This invention relates to identity document verification and in particular to verification of identity documents such as passports by immigration authorities at airports, sea ports and other border crossings.
In the air transport industry a long standing problem exists of how to handle passengers through immigration when passengers are travelling from one country to another. Traditionally passengers are required to show a passport or other identity document to an immigration official for checking before being allowed into a country. This process is time consuming and requires considerable resources, both in terms of equipment and manpower to be provided by the government of the country at which the passengers arrive. In times of heightened security passport checks take longer to perform and at peak times, such as during the summer holiday season, passenger volumes rise greatly. These two factors place a great demand on immigration systems and can result in long queues of passengers leading to passenger dissatisfaction.
More recently, some governments have introduced biometric passports, sometimes referred to as e-passports in which the passport holder's details are stored electronically in a form that can be machine read. The details stored are the data that is printed on the passport's data page: the holder's name, date of birth, a digital representation of the holder's photograph that appears on the passport, other biographic information and a biometric identifier.
Biometric passports have the advantage that they enable use of automated border controls (ABCs) which use electronic gates and facial recognition software, A passenger presents their passport for scanning and the gate then scans their face and performs a match against the digital image of the passport stored on the passport. If the images match, and the other personal data is verified, the gate opens and the passenger can proceed.
Although biometric passports have enabled a reduction in queuing times at airport immigration, and a reduction in staffing numbers, they are still relatively slow and require a considerable capital outlay. The industry has identified a general need to improve the immigration process while retaining high levels of security.
Amongst the initiatives being considered are those that provide a digital identity token for passengers. One known example is Self-Sovereign Identity (SSI) which is descried in the following references: https://bitsoblocks.net/2017/05/17/a-gentle-introduction-to-self-sovereign-identity/https://sovrin.org/wp-content/uploads/2017/06/The-Inevitable-Rise-of-Self-Soverign-identity.pdf
Self-Sovereign Identity relies on three basic concepts: claims, proofs and attestation. A claim is an assertion of identity made by a person or a business, for example ‘my name is Peter, I was born on 14 May 1956’. A proof is some form of document that provides evidence for the claim. Proofs come in all sorts of formats. Usually for individuals proofs may comprise photocopies of passports, birth certificates, and utility bills or the original documents. For companies proofs may comprise a bundle of incorporation and ownership structure documents. An attestation is a third party validation that according to their records, the claims are true. For example a University may attest to the fact that someone studied there and earned a degree. An attestation from the right authority is more robust than a proof, which may be forged. However, attestations are a burden on the authority as the information can be sensitive. This means that the information needs to be maintained so that only specific people can access it.
Using SSI, a government can issue a claim to an individual. The individual will store proof of his or her claim and then provide that proof to a third party by sharing the claim. In a digital environment the proof may be stored on a device such as a mobile phone, tablet or computer and the third party can verify the claim by digitally signing it. Through that signature they are verifying that the claim was issued by the government, that the claim has not been tampered with and that the claim was issued to a particular individual. The third party need not refer back to the original issuer of the claim in order to provide the verification.
A printed passport may be regarded as an SSI. The claim is issued by a government and the passport document is proof which is the attested by an immigration officer who inspects the document either manually or electronically to verify that it is genuine.
In the digital environment a problem exists in verifying that a person arriving at immigration is the same person as the person who owns the claims. In the example of a claim stored on a smart device, the device may have been stolen or someone other than the claim holder could have had access to the claims.
The invention aims to address this problem.
According to a first aspect of the invention there is provided A method of authorising a bearer of an identity document, comprising the steps of: providing a decentralised identity for the bearer; providing digitally signed biometric data relating to the identity document to the bearer, the biometric data being signed by a trust anchor and validated as being issued to the decentralised identity, the biometric data including an image of the bearer; prior to the bearer travelling, providing the bearer's decentralised identity and biometric data including the image to an authority responsible for admission of the bearer for verification and, on verification, the bearer receiving an authorisation from the authority; on arrival of the bearer, capturing an image of the bearer; matching the image of the bearer with images of a plurality of bearers authorised by the authority; and on successful matching, granting admission to the bearer.
In one embodiment a reduced set of authorised bearers is formed from the plurality of bearers authorised by the authority and matching the image of the bearer with images of the reduced set of authorised bearers.
In one embodiment the step of forming a reduced set of authorised bearers is based on predicted arrival time of each of the plurality of bearers at the point of image capture.
In one embodiment the predicted arrival time of each bearer is calculated from at least one of the arrival time of the bearer at the destination, the walk time from the point of arrival to the point of image capture and the age profile of the bearer.
In one embodiment the arrival time is the time of arrival of an airplane and the predicted arrival time is further calculated from the bearer's seat number on the airplane.
In one embodiment of the invention the step of forming a reduced set of bearers is performed by a machine learning engine and the machine learning engine continuously predicts when individual bearers will arrive at the point of image capture.
The machine learning engine may also manage the size of the reduced set of bearers.
