The present invention relates in general to the field of igniters, and more particularly, to igniters having a child resistant feature in the nature of a safety release locking trigger.
An igniter is generally a multi-purpose lighting device which is operative for producing a flame at the end of an elongated nozzle. Igniters have a variety of household and commercial applications, for example, for lighting barbecues, fireplaces, candles, torches, tobacco products, gas stoves, pilot lights, etc. Igniters are now being regulated to require child safety features similar to regulations pertaining to disposable lighters. The idea of the child safety feature is to preclude a curious child from lighting an igniter and accidentally causing burns to the child or starting another fire.
Known igniters make use of a release button located generally on top of the trigger housing. The idea being that a child could not press down the release button and squeeze the trigger at the same time. One known construction depends on the amount of force used to depress the release button. Another known construction relies on the rotation direction of a wheel to release the trigger, e.g., see U.S. Pat. No. 6,093,017. Both of these methods are awkward to operate the igniter unless the adult has both dexterity and strength in a single hand. Otherwise an adult requires two hands to operate the igniter that in the past required only one hand. Other known constructions are disclosed in U.S. Pat. Nos. 5,897,308; 5,697,775; 5,967,768; 6,042,367 and 6,022,212.
The present invention overcomes the problem of making an igniter difficult for young children to operate and yet leave the igniter easy for an adult to operate.
The present invention is directed to an igniter incorporating a safety locking device in the nature of a safety release locking trigger having a release slide associated therewith. The release slider in accordance with the present invention is located on the trigger itself. This allows one finger to operate both the release slider and the trigger instead of two separate fingers or finger/thumb movements to be coordinated. To decrease the likelihood that the release slider could accidentally be activated, the trigger's shape slopes in such a way as to move the operator's finger away from the release slider. It takes a deliberate action to both hold the release slide in the unlocked position and to move the trigger to operate the igniter. This combination allows a method to effectively hinder young children from operating the igniter without depending on adult finger strength to unlock the igniter.
The release slider is referred to as a slider since it is moved or slid “out of the way” instead of being pushed in. If you try to operate the igniter like it's a non-child resistant model and push the release slider in along with trying to pull the trigger back, the trigger will not move. Instead the release slider tends to be an obstacle to the finger. Any attempt to operate the trigger just by placing the finger (or in the case of a child, fingers) on the trigger and squeezing fails to unlock the trigger and thus operate the igniter.
To operate the igniter, the release slider is moved upward to unlock the trigger. It can be thought of as clearing the safety lock out of the way of the trigger. The release slider is held in the up or cleared position, as just moving it momentarily up does not allow operation of the igniter. Since the slope of the trigger is forward as one moves from bottom to top, the release slider's motion is also slightly forward instead of the more intuitive movement backwards which is the operating direction of the trigger.
This configuration is counter-intuitive to what is thought to be normal operation of a trigger on an igniter. The method is to hold the release slider up before and during the squeezing of the trigger. Since the finger tends to travel downwards (due to the trigger's slope) during depressing the trigger, a deliberate action on the part of the operator to hold the finger in the upper part of the trigger is needed to successfully ignite the igniter. The operation of the igniter is a learned method from reading the instructions and not dependent on operator force. A learned technique is more user friendly than relying on brute force or coordinating two fingers to unlock the safety locking device.
In accordance with one embodiment of the present invention there is described an igniter comprising a housing; a stop member within the housing; a fuel reservoir within the housing; a nozzle in fluid communication with the reservoir; an actuating assembly within the housing for controlling the supply of fuel from the reservoir to the nozzle and for igniting fuel discharged from the nozzle; and a trigger including a trigger body and a slider coupled to the trigger body, the trigger body moveable between a first position and a second position along a first path, the trigger body operating the actuating assembly when in the second position, the slider moveable along the trigger body between a first position and a second position along a second path different from the first path, the slider having a first portion arranged outside the housing and a second portion arranged inside the housing, the second portion of the slider arranged in interfering relationship with the stop member when the slider is in the first position whereby the trigger body is precluded from movement from the first position to the second position thereof, and the second portion of the slider being arranged in non-interfering relationship within the stop member when in the second position whereby the trigger body is moveable from the first position to the second position thereof for operating the actuating assembly.
In accordance with another embodiment of the present invention there is described an igniter comprising a housing; a stop member in the housing; a fuel reservoir within the housing; a nozzle attached to the housing; a burner within the nozzle; a valve for opening and closing a path of fuel from the reservoir to the burner; a piezo-electric unit for generating a discharge voltage for lighting the fuel; and an operation member which effects operation of the valve and the piezo-electric unit for lighting the igniter; the safety device comprising a trigger including a trigger body and a slider movably coupled to the trigger body, the trigger body moveable between a first position and a second position along a first path, the trigger body actuating the operation member when in second position, the slider moveable along the trigger body between a first position and a second position along a second path different from the first path, the slider having a first portion accessibly arranged outside the housing and a second portion inaccessibly arranged inside the housing, the second portion of the slider arranged in interfering relationship with the stop member when the slider is in the first position whereby the trigger body is precluded from movement from the first position to the second position thereof, and the second portion of the slider being arranged in non-interfering relationship within the stop member when in the second position whereby the trigger body is moveable from the first position to the second position thereof for actuating the operation member.
