server(s) may also be capable of executing programs or scripts in response requests from user devices, such as by executing one or more Web applications that may be implemented as one or more scripts or programs written in any programming language, such as Java®, C, C# or C++ or any scripting language, such as Perl, Python or TCL, as well as combinations thereof. The server(s) may also include database servers, including without limitation those commercially available from Oracle®, Microsoft®, Sybase® and IBM®.
The environment can include a variety of data stores and other memory and storage media as discussed above. These can reside in a variety of locations, such as on a storage medium local to (and/or resident in) one or more of the computers or remote from any or all of the computers across the network. In a particular set of embodiments, the information may reside in a storage-area network (SAN) familiar to those skilled in the art. Similarly, any necessary files for performing the functions attributed to the computers, servers or other network devices may be stored locally and/or remotely, as appropriate. Where a system includes computerized devices, each such device can include hardware elements that may be electrically coupled via a bus, the elements including, for example, at least one central processing unit (CPU), at least one input device (e.g., a mouse, keyboard, controller, touch-sensitive display element or keypad) and at least one output device (e.g., a display device, printer or speaker). Such a system may also include one or more storage devices, such as disk drives, optical storage devices and solid-state storage devices such as random access memory (RAM) or read-only memory (ROM), as well as removable media devices, memory cards, flash cards, etc.
Such devices can also include a computer-readable storage media reader, a communications device (e.g., a modem, a network card (wireless or wired), an infrared communication device) and working memory as described above. The computer-readable storage media reader can be connected with, or configured to receive, a computer-readable storage medium representing remote, local, fixed and/or removable storage devices as well as storage media for temporarily and/or more permanently containing, storing, transmitting and retrieving computer-readable information. The system and various devices also typically will include a number of software applications, modules, services or other elements located within at least one working memory device, including an operating system and application programs such as a client application or Web browser. It should be appreciated that alternate embodiments may have numerous variations from that described above. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets) or both. Further, connection to other computing devices such as network input/output devices may be employed.
Storage media and computer readable media for containing code, or portions of code, can include any appropriate media known or used in the art, including storage media and communication media, such as but not limited to volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage and/or transmission of information such as computer readable instructions, data structures, program modules or other data, including RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices or any other medium which can be used to store the desired information and which can be accessed by a system device. Based on the disclosure and teachings provided herein, a person of ordinary skill in the art will appreciate other ways and/or methods to implement the various embodiments.
The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. It will, however, be evident that various modifications and changes may be made thereunto without departing from the broader spirit and scope of the invention as set forth in the claims.
