IEEE 1394 or USB powered computer lights

Information

  • Patent Grant
  • 6802629
  • Patent Number
    6,802,629
  • Date Filed
    Tuesday, July 30, 2002
    22 years ago
  • Date Issued
    Tuesday, October 12, 2004
    20 years ago
Abstract
A light for use with computers containing light emitting diodes, which may be directional, on one or more movable supports which is powered via the computer's USB or IEEE 1394 port. An auxiliary USB or IEEE 1394 port may be combined with the plug-in light to allow for additional devices to be connected through the same port powering the light.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This present invention relates to a LED lamp for use with desktop, laptop and palmtop computers. More specifically, to a LED illuminator powered via the USB or the IEEE 1394 port.




2. Related Art




Reading papers next to a laptop computer and/or seeing the keys on a keyboard, in dimly lit areas such as airplanes and lecture halls can present a difficult task. Flooding the area around the computer with overhead lights can be difficult, impossible, impractical or impermissible.




Applicants, patent application Ser. No. 09/862,885 entitled “IEEE 1394 or USB Powered Computer Light” provides a USB or IEEE 1394 powered computer light which can solve some lighting problems. It would also be desirous to have a computer powered light which has selectable illumination sources, spectrum, and/or output directions.




SUMMARY OF INVENTION




The present invention is a computer powered light with one or more light emitting diodes (LED) as the illumination source. The computer powered light plugs into a female USB or IEEE 1394 port and draws its power from the USB or IEEE 1394 port. One or more Light emitting diodes are supported on at least one movable support member for easy positioning. The movable support may have a bendable necks or flexible and rigid sections




Each of the one or more LEDs may have similar or dissimilar fan angle of light dispersion. LEDs may have similar or dissimilar output wavelengths in visible or non-visible spectral regions.




Power drain on the computer can be minimized with current limiting circuitry supplying the power to the LEDs. The LEDs may be default “on” or switched. Switched LEDs may be switched separately, or they may be switched together. Current balancing circuitry may be included when powering multiple LEDs in series, particularly for those embodiments which use LEDs with different spectral outputs that have dissimilar nominal current and/or amperage requirements.




In some embodiments one or more of the LEDs are placed in a movable LED receiving head to direct the illumination in addition to the directional orientation from the movement of the movable support member.




In some embodiments the connector body is height adjustable. Aligning the bottom of the connector body with the bottom of the desktop, laptop, notebook or palmtop computer, to which it is affixed provides additional support for the IEEE 1394 or USB powered computer light.




Some computers have only a single, or a limited number of, USB or Firewire (IEEE 1394) ports. Accordingly the computer light may be configured to provide an auxiliary “pass-through” USB or IEEE 1394 port to allows additional connections to the computer through the same port powering the light.




The features of the invention believed to be novel are set forth with particularity in the appended claim. The invention itself, however, both as to configuration, and method of operation, and the advantages thereof, may be best understood by reference to the following descriptions taken in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1A

is a front perspective view of the preferred embodiment of the computer light attached to a computer.





FIG. 1B

is a side view of the preferred embodiment.





FIG. 1C

is an unattached view of the computer light of FIG.


1


A.





FIG. 2

is a partial view of another embodiment of the computer light with dual movable support members.





FIG. 3

is a partial view of another embodiment with pass-through USB or IEEE 1394 port.





FIG. 4

is a circuit schematic for the preferred embodiment.





FIG. 5

is an alternate circuit schematic for the computer light.





FIG. 6

is a partial view of another embodiment with a perpendicular pass-through USB or IEEE 1394 port.





FIG. 7

is a partial view showing the adjustable connector body of an attached computer light.





FIG. 8

is a partial view showing a single fixed receiving head with dual downward facing LEDs.





FIG. 9

is a partial view showing a single fixed receiving head with dual forward facing LEDs.





FIG. 10

is a partial view showing a single fixed receiving head with opposing LEDs.