In one embodiment the step of granting admission to the bearer comprises allowing the bearer to pass through an automated border control gate.
In one embodiment the step of providing the bearer's decentralised identity and biometric data including the image to an authority responsible for admission of the bearer for verification, comprises providing the bearer's decentralised identity together with Advanced Passenger Information System (APIS) data.
The authorisation from the authority received by the bearer may be received on a mobile phone of other smart device.
In one embodiment the step of providing the digitally signed biometric data comprises writing the bearer decentralised identity to the blockchain by the trust anchor.
In one embodiment the step of providing the digitally signed biometric data comprises capturing the biometric data and other bearer document data, digitally signing the data using Self Sovereign Identity cryptology and issuing a copy of the digitally signed data to the bearer based on the bearer's decentralised identity. The copy of the digitally signed data may be sent to the bearer's smart device and/or stored at a cloud agent.
In one embodiment the step of providing digitally signed biometric data comprises capturing enhanced biometric data for the bearer and providing the enhanced biometric data with identity document data for signing by the trust anchor. The enhanced biometric data may comprise one or more of multiple images of the bearer, a 3-D image of the bearer, an infrared image of the bearer and an iris scan of the bearer.
In one embodiment the step of capturing enhanced biometric data comprises the bearer providing their decentralised identifier to a kiosk, the kiosk obtaining verification of the decentralised identifier from a location specified in the decentralised identifier, the verification including identity document data including the bearer's image. The kiosk may validate the data received from the specified location as being issued to the bearer's decentralised identifier and not tampered with. The kiosk may validate the bearer by obtaining an image of the bearer and matching the image with the image of the bearer in the verified identity document data.
This aspect invention also provides a system authorising a bearer of an identity document, comprising: an identity provider for providing a decentralised identity for the bearer; means for providing digitally signed biometric data relating to the identity document to the bearer, the biometric data being signed by a trust anchor and validated as being issued to the decentralised identity, the biometric data including an image of the bearer; means for providing, prior to the bearer travelling, the bearer's decentralised identity and biometric data including the image to an authority responsible for admission of the bearer for verification and, on verification, the bearer receiving an authorisation from the authority; an image capture system for capturing an image of the bearer on arrival of the bearer; an image matching system for matching the image of the bearer with images of a plurality of bearers authorised by the authority; and a control gate for granting admission to the bearer on successful matching.
A second aspect of the invention provides a method of authorising a bearer of an identity document to pass through an immigration control, the bearer having a pre-authorisation based on biometric data and a decentralised identity verified by the immigration authority, the method comprising: capturing an image of the bearer; forming a reduced set of authorised bearers from a plurality of bearers authorised by the authority, the reduced set being formed by a machine learning engine, the machine learning engine continuously predicting when individual bearers will arrive at the point of image capture; matching the image of the bearer with images of the reduced set of authorised of bearers authorised by the authority; and on successful matching, granting admission to the bearer. A third aspect of the invention provides a method of pre-authorising a bearer of an identity document for travel, comprising the steps of: providing a decentralised identity for the bearer; providing digitally signed biometric data relating to the identity document to the bearer, the biometric data being signed by a trust anchor and validated as being issued to the decentralised identity, the biometric data including an image of the bearer, the provision of digitally signed biometric data comprising the bearer providing their decentralised identifier to a kiosk, the kiosk obtaining verification of the decentralised identifier from a location specified in the decentralised identifier, the verification including identity document data including the bearer's image; prior to the bearer travelling, providing the bearer's decentralised identity and biometric data including the image to an authority responsible for admission of the bearer for verification and, on verification, the bearer receiving an authorisation from the authority.
Embodiments of the invention will now be described, by way of example only and with reference to the accompanying drawings, in which:
The images, whether multiple or not, may be of high resolution and each image is digitally signed by the passport issuing authority and issued as a claim to the individual passport holder.
The enhanced quality images may be generated using a dedicated kiosk at an airport. One such suitable kiosk is the applicant's SITA Airport Connect™ kiosk. Such kiosks can read biometric data from passports and may be equipped to capture enhanced biometrics in the form described above. Thus, the kiosks may be provided with a suitable high resolution camera for capturing multiple images and/or a 3D camera and/or an infra-red camera and or iris scanner.
Alternatively, the passenger may present themselves to a government agent for processing or obtain images from a suitable third party source which can then be presented. However the images are obtained, the enhanced biometrics, being the image or images of the type described above, are digitally signed by the government or other issuing authority using known Self Sovereign Identity processes and the claims are issued to the passenger to be stored on their mobile computing device which may be a laptop computer, smart phone, tablet or other suitable device.
