This invention relates generally to corona ignition assemblies, and methods of manufacturing the corona ignition assemblies.
Corona discharge ignition systems typically include a corona igniter assembly typically with a firing end assembly and an ignition coil assembly attached to one another and inserted into a combustion chamber of an engine. The firing end assembly includes a central electrode charged to a high radio frequency voltage potential, creating a strong radio frequency electric field in a combustion chamber. The electric field causes a portion of a mixture of fuel and air in the combustion chamber to ionize and begin dielectric breakdown, facilitating combustion of the fuel-air mixture. The electric field is preferably controlled so that the fuel-air mixture maintains dielectric properties and corona discharge occurs, also referred to as non-thermal plasma. The ionized portion of the fuel-air mixture forms a flame front which then becomes self-sustaining and combusts the remaining portion of the fuel-air mixture. The electric field is also preferably controlled so that the fuel-air mixture does not lose all dielectric properties, which would create a thermal plasma and an electric arc between the electrode and grounded cylinder walls, piston, or other portion of the igniter. Ideally, the field is also controlled so that the corona discharge only forms at the firing end and not along other portions of the corona igniter assembly. However, such control is oftentimes difficult to achieve.
For example, a significant amount of energy that should be transferred from the coil of the ignition coil assembly to the igniter of the firing end assembly through an insulating medium can be lost through the insulating medium used to connect the coil and the igniter, referred to as an extension. The energy loss can occur due to capacitive and dissipative losses and loss due to formation of corona in the extension.
One aspect of the invention provides an igniter assembly, for example a corona igniter assembly. The igniter assembly comprises an ignition coil assembly including a coil, a firing end assembly including an igniter and coupled to the ignition coil assembly by an extension, and the extension contains a pressure chamber. A central conductor is disposed between the ignition coil assembly and the firing end assembly for transferring energy from the coil to the igniter. A valve assembly is disposed in the pressure chamber of the extension for allowing evacuation of contents of the pressure chamber and allowing the pressure chamber to be filled with an insulating medium. The valve assembly seals the insulating medium in the pressure chamber. The valve assembly includes a valve stem, and the valve stem is biased toward the ignition coil assembly by a spring to maintain the sealing of the pressure chamber.
The valve assembly together with the ignition coil assembly, extension and firing end assembly can provide for improved sealing, reduced packaging, and thus lower energy loss in the extension, as well as a compact packaging of the igniter with the coil. The valve assembly can also contribute to improved electrical fields and can mitigate problems that typically occur using an external fill valve.
Another aspect of the invention provides a method of manufacturing an igniter assembly. The method comprises the steps of coupling a central conductor to a firing end assembly including an igniter, coupling the firing end assembly to an extension containing a pressure chamber, and disposing a valve assembly in the pressure chamber of the extension. The valve assembly includes a valve stem, and the valve stem and/or a sealing device located around the valve stem seals the pressure chamber when the valve stem is biased away from the firing end assembly by a spring. The method also includes evacuating contents of the pressure chamber by pressing the valve stem toward the spring and allowing contents of the pressure chamber to travel past the valve stem and out of the pressure chamber, and filling the pressure chamber with an insulating medium by pressing the valve stem toward the spring and allowing the insulating medium to travel past the valve stem and into the pressure chamber after evacuating the contents out of the pressure chamber. The method further includes biasing the valve stem away from the firing end assembly with the spring so that the valve stem maintains a seal of the pressure chamber containing the insulating medium, and coupling an ignition coil assembly including a coil to the central conductor and the extension.
Yet another aspect of the invention provides a method for providing an insulating medium to an igniter assembly. The igniter assembly comprises a firing end assembly including an igniter, and the igniter is coupled to a central conductor and an extension containing a pressure chamber with a valve assembly disposed in the pressure chamber of the extension. The method comprises the steps of pressing a valve stem of the valve assembly into a spring, providing the insulating medium past the valve stem to fill the pressure chamber of the extension with the insulating medium, and sealing the pressure chamber containing the insulating medium with the valve stem and/or a sealing device located around the valve stem.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
One aspect of the invention provides an igniter assembly for an internal combustion engine, such as a corona igniter assembly 20 as shown in
A valve assembly 38 is connected to the central conductor 32 and the tube 34 for evacuating contents of the sealed pressure chamber of the tube 34, and then filling the sealed pressure chamber 36 of the tube 34 with an insulating medium, such as pressurized gas. The ignition coil assembly 22 is also typically connected to the valve assembly 38 after the sealed pressure chamber 36 is filled with the insulating medium. Although the valve assembly 38 is described in connection with the corona igniter assembly 20, it is noted that the valve assembly 38 could be used with other types of igniter assemblies.