FIG. 11

is a partial view showing dual receiving heads.





FIG. 12

is a partial view showing dual side facing receiving heads adjustable upward and downward.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION




Detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.




For the preferred embodiment shown in

FIGS. 1A

,


1


B &


1


C a first and a second light-emitting diode “LED”


11


&


11


′ are affixed to a LED receiving head


100


at a first end


12




a


of a movable support member


150


which has flexible neck which is attached via a second end


12




c


to a connector body


13


. While a flexible neck is indicate in this embodiment a rigid or semi-rigid neck such as those described in reference to

FIG. 11

may be substituted. An USB or an IEEE1394 male jack


14


which can mate with either a USB, or a IEEE 1394, port


200


on a computer


300


is also attached to the connector body


13


.




The first and second LEDs


11


&


11


′ are conductively linked to the male jack


14


via long conductive lead wires (not shown). When the male jack


14


is plugged into the USB or IEEE 1394 port


200


, power is supplied to the LEDs


11


&


11


′ to produce a first and second illumination


1000


&


1000


′. The illumination from the computer powered light can be provided to a selected area by directing the illumination from the light emitting diodes via the alteration of the position of the flexible neck.




Light emitting diodes


11


&


11


′ useful for this illuminator include, but are not limited to, those associated with wavelength in a specific spectral region, (visible or non-visible) such as red light, blue light, or yellow light, IR, UV and those which produce a wide spectrum (white light) comprising more than one distinct spectral region of light. Each LED has an integral lens element (not shown) which determines the fan angle of light dispersion. The construction of a light emitting diode with an Integral lens element is well known and therefore a detailed description of the construction has not been provided.




In

FIG. 1C

an “on/off” slide switch


15


, which is a multi-function switch controlling the current to both LEDs allowing selective turning “on” and “off” of the LEDs


11


&


11


′ separately or together, is shown integrated into the connector body


13


from which extends the male jack


14


. The integration of the “on/off” switch


15


into the connector body is not a limitation and those skilled in the art will recognize that in some instance it may be useful to locate the “on/off” switch on the receiving head or the flexible neck.




In

FIG. 2

a partial view of the connector body


13


with dual movable support members


150


and


150


′ attached is shown. The on/off slide switch


15


, in this embodiment switches the current on/off for one or both of the LEDs (not shown). If LEDs of different spectral with different amperage and/or voltage requirements are used, the power from the computers USB or IEEE 1394 port


200


can be balanced for each LED with the current limiting circuitry described in reference to

FIGS. 4 & 5

.




In

FIG. 3

shows a partial view of the connector body


13


with a pass-through USB or IEEE 1394 port, generally designated


20


. The auxiliary female USB or IEEE 1394 port


22


is connected to, or formed as part of, the connector body


13


which is able to receive an auxiliary USB or IEEE 1394 plug


250


from a peripheral component such as a printer, keyboard, mouse, digital camera, video, scanner, zip drive and the like. The current to the auxiliary female USB or IEEE 1394 port


22


is non-switched. Therefore, the current is not interrupted when the “on/off” slide switch is on the connector body


13


is switched.




Referring now to

FIGS. 4 & 5

there are illustrated a circuit schematic for the computer light generally designated


400


&


500


.




Power draw from the computer


300


and the power supplied to the LEDs can be controlled by limiting the voltage and/or amperage to either LED


11


&


11


′ by having a resistor


401


and/or other device such as an EPROM chip or R/C circuit


402


in the circuit. The on/off switch


403


can be used to power one (

FIG. 4

) or both (

FIG. 5

) of the LEDs


11


&


11


′.




A powered USB or IEEE 1394 female port


503


which shunts off the computers powered port, and is thereby not effected by the on/off switch


403


is shown in FIG.


5


.




In

FIG. 6

a partial view is provided of a connector body


13


with a perpendicular auxiliary female USB or IEEE 1394 port


22


, generally designated


30


, is shown.