In accordance with another embodiment of the present invention there is described an igniter comprising a housing; a fuel reservoir within the housing; a valve within the housing for opening and closing a path of fuel from the reservoir; a piezo-electric unit within the housing for lighting the fuel discharged from the reservoir; and a safety device comprising a trigger including a trigger body and a slider coupled to the trigger body, the trigger body moveable between a first position and a second position along a first path, the trigger body actuating the valve and the piezoelectric unit when in the second position, the slider moveable along the trigger body between a first position and a second position along a second path different from the first path, the slider having an accessible first portion and a second portion arranged in interfering relationship with a portion of the housing when the slider is in the first position whereby the trigger body is precluded from movement from the first position to the second position thereof, and the second portion of the slider being arranged in non-interfering relationship within the portion of the housing when in the second position whereby the trigger body is moveable from the first position to the second position thereof.
The above description, as well as further objects, features and advantages of the present invention will be more fully understood with reference to the following detailed description of an igniter incorporating a safety locking device, when taken in conjunction with the accompanying drawings, wherein:
In describing the preferred embodiments of the present invention, specific terminology will be resorted to for the sake of clarity. However, the invention is not intended to be limited to the specific terms so selected, and is to be understood that each specific term includes all technical equivalence which operate in a similar manner to accomplish a similar purpose.
Referring now to the drawings, wherein like reference numerals represent like elements, there is shown in
As shown in
As shown in
A piezo-electric unit 146 has a contact end 148 connected to the piezo wire 130 and a slidable spring biased actuating plunger 150 in operative association with the trigger 108. The inward displacement of the actuating plunger 150 provides a discharge voltage to an electrode adjacent the burner nozzle 126, the nozzle 110 being grounded via ground wire 152. The resulting spark created by the operation of the piezo-electric unit 146 will ignite the butane at the burner nozzle 126. The general construction and operation of an igniter which includes a nozzle 110, gas burner 124, burner valve assembly 132 and piezo-electric unit 146 are known to those skilled in the igniter art. Accordingly, one skilled in the igniter art would understand the construction and operation of the igniter as thus far described, as well as variations thereof.
In accordance with the present invention, the liquefied fuel fills the reservoir 112 up to about 85% of its capacity. Fuel vapor is released from the reservoir 112 while the outlet valve 133 is activated and transferred through gas tubing 128 to the burner 124 in the front of the nozzle 110. The outlet valve 133 is operated by gas lever 140, which in turn, is rotated by the trigger 108 after release of the safety locking mechanism to be described.
As shown in
The construction of the trigger 108 in accordance with one embodiment of the present invention will now be described. With reference to
Disposed on the upper edges of the first and second walls 166, 168 are a pair of spaced apart triangular members 182, 184 each having a groove 186 formed in their inner surface. The grooves 186 extend downwardly at an angle to the longitudinal axis of the grooves 172, 174 into a portion of the inner surface of the first and second walls 166, 168, see FIG. 5E. The end wall 170 is provided with a slot 188 extending partially from its upper edge as shown in
The bridge 164 is shown in greater detail in
As shown in
The release slider 162 will now be described with reference to
As shown in
The end wall 170 is arranged at an angle to the longitudinal axis of the grooves 172, 174. Accordingly, the slider 162 moves along an axis at a corresponding angle to the longitudinal axis of the grooves 172, 174 which is the direction of movement of the trigger body 160. By way of example, an angle greater than 30° and less than about 90° is contemplated, and preferably an angle of about 50°. It should be understood that the trigger body 160 is moved longitudinally through the housing 102 along the axis defined by the grooves 172, 174. On the other hand, the slider 162 is moved along a different axis defined generally by the grooves 218, 220 of the rib 216 which supports the slider within the end wall 170. This arrangement results in the trigger body 160 being manipulated rearwardly towards the fuel reservoir 112, while the slider 162 is moved in an opposite upward and forward direction towards nozzle 110.
In assembled relationship, the trigger 108 is accessible within the trigger opening 106 defined by the trigger guide 104. As shown in
The operation of the igniter 100 will now be described initially with reference to
The child resistant mechanism is based on the construction of the release slide 162 that is pushed and held in a direction opposite to the natural direction of trigger movement. Placing the thumb on the top of the igniter 100 at a designated location, e.g., ridged pad, helps to make the motion of the index finger easier. To release the trigger 108 it is almost a pinching action between the thumb and the index finger. The upward and angled movement of the index finger moves the slider 162 against the latch spring 224 whereby the cross-member 212 is no longer in interference relationship with the stop members 226. When the slider 162 moves upward into the housing 102 far enough, this releases the trigger 108 and allows for its actuating motion. Even if the safety lock 118 on the side of the igniter 100 is left in the “on” position, the trigger 108 cannot be squeezed unless an adult-sized index finger lifts the slider 162. Most children will mimic the motions they see their parents make which is to pull back the trigger 108. Doing so, even with multiple fingers pulling on the trigger 108 and thus pushing the slider 162 in the wrong direction only locks the trigger more. Two sequential motions (lifting and holding the slider 162 then depressing the trigger 108) make it very difficult for a child with small fingers to produce the flame with the igniter 100.