In
The UK Border Force in this example, or other government or authority, scans the passenger's passport capturing the biometric data that is stored on the passport which may include one or more facial images, iris scans and or other biometric data together with standard ICAO (International Civil Aviation Organisation) passport data such as name, passport data, nationality, expiry date etc. At step 208 this data is digitally signed using known SSI cryptography and a copy of this data is issued to the passenger for storage on their smart device at 210. This step is performed by sending the data to an HTTP REST API identified by the passenger's DID. The data may be sent by other methods, such as secure email, secure file transfer protocol or as a MQ Series Queue and each of these is merely exemplary. In the example of
Thus, the passenger at this stage has a government issued digital copy of their passport details that can be used to assert the passenger's identity. Any other government or suitable authority can request a verification of this data and can verify that the data was issued by a given issuing authority, in this example the UK Border Force, that the data was issued to the passenger as identified by the DID and that the data has not been tampered with.
The desirability of obtaining higher resolution biometric data was described above. Having described the DID process, this can now be described in more detail. The following description assumes that the passenger has already obtained a government issued self-sovereign passport identity (the DID). The process is illustrated in the flow diagram of
At step 300 the passenger approaches a kiosk of the type mentioned above and presents their DID. As also mentioned above this may be done by presenting a barcode for scanning from an app. Other methods are possible, for example transmitting the DID through near field communication or similar communication protocols. At step 302 the kiosk will request a verification proof of the passport data for this DID. The request is issued to the cloud agent 212 (
At step 306 the kiosk then validates the passenger standing at the kiosk as being the passenger to whom the DID relates. This is done by performing a biometric match, for example by scanning the passenger's face and matching the image acquired with the passport image. This is a one-to-one match and so can be performed quickly.
At step 308 the kiosk then takes further biometric captures. As mentioned above, these could be multiple lower resolution images, multiple higher resolution images, the images being from different angles, 3D images or infrared images. Other types of biometric data could be acquired, for example iris scans.
At 310, the acquired biometric data is digitally signed by the kiosk and at step 312 the signed data is issued as a set of claims for the passenger.
At the end of this process the passenger now has a set of high resolution biometrics associated with their DID and passport data. As described below, these images can later be used at the point of immigration to improve the face match process. However, the acquisition and use of high resolution biometrics as described with respect to
Referring back to
In this description the example given is of an airport. However the embodiments of the invention may be applied to travel between countries by any means of transport including ship, car and rail as the techniques described herein apply not to the mode of transport but to the immigration process.
In the case of air travel, when making a reservation on an airline APIS (Advanced Passenger Information System) data must be provided. APIS data includes passport information, data of birth, address on arrival etc. In an embodiment of the invention, the passenger's decentralised identifier (DID) is shared as part of APIS data. This is a URL endpoint that the arrival government can query to request proof of the passport data claim. The arrival government can verify this data in advance of travel and issue the passenger with authorisation to go through a pre-approved immigration lane, which, as described below, includes a biometric match.
This process is illustrated in
Referring back to
Even if the one-to-many scan were limited to passengers known to be arriving on a given day, the problem is still severe. Taking the example of Atlanta Airport USA (ATL), for the month of July 2017 (see (http://www.atl.com/wp-content/uploads/2017/09/ATL-Traffic-Report-July-2017-pdf) there were almost 600,000 international arrivals. That averages to approximately 20,000 per day. This is too many to do a one-to-many match. We have appreciated that this problem may be addressed by predicting when the passengers will arrive at the immigration point so that the biometric match is only made against the smallest possible number of passengers.
Given the flight actual arrival time, the gate number, the aircraft type, the seat number, the age profile and other similar factors, it is possible to predict when a passenger will arrive at immigration point. Using this prediction, it is possible to restrict the number of passengers a biometric will have to be matched against, and therefore improve the speed, accuracy and reliability of the solution.
As the passenger has now been issued with a claim by the arrival government, the passenger can use an automated border control gate (ABC gate) or similar barrier where a biometric match is performed as the passenger enters the gate. The match will be done by taking a photo of the individual at the gate and matching it against a set of known pre-approved passengers. It is important to limit the size of this set of known passengers. However, in contrast to existing ABC use, the gate remains open and will only close if the biometric match is not positive. This greatly speeds up the journey of the passenger through the immigration area. In another embodiment, the gates will be closed but open as the passenger approaches them. In a further embodiment passenger will walk down a corridor and be monitored by border security staff using remote monitors. As the system recognises a passenger, the image of the passenger is annotated on screen, for example it tags passenger so that border staff only have to stop unrecognised people.
If it is known precisely when the passenger will arrive at immigration, it is possible to reduce the size of this set of IDs to match by including only the passengers who will be at immigration and excluding those passengers who have not yet arrived in the airport or are still walking to immigration. This is a multi-step machine learning process using the following factors to predict when the passenger will arrive:
Actual time of arrival at gate;
Walk time from gate to immigration station;
Seat number;
Age profile of the passenger.
Other factors may be used and this list is merely exemplary. For example, the class of ticket may be used to identify passengers travelling in first or business class as these passengers are likely to disembark the plane first and so arrive earlier at immigration.
The process on arrival is shown in
The process illustrated in
The invention has been described with regard to specific embodiments and many variation are possible without departing from the scope of the invention which is defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
1811642.6 | Jul 2018 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/058840 | 4/8/2019 | WO | 00 |