The auxiliary female USB or IEEE 1394 port


22


can receive an auxiliary USB or IEEE 1394 plug from a peripheral component. The orientation of the auxiliary female USB or IEEE 1394 port


22


, perpendicular to the orientation of the male jack


14


, serves to reduce the protrusion of the auxiliary female USB or IEEE 1394 port


22


and any auxiliary USB or IEEE 1394 Plug.




In

FIG. 7

an adjustable height connector body, generally designated


40


is shown. Extending from opposite sides of the connector body are pairs of spaced teeth


42


. To raise the bottom


44


of the connector body


13


, a movable platform


46


can be slideably engaged into a guide


48


formed between pairs of the teeth


42


.




Shown in

FIG. 8

is a partial view showing a single fixed receiving head


101


with dual downward facing LEDs


11


&


11


′, generally designated


50


. Each LED


11


&


11


′ can produce a separate illumination


1000


&


1000


′.




The illuminations may be of similar or dissimilar wavelength and/or fan angle of light dispersion. For instance, dissimilar wavelengths of light can be used to direct a red light at the keyboard which allows better viewing the keyboard with minimal interference of the images on the monitor


201


(FIG.


1


A), and at the same time a whitish LED at material to the side of the computer, thereby providing a fuller spectrum illumination at the side for reading documents and the like.




The indication of a red or whitish LED directed at any particular area is not meant to act as a limitation.




Shown in

FIG. 9

is a partial view showing a single fixed receiving head


102


with dual forward facing LEDs


11


&


11


′, generally designated


60


. Each LED


11


&


11


′ can produce a separate illumination


1000


&


1000


′. The illuminations may be of similar or dissimilar spectral outputs (wavelengths) and/or fan angle of light dispersion.




Shown in

FIG. 10

is a partial view showing a single fixed receiving head


103


with opposing LEDs


11


&


11


′, generally designated


70


. Each LED


11


&


11


′ can produce a separate illumination. The illuminations may be of similar or dissimilar spectral output (wavelength) and/or fan angle of light dispersion. This embodiment is particularly useful to easily switch from one color spectrum illumination to another color spectrum illumination by switching from one LED


11


to the other LED


11


′. Accordingly, a dual function on/off switch


72


is provided shown affixed on the receiving head


103


.




Shown in

FIG. 11

is a partial view showing a first and a second side facing receiving head


104


and


105


with LEDs


11


&


11


′, generally designated


80


. The second receiving head


105


is movably mounted at the first end


12




a


of the movable support


150


whereby the output from the light emitting diodes


1000


&


1000


′ can be directed. The movable second receiving head


105


may also be mounted to the first receiving head


104


.




Shown in

FIG. 12

is a partial view showing a first and a second receiving head


107


and


108


with LEDs (not shown) and generally designated


90


. The second receiving head


108


is movably mounted to the first receiving head


107


. The movable support member


150


is constructed from one or more rigid sections


109


with flexible sections


110


interposed.




Since certain changes may be made in the above apparatus without departing from the scope of the invention herein involved, it is intended that all matter contained in the above description, as shown in the accompanying drawing, shall be interpreted in an illustrative, and not a limiting sense.



