Embodiments of the present disclosure generally relate to articles for turbine engines. More particularly, embodiments of the present disclosure relate to high temperature articles such as igniters for use in combustors of the turbine engines.
Higher operating temperatures for turbine engines are continuously sought in order to increase their efficiency. However, as operating temperatures increase, the high temperature durability of the components of the engine must correspondingly increase. Significant advances in high temperature capabilities have been achieved through formulation of high temperature alloys such as nickel, iron and cobalt-based superalloys. Further, components formed from superalloys must be provided with some form of thermal and/or environmental protection in order to exhibit adequate service lives in certain sections of a turbine engine, such as the turbine and combustor. A common solution may be to thermally insulate such components in order to minimize their service temperatures. For this purpose, oxidation-resistant coatings and thermal barrier coatings (TBC) may be formed on the exposed surfaces of high temperature components.
As an example, igniters, such as spark ignition devices or spark plugs are, generally, used in turbine engines for igniting a combustion process in a combustor containing a combustible mixture (for example, a fuel-air mixture). The ignition is produced by generating a spark across a gap between the oppositely charged electrodes of the igniter. The spark so produced may be sufficient to ignite the combustible mixture present in the combustor. After initial ignition, the igniter can be repeatedly sparked thereafter, primarily as a safety measure. In addition, the igniter may be activated when the aircraft enters a rain squall, or other situation which may disturb steady-state conditions in the combustor.
Typically, these igniters for use in the combustors, employ high temperature superalloys, for example nickel-based alloys (as discussed above) as electrode materials. However, the continuous exposure of the igniter, specially the igniter tip to the corrosive environment may cause undesirable corrosion and erosion of the igniter tip, and degrade the performance of the igniter and associated engine. Further, the corrosion and erosion of the igniter caused by the corrosive environment may be further exacerbated at higher operating temperatures because the oxidation resistance of the high temperature alloys decreases as the operating temperature increases.
There remains a need for alternative materials for improved articles, particularly igniters that withstand high temperature and corrosive environment of turbine engines for long duration.
In one aspect, provided herein is an article. The article includes a base body including an iron-based alloy and a protective coating disposed on a surface of the base body. The protective coating includes alumina and is in contact with the surface of the base body.
One aspect provides an igniter. The igniter includes a central electrode, an insulator sleeve surrounding the central electrode and a tubular electrode shell surrounding the insulator sleeve. The tubular electrode shell has a forward end projecting beyond the discharge end. The tubular electrode shell includes an iron-based alloy. The igniter further includes a protective coating including alumina disposed on a surface of the forward end. Another aspect is directed to a combustor of a turbine engine that includes the igniter.
These and other features, embodiments, and advantages of the present disclosure may be understood more readily by reference to the following detailed description.
These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
The present disclosure encompasses embodiments of high temperature articles i.e., articles for use in high temperature environment of turbine engines. Some embodiments provide an improved igniter for use in the combustors of turbine engines. The igniter as described herein has improved stability in high temperature environments of combustors of turbine engines.
In the following specification and the claims, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about” and “substantially”, is not limited to the precise value specified. In some instances, the approximating language may correspond to the precision of an instrument for measuring the value.
As used herein, the term “high temperature” refers to an operating temperature of a turbine engine. In some embodiments, the operating temperature of the turbine engine is higher than 1000 degrees Celsius. In some embodiments, the operating temperature is in a range of from about 1200 degrees Celsius to 2000 degrees Celsius. As used herein, the term “high temperature environment” refers to high temperature and corrosive environment of a combustor in a turbine engine.
Some embodiments of the present disclosure are directed to an article that includes a base body including an iron-based alloy and a protective coating including alumina disposed on a surface of the base body, where the protective coating is in contact with the surface of the base body. In some embodiments, the protective coating is free of a bond coat. In some embodiments, the protective coating is alumina coating. In some embodiments, the base body is composed of an iron-based alloy, and an alumina coating is disposed in contact with the surface of the base body.
The term “superalloy”, as used herein, is applied to alloys which have outstanding high temperature strength and oxidation resistance. The terms “alloy” and “superalloy” are interchangeably used in the specification.
As used herein, the term “protective coating” refers to those coating systems which provide protection from high temperature environment, i.e., function as barriers in protecting against environmental and thermal attack caused by, for example, high temperature, aqueous environments, such as steam, various corrodants, i.e., provide corrosion resistance, etc. In some embodiments, the protective coating includes a thermal barrier coating.