In the example embodiment shown in
The valve assembly 38 is shown in the Figures and includes a valve stem 48 surrounded by a valve housing 50. The valve housing 50 can be formed of a single piece, or more than one piece. The valve housing 50 can also include an inner portion, referred to as a valve body, which is sealed to an outer portion of the valve housing 50. The valve housing 50 is disposed in the sealed pressure chamber 36 of the extension 26 adjacent an upper end of the extension 26 and is also connected to the ignition coil assembly 22.
A lower end of the valve stem 48 is connected to a spring 52 formed of metal. The spring 52 can be a coil spring, as shown in the drawings, or another type of spring. Although the spring 52 is coupled to the central conductor 32, the spring 52 is not directly connected to the central conductor 32, but rather is electrically connected to the central conductor 32 through a spring seat 54 on which it rests, which is explained further below. In the example embodiment, the spring seat 54 is located adjacent an upper end of a sleeve 56 which surrounds the central conductor 32. The sleeve 56 is typically made of conductive silicon, PTFE, or any other low dielectric insulating material. The spring seat 54 is preferably conductive. The spring seat 54 extends upward from the sleeve 56 and surrounds the spring 52. The spring seat 54 is preferably conductive and helps mitigate corona formation in a cavity formed between the spring 52 and the valve housing 50.
A lower connector 58, referred to as a slip connector, is disposed along the spring seat 54 between the spring 52 and the sleeve 56. The central conductor 32 is attached to the lower portion of the spring seat 54 by the lower connector 58. In the example embodiment, a spring seat cover 60 formed of plastic or other insulating material is disposed around the spring 52. A top end of the spring seat cover 60 is received in the bore of the valve housing 50, and a bottom end of the spring seat cover 60 is located near the base of the spring seat 54. In an another example embodiment, the bore of the valve housing 50 could have a conductive plating to further reduce corona formation losses and failure paths initiating in a cavity formed between the spring 52 and the valve housing 50. The spring seat 54 could then be made of an insulating material with a conductive bore and will help eliminate the spring seat cover 60. In the example embodiment of the Figures, an upper connector 62 connects the valve stem 48 to the ignition coil assembly 22.
In the example embodiment, the valve stem 48 is free to move axially only, concentrically sliding against the bore in the valve housing 50. The spring 52 helps to hold or bias the valve stem 48 in its closed position, which is away from the igniter assembly 20 and toward the ignition coil assembly 22. The spring 52 is supported by the spring seat 54 which is press fitted and bonded to the valve housing 50. As discussed above, the valve assembly 38 sits in the sealed pressure chamber 36 of the tube 34. The extension 26, with the valve assembly 38 attached, is attached to the firing end assembly 24. More specifically, a lower end of the tube 34 is attached to the metal shell 46 of the corona igniter 28 with the help of a weld and O-rings 51 to seal the sealed pressure chamber 36.
The valve stem 48 according to an example embodiment is shown in
The valve assembly 38 and a vacuum and pressurizing fixture assembly 64 are used to provide the insulating medium in the sealed pressure chamber 36. The example embodiment is shown in
As shown in
The design described above can provide numerous advantages, including a very low loss, low dielectric constant fluid insulating medium in the extension 26 used to transfer of energy from the coil 30 to the corona igniter 28. The unique valve assembly 38 which is incorporated in the central conducting element of the extension 26 facilities compact packaging of the corona igniter 28 with the coil 30, which in the example embodiment is detachable.
The valve assembly 38 can also improve electrical fields and mitigate problems arising by attaching an external fill valve. The single vacuum and pressurizing assembly fixture 64 is designed to evacuate contents of the extension 26 and then fill the extension 26 with pressurized gas, such as nitrogen, through the valve assembly 38 (two-way application). More specifically, the advantages include reduced electric field in the valve assembly 38 and components surrounding the valve assembly 38. The valve assembly 38 is able to operate without moving the central conductor 32 where it passes out of the valve assembly 38, such that the central conductor 32 and center electrode 42 can be covered with insulating medium from top to bottom and occurrence of corona from the surfaces of the central conductor 32 and the central electrode 42 is reduced.
As indicated above, the improved design provides for reduced electrical fields in the valve assembly 52 and immediately surrounding the valve assembly 52. In addition, the valve assembly 52 can operate without moving the central conductor 32 where passes out of the value assembly 52. Thus, it is possible to surround the entire central conductor 32 in the tube 34 with the insulating medium and reduce the occurrence of corona discharge from the surface of the central conductor 32.