This application is a continuation of U.S. application Ser. No. 13/625,547, filed on Sep. 24, 2012, the content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6374209 | Yoshimi et al. | Apr 2002 | B1 |
6557042 | He et al. | Apr 2003 | B1 |
6963830 | Nakao | Nov 2005 | B1 |
7117437 | Chen et al. | Oct 2006 | B2 |
7162413 | Johnson et al. | Jan 2007 | B1 |
7302280 | Hinckley et al. | Nov 2007 | B2 |
7376893 | Chen et al. | May 2008 | B2 |
7451395 | Brants et al. | Nov 2008 | B2 |
7468805 | Lo et al. | Dec 2008 | B2 |
7603435 | Welingkar et al. | Oct 2009 | B2 |
7720742 | Mauro et al. | May 2010 | B1 |
8095613 | Perkowitz et al. | Jan 2012 | B1 |
8200487 | Peters | Jun 2012 | B2 |
8423995 | Hsieh et al. | Apr 2013 | B2 |
8819001 | Zhang | Aug 2014 | B1 |
8966361 | Lee | Feb 2015 | B2 |
10120438 | Osman | Nov 2018 | B2 |
20020003547 | Wang et al. | Jan 2002 | A1 |
20020138582 | Chandra et al. | Sep 2002 | A1 |
20030050778 | Nguyen et al. | Mar 2003 | A1 |
20030122652 | Himmelstein | Jul 2003 | A1 |
20030164848 | Dutta et al. | Sep 2003 | A1 |
20040029085 | Hu | Feb 2004 | A1 |
20040098671 | Graham | May 2004 | A1 |
20040111467 | Willis | Jun 2004 | A1 |
20040230415 | Riezler et al. | Nov 2004 | A1 |
20050131935 | O'Leary et al. | Jun 2005 | A1 |
20050154702 | Liu | Jul 2005 | A1 |
20050278633 | Kemp | Dec 2005 | A1 |
20060017692 | Wehrenberg | Jan 2006 | A1 |
20060029262 | Fujimatsu | Feb 2006 | A1 |
20060053154 | Yano | Mar 2006 | A1 |
20060133586 | Kasai et al. | Jun 2006 | A1 |
20070114771 | Wanami et al. | May 2007 | A1 |
20070143343 | Iverson | Jun 2007 | A1 |
20070150451 | Brei | Jun 2007 | A1 |
20070202914 | Maaloe | Aug 2007 | A1 |
20070220010 | Ertugrul | Sep 2007 | A1 |
20070299859 | Gupta et al. | Dec 2007 | A1 |
20080146210 | Somani | Jun 2008 | A1 |
20080270119 | Suzuki | Oct 2008 | A1 |
20080287103 | Itou | Nov 2008 | A1 |
20080300872 | Basu et al. | Dec 2008 | A1 |
20090006369 | Guday et al. | Jan 2009 | A1 |
20090070101 | Masuyama et al. | Mar 2009 | A1 |
20090084249 | Kemp et al. | Apr 2009 | A1 |
20090125589 | Anand et al. | May 2009 | A1 |
20090265666 | Hsieh et al. | Oct 2009 | A1 |
20100138416 | Bellotti | Jun 2010 | A1 |
20100145678 | Csomasi et al. | Jun 2010 | A1 |
20100159995 | Stallings | Jun 2010 | A1 |
20100174979 | Mansfield | Jul 2010 | A1 |
20100240402 | Wickman et al. | Sep 2010 | A1 |
20110004845 | Ciabarra | Jan 2011 | A1 |
20110023128 | Furuya | Jan 2011 | A1 |
20110071973 | Zhang | Mar 2011 | A1 |
20110161085 | Boda et al. | Jun 2011 | A1 |
20110161795 | Bellwood | Jun 2011 | A1 |
20110314041 | Drucker et al. | Dec 2011 | A1 |
20120042257 | Aftab et al. | Feb 2012 | A1 |
20120115438 | Umealu | May 2012 | A1 |
20120209935 | Harter et al. | Aug 2012 | A1 |
20120271913 | Tallgren et al. | Oct 2012 | A1 |
20120278475 | Papakipos et al. | Nov 2012 | A1 |
20120288139 | Singhar | Nov 2012 | A1 |
20120290289 | Manera et al. | Nov 2012 | A1 |
20130006973 | Caldwell | Jan 2013 | A1 |
20130036117 | Fisher et al. | Feb 2013 | A1 |
20130185411 | Martin | Jul 2013 | A1 |
20130191735 | Kumar et al. | Jul 2013 | A1 |
20130226559 | Lim | Aug 2013 | A1 |
20130246595 | O'Donoghue et al. | Sep 2013 | A1 |
20130253910 | Turner et al. | Sep 2013 | A1 |
20130268839 | Lefebvre et al. | Oct 2013 | A1 |
20130297704 | Alberth, Jr. et al. | Nov 2013 | A1 |
20130325481 | Van Os et al. | Dec 2013 | A1 |
20130332526 | Hurley et al. | Dec 2013 | A1 |
20130339425 | Carion et al. | Dec 2013 | A1 |
20140047331 | Feldman et al. | Feb 2014 | A1 |
20140070080 | Ruh | Mar 2014 | A1 |
20140082208 | Ojanpera | Mar 2014 | A1 |
20140195252 | Gruber et al. | Jul 2014 | A1 |
20140297647 | Shim et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2007029207 | Mar 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20200034433 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13625547 | Sep 2012 | US |
Child | 16459606 | US |