As used herein, the term “bond coat” refers to any bond coat layer that promotes or improves adhesion of the overlaying thermal barrier coating or environmental barrier coating to an underlying metallic substrate for example, containing a superalloy.
In some embodiments, an igniter for a combustor of a turbine engine is provided. The igniter may be used for creating a spark in the combustor of the turbine engine. The igniter includes a central electrode having a discharge end, an insulator sleeve surrounding the central electrode and a tubular electrode shell surrounding the insulator sleeve. That is, the insulator sleeve is disposed between the central electrode and the tubular electrode shell. The tubular electrode shell has a forward end projecting beyond the discharge end of the central electrode. The tubular electrode shell includes an iron-based alloy. In some embodiments, the iron-based alloy includes chromium, aluminum, or a combination thereof. The igniter further includes a protective coating including alumina disposed on a surface of the forward end. In some embodiments, the protective coating is in contact with the surface of the forward end. In certain embodiments, the protective coating is alumina coating.
Referring to
As illustrated in
Referring to
The components of the ignition section 34 of the igniter 30, i.e., the central electrode 40, the tubular electrode shell 60 and the insulator sleeve 50, includes materials capable of withstanding the thermal load of the combustion chamber 12 (
The electrically conductive materials may include a metal or an alloy of the metal selected from the group consisting of nickel, iron, cobalt, titanium, gold, platinum, iridium, rhodium, palladium and a combination thereof, that withstand high temperatures. The additional alloying elements may include chromium, manganese, copper, aluminum, zirconium, tungsten and rare earth elements including yttrium, hafnium, lanthanum, or cerium. Suitable examples of the electrically conductive materials include, but are not limited to, high temperature alloys such as nickel-based alloys, cobalt-based alloys, iron-based alloys or a combination thereof. These alloys may also include superalloys.
In some embodiments, the tubular electrode shell 60 includes an iron-based alloy. The iron-based alloy may be a superalloy. In addition to iron, the iron-based alloy may further include chromium, aluminum or a combination thereof. In certain embodiments, the tubular electrode shell 60 is composed of an iron-based alloy including chromium and aluminum. In some embodiments, the amount of each constituent by weight in the iron-based alloy is as follows: about 15% to about 27% chromium, about 4% to about 10% aluminum and the balance substantially iron. In some embodiments, the iron-based alloy includes about 18% to about 24% by weight chromium, about 4% to about 6% by weight aluminum and about 65% to about 75% by weight iron. A suitable example of such an alloy is Kanthal APM™, which is commercially available from Sandvik. Other examples include, but are not limited to, ALKROTHAL® 14 (commercially available from Sandvik).
In some embodiments, the central electrode 40 includes a metal or a metal alloy of nickel, iron, iridium, or ruthenium. In some embodiments, the central electrode 40 is composed of iridium or ruthenium. In some embodiments, the central electrode 40 is composed of a nickel-based superalloy. Examples include INCONEL® alloy and HASTELLOY® alloy. In certain embodiments, the central electrode 40 is composed of an iron-based alloy (as described previously). Examples include, but are not limited to, Kanthal APM™ and ALKROTHAL® 14 (commercially available from Sandvik). The support bar/pin 46 may be composed of an electrically conductive material different from the central electrode 40 for economic purposes. In some embodiments, the support bar/pin 46 includes a metal or a metal alloy. Examples include a nickel-based alloy such as Kovar®. In some embodiments, both the central electrode 40 and the tubular electrode shell 60 are composed of Kanthal APM™.
In some embodiments, as illustrated in
Typically, an article for use in a high temperature environment of a turbine engine is composed of a high temperature alloy and coated with a protective coating on an outer surface of the article. The protective coating typically includes a thermal barrier coating such as yttria stabilized zirconia (YSZ) coating that is usually applied over a bond coat. That is, the bond coat is first applied on the outer surface of the article and the YSZ coating is disposed on the bond coat. The bond coat helps the thermal barrier coating to adhere with the base alloy.
However, the present disclosure provides a protective coating that can be applied on an article composed of an iron-based alloy without a bond coat. Without being bound by any theory, it is believed that the use of alumina (as the protective coating) on a surface of an article including iron-based alloy containing aluminum (for example, Kanthal APM™) is compatible with the aluminum oxide that is formed on the surface naturally. It has been observed by the inventors of the present disclosure that a protective coating of alumina can be applied on a surface of an article, for example a tip portion of an igniter composed of Kanthal APM™ alloy without a bond coat, and such article shows improved stability in high temperature environment of a combustor.