In comparative designs, a significant amount of energy transferred from the coil 30 to the corona igniter 28 is lost through the insulating medium and the extension 26 used to connect the coil 30 and the corona igniter 28. This can occur due to capacitive and dissipative losses, and possible loss due to formation of corona in the extension 26. Highly pressurized gas or fluid, such as greater than 30 bar, preferably having a low dielectric constant and loss factor, can suppress formation of corona or discharges from the central conductor 32 to ground. Thus, the pressurized gas or fluid can be used as the insulating medium in the extension 26. One example of such a gas is dry nitrogen gas at a pressure of greater than 30 bar, which is known to have a very low dielectric constant (such as ˜1 or near 1). It is not trivial to pressurize and hold pressure in the extension 26 over the lifetime of the coil 30, extension 26, and corona igniter 28. By incorporating the pressurizing valve assembly 38 in to the central conductor 32 in the extension 26, the sealing surfaces are reduced and overall packaging of the corona igniter 28 is made compact which helps in better sealing of the components. The dual purpose of the valve assembly 38 as another centralized conductor lends to electrical field improvements when compared to attaching an external fill valve. As designed, the insulating medium, such as the pressurized gas, can fill the minutest of the crevices in the extension 26 and provides optimal insulation. The assembly can be made impermeable by using a combination of O-rings 51, sealant, and a rubber puck 90. In the example embodiment, the O-rings 50 are formed of a silicon-based material. The extension 26 is designed in such a way that the coil 30 is attached after the extension 26 is pressurized. The coil 30 is also detachable from the valve assembly 38 without de-pressurizing the extension 26. This feature enables improved maintenance capabilities of the igniter 28, such as removal, cleaning and replacement of the coil 30 without changing other components, and improved installation through the coil 30.
The designs included in
In the design of
In the designs of
In the design of
The design described above can be translated to work over various sizes of extension 26 length and corona igniter 28 sizes without significant modifications to the assembly. As discussed above, either a rigid or flexible air tight tube 34 could be used for the extension 26. The single vacuum and pressurizing assembly fixture 64 facilitates pulling a vacuum in the extension 26 and pressurizing the extension 26 by connecting to the valve assembly 38 in the same location where the coil 30 will be attached to the extension 26. This helps reduce assembly fixturing and components and expedites the assembly process.
The design described above includes a combination of metallic and plastic or other non metallic components. The valve assembly 38 is incorporated in to part of the central conductive element and is spring loaded. It is also noted that the valve assembly 38 can be used with the extension 26 when the extension 26 is flexible, the fluid medium is used as insulation, and the extension 26 can be of any overall length without modifications to the connecting features or the valve assembly 38. The coil 30 is detachable without depressurizing the assembly, and evacuation of the sealed pressure chamber 36 of the tube 34 and pressurizing of the tube 34 are carried out with the same vacuum and pressurizing assembly fixture 64. The valve assembly 38 is also scalable to different sized corona igniters 28.
It is noted that the extension 26, the valve assembly 38, and the combined vacuum and pressurizing assembly fixture 64 described herein are only example embodiments, and modifications of the example extension 26, the valve assembly 38, and the vacuum and pressurizing assembly fixture 64 described herein can be made.
Another aspect of the invention provides a method of manufacturing the corona igniter assembly 20. The method includes connecting the metal shell 46 of the firing end assembly 24 to the tube 34 of the extension 26, disposing the valve assembly 38 in the tube 34 of the extension 26, and connecting the valve assembly 38 to the central conductor 32. The method further includes connecting the valve assembly 38 to the ignition coil assembly 22 after filling the sealed pressure chamber 36 of the tube 34 with the insulating medium.
Yet another aspect of the invention provides a method for providing the insulating medium around the central conductor 32 of the corona igniter assembly 20. The extension 26 contains the sealed pressure chamber 36 which surrounds the central conductor 32. The valve assembly 38 is connected to the central conductor 32 and the extension 26. The method includes evacuating contents of the sealed pressure chamber 36, and then filling the sealed pressure chamber 36 with the insulating medium using the vacuum and pressurizing fixture 64 and the valve assembly 38. After filling the sealed pressure chamber 36, the vacuum and pressurizing fixture 64 and the valve assembly 38 is disconnected from the valve assembly 38, and the ignition coil assembly 22 is connected to the valve assembly 38.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the invention. It is contemplated that all features of all claims and of all embodiments can be combined with each other, so long as such combinations would not contradict one another.
This U.S. Divisional application claims priority to U.S. Utility patent application Ser. No. 15/935,540, filed Mar. 26, 2018, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/477,299, filed Mar. 27, 2017, the entire disclosure of the application being considered part of the disclosure of this application, and hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62477299 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15935540 | Mar 2018 | US |
Child | 16526046 | US |