More specifically as shown in
Referring to
In both embodiments, the geometry of the gas lever 140 and the projecting pin 244 and projection 180 are such that the lever fully activates the gas valve 133 at the beginning of the trigger motion to improve the ignition efficiency, first gas has to flow to the nozzle 110, then a spark is generated. During the second phase of the trigger motion, the gas lever 140 is not rotated further, the gas valve 133 staying in an open position, to avoid an over travel of the valve.
There has thus far been described a safety locking trigger for an igniter in accordance with various embodiments of the present invention. It is to be understood that in order to activate the igniter repeatedly, the safety locking trigger 108, 228 and the release slider 162 should generally be returned to its normal fully released position. Otherwise, the piezo-electric unit 146 will not be in a position to generate an additional spark. Due to constraints of the hammer mechanism in the piezo-electric unit 146, the actuating plunger 150 must start from its initial position to generate a spark.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. Further, any range of numbers or ratios recited in the specification or paragraphs hereinafter describing various aspects of the invention, such as that representing a particular set of properties, units of measure, conditions, physical states or percentages, is intended to literally incorporate expressly herein by reference or otherwise, any number falling within such range, including any subset of numbers or ranges subsumed within any range so recited. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3606610 | Leach | Sep 1971 | A |
3898031 | Rusakowicz | Aug 1975 | A |
4538983 | Zeller et al. | Sep 1985 | A |
4784601 | Nitta | Nov 1988 | A |
4832596 | Morris, Sr. | May 1989 | A |
5002482 | Fairbanks et al. | Mar 1991 | A |
5076783 | Fremund | Dec 1991 | A |
5120215 | Amoros Nollas | Jun 1992 | A |
5145358 | Shike et al. | Sep 1992 | A |
5184948 | Iwahori | Feb 1993 | A |
5199865 | Liang | Apr 1993 | A |
5240408 | Uematsu et al. | Aug 1993 | A |
5242297 | Cirami | Sep 1993 | A |
5326256 | Shike et al. | Jul 1994 | A |
5348467 | Piffath et al. | Sep 1994 | A |
5368473 | Kenjiro et al. | Nov 1994 | A |
5421720 | Sher | Jun 1995 | A |
5451159 | Kim | Sep 1995 | A |
5458482 | Saito et al. | Oct 1995 | A |
5462432 | Kim | Oct 1995 | A |
5492468 | Cirami | Feb 1996 | A |
5496169 | Chen | Mar 1996 | A |
5531591 | Yamazaki | Jul 1996 | A |
5558514 | Ansquer | Sep 1996 | A |
5584682 | McDonough et al. | Dec 1996 | A |
5655901 | Makoto | Aug 1997 | A |
5697775 | Saito et al. | Dec 1997 | A |
5788474 | Chung et al. | Aug 1998 | A |
5788476 | Sher | Aug 1998 | A |
5897308 | Saito et al. | Apr 1999 | A |
5967768 | Saito et al. | Oct 1999 | A |
5980242 | Man | Nov 1999 | A |
6010328 | Sung | Jan 2000 | A |
6022212 | Saito et al. | Feb 2000 | A |
6042367 | Saito et al. | Mar 2000 | A |
6050810 | Huang | Apr 2000 | A |
6059563 | Hsu | May 2000 | A |
6077069 | Fairbanks et al. | Jun 2000 | A |
6086359 | Sher | Jul 2000 | A |
6093017 | Saito et al. | Jul 2000 | A |
6200130 | Man | Mar 2001 | B1 |
6264463 | Sung | Jul 2001 | B1 |
6287109 | Hirota | Sep 2001 | B1 |
Number | Date | Country |
---|---|---|
39 27 704 | Dec 1990 | DE |
0 345 729 | Dec 1989 | EP |
0 488 158 | Jun 1992 | EP |
0 551 654 | Jul 1993 | EP |
62-5565 | Dec 1983 | JP |
60-122828 | Jul 1985 | JP |
5-256448 | Oct 1993 | JP |
6-18030 | Jan 1994 | JP |
406307638 | Nov 1994 | JP |
2003-14230 | Jan 2003 | JP |
WO 9002908 | Mar 1990 | WO |
WO 9110098 | Jul 1991 | WO |
WO 9208931 | May 1992 | WO |
WO 9746832 | Dec 1997 | WO |
WO 9960309 | Nov 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20030129554 A1 | Jul 2003 | US |