In some embodiments, an outer surface 61 of the tubular electrode shell 60, which is not directly exposed to the high temperature environment of the combustor 10, is coated with a wear-resistance coating 70 as shown in
In some embodiments, the igniter tip 32 further includes iridium. Iridium may be inserted in the forward end 62 in form of powder, flakes, beads, wires, or the like. Use of iridium at the forward end may help in achieving longer life of the igniter by lowering erosion rate during sparking as compared to an igniter having a forward end that does not have iridium.
While only certain features of the disclosure have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2470033 | Hensel | May 1949 | A |
2939983 | Pierce | Jun 1960 | A |
3832589 | Pfaue | Aug 1974 | A |
3883762 | Harris | May 1975 | A |
3890518 | Tombs | Jun 1975 | A |
3968303 | Harris | Jul 1976 | A |
3970591 | Harris | Jul 1976 | A |
3995184 | Insley | Nov 1976 | A |
4093887 | Corbach et al. | Jun 1978 | A |
4396855 | Imai | Aug 1983 | A |
4485151 | Stecura | Nov 1984 | A |
4489596 | Linder | Dec 1984 | A |
4692657 | Grunwald | Sep 1987 | A |
4713574 | Scott | Dec 1987 | A |
4742265 | Giachino et al. | May 1988 | A |
4771209 | Ryan | Sep 1988 | A |
4786781 | Nozaki | Nov 1988 | A |
4881913 | Mann | Nov 1989 | A |
4926088 | Kler | May 1990 | A |
4951173 | Suzuki | Aug 1990 | A |
5103136 | Suzuki | Apr 1992 | A |
5228932 | Shimizu et al. | Jul 1993 | A |
5274298 | Cassidy | Dec 1993 | A |
5550425 | Yoder | Aug 1996 | A |
5852340 | Ito et al. | Dec 1998 | A |
6076493 | Miller et al. | Jun 2000 | A |
6109018 | Rostrup-Nielsen et al. | Aug 2000 | A |
6235370 | Merrill | May 2001 | B1 |
6340500 | Spitsberg | Jan 2002 | B1 |
6608543 | Rapoport et al. | Aug 2003 | B2 |
7407903 | Sundberg et al. | Aug 2008 | B2 |
7581304 | Lykowski | Sep 2009 | B2 |
7727425 | Jankowiak et al. | Jun 2010 | B2 |
8003020 | Jankowiak et al. | Aug 2011 | B2 |
8237342 | Yamamura | Aug 2012 | B2 |
8243415 | Sakakura | Aug 2012 | B2 |
8492963 | Ma | Jul 2013 | B2 |
8536770 | Kameda | Sep 2013 | B2 |
8614541 | Walker, Jr. | Dec 2013 | B2 |
9115030 | Drazenovic | Aug 2015 | B2 |
9236716 | Mizutani | Jan 2016 | B2 |
9478947 | Mukoyama | Oct 2016 | B2 |
20040080252 | Ito | Apr 2004 | A1 |
20080050264 | Lykowski et al. | Feb 2008 | A1 |
20100212622 | Cleeves | Aug 2010 | A1 |
20110121712 | Ma | May 2011 | A1 |
20110241523 | Kameda | Oct 2011 | A1 |
20150260107 | Wright | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
0361644 | Apr 1990 | EP |
0660475 | Jun 1995 | EP |
Entry |
---|
“446 Stainless Data Sheet”, Rolled Alloys, 2012. Obtained from <https://www.rolledalloys.com/alloys/stainless-steels/446/en/> on Dec. 10, 2019. (Year: 2012). |
Rager et al., “Oxidation Damage of Spark Plug Electrodes”, Advanced Engineering Materials, vol. 7, Issue: 7, pp. 633-640, Jul. 29, 2005. |
“39th International Conference & Exposition on Advanced Ceramics and Composites”, the American Ceramic Society, Jan. 2015, Daytona Beach, Florida, 214 Pages. |
Extended European Search Report dated Apr. 17, 2019 for corresponding EP Application No. 18208984.7 (7 pages). |
Number | Date | Country | |
---|---|---|---|
20190170066 A1 | Jun 2019 | US |