Claims
  • 1. A computer powered light comprising:a male jack which mates with one of an USB or an IEEE 1394 port; a movable support member affixed at one end to the male jack and with a second end; and, at least two visible spectrum light-emitting diodes affixed to the movable support member.
  • 2. The computer powered light of claim 1, further comprising at least one LED receiving head affixed to the second end of the movable support member into which at least one of the light-emitting diodes is affixed.
  • 3. The computer light of claim 2, wherein the at least one LED receiving head has at least one movable section whereby the output from a light emitting diode affixed therein can be directed.
  • 4. The computer powered light of claim 1, further comprising an on/off switch, whereby at least one of the light emitting diodes may be switched “on/off”.
  • 5. The computer powered light of claim 1, further comprising an auxiliary female USB or IEEE 1394 port.
  • 6. The computer powered light of claim 5, wherein the auxiliary female USB or IEEE 1394 port is formed as part of, or affixed to, the male jack.
  • 7. The computer powered light of claim 5, wherein the auxiliary female USB or IEEE 1394 port is oriented perpendicularly to the male jack.
  • 8. The computer powered light of claim 1, further comprising current limiting circuitry affecting the current supply to at least one of the light emitting diodes.
  • 9. The computer powered light of claim 1, wherein at least one of the light-emitting diodes produces an illumination in the visible spectrum.
  • 10. The computer powered light of claim 1, wherein each light emitting diode produces a spectral output in the visible spectrum.
  • 11. The computer powered light of claim 1 further comprising a connector body supporting the male jack and the support member.
  • 12. The computer powered light of claim 11, further comprising an auxiliary female USB or IEEE 1394 port formed as part of, or affixed to, the connector body.
  • 13. The computer powered light of claim 11 wherein the connector body has adjustable height.
  • 14. The computer light of claim 13 further comprising:pairs of opposing teeth on opposite side of the connector body; guides formed between teeth; and, a movable body which slideably attaches via the guides.
  • 15. The computer powered light of claim 1, wherein each light emitting diode is connected to the male jack by conductive lead wires.
  • 16. The computer powered light of claim 1, wherein at least one light emitting diode further comprises an integral lens element to produce an illumination with a pre-determined fan angle.
  • 17. The computer powered light of claim 1, wherein at least two light emitting diodes further comprises integral lens elements to produce an illumination with pre-determined fan angles which may be similar or dissimilar.
  • 18. A computer powered light comprising:a male jack which mates with one of an USB or an IEEE 1394 port; at least two support members each affixed at one end to the male jack and each with a second end; and at least one visible spectrum light-emitting diode affixed to each support member.
  • 19. The computer powered light of claim 18, further comprising a LED receiving head affixed to at least one of the second ends of the support members into which at least one of the light-emitting diodes is affixed.
  • 20. The computer powered light of claim 18, further comprising an on/off switch, whereby at least one of the light emitting diodes may be switched “on/off”.
  • 21. The computer powered light of claim 20, further comprising current limiting circuitry affecting the power supply to at least one of the light emitting diodes.
  • 22. The computer powered light of claim 18, further comprising an auxiliary female USB or IEEE 1394 port.
  • 23. The computer powered light of claim 18, wherein each light emitting diode produces an output in the visible spectrum.
  • 24. The computer powered light of claim 18 further comprising a connector body supporting the male jack and at least one of the movable support members.
  • 25. The computer powered light of claim 24, further comprising an auxiliary female USB or IEEE 1394 port formed as part of, or affixed to, the connector body.
  • 26. The computer powered light of claim 25, wherein the auxiliary female USB or IEEE 1394 port is oriented perpendicular to the male jack.
  • 27. The computer powered light of claim 18, wherein each light emitting diode is connected to the male jack by conductive lead wires.
  • 28. A method of illuminating with a computer powered light the method comprising:providing power to one or more visible spectrum light emitting diodes within a computer powered light via the computer's USB port; and directing the illumination from the computer powered light to illuminate a selected area.
  • 29. The method of claim 28 the method further comprising directing the illumination from at least one light emitting diode by moving a movable support member to which at least one light emitting diodes is affixed.
RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 09/862,885 filed May 21, 2001 now U.S. Pat. No. 6,575,593 entitled “IEEE 1394 or USB Powered Computer Light”

US Referenced Citations (4)
Number Name Date Kind
5882109 McKinney et al. Mar 1999 A
6533616 Johnsen et al. Mar 2003 B2
6575593 Krietzman Jun 2003 B2
20010048597 Krietzman et al. Dec 2001 A1
Continuation in Parts (1)
Number Date Country
Parent 09/862885 May 2001 US
Child 10/208533 US