The present invention relates to an ignition coil for an internal combustion engine that generates a spark for ignition in an ignition plug.
Some ignition coils for internal combustion engines include a coil section that is disposed outside a plug hole. The coil section includes a primary coil and a secondary coil. The secondary coil includes a high-voltage winding end portion that is connected to an ignition coil disposed within the plug hole using a pole joint or the like.
For example, PTL 1 discloses a structure of an ignition coil device for an internal combustion engine in which a high-voltage tower of an ignition coil and a spark plug in a plug hole are connected to each other by a high-voltage joint. A protrusion is formed to protrude in an outer periphery of the high-voltage joint. The protrusion is pressure-welded to the inner peripheral surface of the plug hole so that the high-voltage joint is located at a center of the plug hole.
In the structure of the conventional ignition coil, a mounting flange section provided in the coil section is fastened to the internal combustion engine by a bolt or the like and thus, an ignition coil is mounted to an internal combustion engine. Thus, the ignition coil is not designed to be sufficiently strongly resistant to vibration generated in the internal combustion engine.
In PTL 1, the protrusion of the high-voltage tower is pressure-welded to the inner peripheral surface of the plug hole. The protrusion is configured by a rubber material. A deformation allowable space using a clearance groove is formed on an inner peripheral side of a section in which the protrusion is formed in the high-voltage joint. When the ignition coil is inserted into the plug hole, the protrusion can be deformed by using the deformation allowable space, so that the insertion load of the ignition coil to the plug hole is reduced. Thus, rigidity of the protrusion in the ignition coil inserted into the plug hole is low, thereby making it difficult to improve vibration resistance of the ignition coil.
The present invention has been made in view of the above-described issues. The present invention provides an ignition coil for an internal combustion engine that is capable of improving vibration resistance against vibration generated in an internal combustion engine.
An embodiment of the present invention provides an ignition coil for an internal combustion engine, the ignition coil including: a primary coil and a secondary coil; a center core that is arranged on an inner periphery of the primary coil and the secondary coil; an outer peripheral core that is arranged on an outer periphery of the primary coil and the secondary coil; a coil case that is made of resin, the coil case including a housing section and a high-voltage tower section, the housing section housing the primary coil, the secondary coil, the center core, and the outer peripheral core, the housing section being arranged outside a plug hole of a cylinder for the internal combustion engine in which an ignition plug is arranged, the high-voltage tower section being disposed in the housing section such that at least a section of the high-voltage tower section is located within the plug hole; a rubber seal that is made of rubber, the rubber seal being attached to an outer periphery of the high-voltage tower section; a pole joint that is made of resin, the pole joint being disposed in the plug hole and attached to the high-voltage tower section via the rubber seal; and a plug cap that is made of rubber, the plug cap being attached to a distal end side portion of the pole joint and attached to the ignition plug. The pole joint is provided with a rib that protrudes toward an outer periphery of the rib and faces an inner peripheral surface of the plug hole. An inner peripheral side of the rib faces the high-voltage tower section via the rubber seal.
The ignition coil for an internal combustion engine (hereinafter simply referred to as an ignition coil) as configured above is designed to be sufficiently strongly resistant to vibration generated in the internal combustion engine. Specifically, the rib is disposed on the pole joint made of resin, and an inner periphery of the rib faces the high-voltage tower section made of resin via the rubber seal made of rubber.
The outer diameter of the rib in the pole joint is formed to be slightly smaller than the inner diameter of the plug hole in order to allow the rib of the pole joint to be inserted into the plug hole. In a state where the pole joint is inserted into the plug hole, a slight gap is formed between the rib and the inner peripheral surface of the plug hole. Here, when a mounting flange section in the ignition coil is fastened to the internal combustion engine by a bolt or the like, a center position of the ignition coil relative to the plug hole is slightly deviated due to the fastening force. Thus, the rib of the pole joint abuts on an inner peripheral surface of the plug hole. As a result, the rib of the pole joint made of resin is supported on the inner peripheral surface of the plug hole.
When the internal combustion engine is operated, the ignition coil is strongly vibrated by vibration generated in the internal combustion engine. At this time, the rib of the pole joint is supported on the inner peripheral surface of the plug hole. Thus, swing of the high-voltage tower section disposed in the coil case can be restrained by the inner peripheral surface of the plug hole. In addition, swing of the high-voltage tower section can be suppressed via the rubber seal. This enables the ignition coil to be sufficiently strongly resistant to vibration generated in the internal combustion engine. As a result, according to the ignition coil for the internal combustion engine, vibration resistance against vibration generated in the internal combustion engine can be improved.
In the accompanying drawings:
An ignition coil for an internal combustion engine according to an embodiment will be described below with reference to the drawings. In the following drawings, reference signs L, R, and CR respectively indicate a center axis direction, a radial direction, and a circumferential direction of: a plug hole that is disposed in each cylinder of an engine used as an internal combustion engine; and each member (each component) of an ignition coil for an internal combustion engine that is arranged in the plug hole.
As shown in
The primary coil 21 and the secondary coil 22 are concentrically arranged so as to overlap each other in inner and outer peripheries. The center core 23 is composed of a soft magnetic material, and is arranged in the inner periphery of the primary coil 21 and the secondary coil 22. The outer peripheral core 24 is composed of a soft magnetic material, and is arranged in the outer periphery of the primary coil 21 and the secondary coil 22. The coil case 3 is composed of a resin material, and includes a housing section 31 and a high-voltage tower section 32. The housing section 31 is configured to house the primary coil 21, the secondary coil 22, the center core 23, and the outer peripheral core 24 and to be arranged outside a plug hole 8 of a cylinder CY. The high-voltage tower section 32 is disposed in the housing section 31 such that at least a part of the high-voltage tower section 32 is arranged within the plug hole 8 of the cylinder CY.
The rubber seal 4 is composed of a rubber material, and is configured to seal a space between the outer periphery of the high-voltage tower section 32 and the opening end portion 81 of the plug hole 8 of the cylinder CY. The pole joint 5 is composed of a resin material. The pole joint 5 is arranged in the plug hole 8 of the cylinder CY, and is mounted to the high-voltage tower section 32 via the rubber seal 4. The plug cap 61 is composed of a rubber material. The plug cap 61 is mounted to the distal end side portion of the pole joint 5, and is attached to the ignition plug 7.
As shown in
The ignition coil 1 of the present embodiment will be described in detail with reference to
As shown in
As shown in
The center core 23, the primary coil 21, the primary spool 21, the secondary coil 22, the secondary spool 221, and the outer peripheral core 24 are arranged in the housing section 31 of the coil case 3. In the housing section 31 of the coil case 3, an igniter 25 is arranged to face the outer surface of the outer peripheral core 24. A switching circuit is disposed in the igniter 25 to energize the primary coil 21 and interrupt the energization to the primary coil 21. A gap in the housing section 31 is filled with a casting resin 26 such as a thermosetting resin.
A mounting flange section (not shown) is disposed in the coil case 3. The mounting flange section mounts the ignition coil 1 to an engine (for example, a cylinder head cover or the like). The ignition coil 1 of the present embodiment is supported in the plug hole 8 of the cylinder CY by: mounting to the engine using the mounting flange section; and abutment between an inner peripheral surface of the plug hole 8 in the cylinder CY and the rib 51 of the pole joint 5.
As shown in
A spring 63 is arranged in the pole joint 5. The spring 63 electrically connects the conductive member 62 and the ignition plug 7. The high-voltage winding end portion of the secondary coil 22 is electrically conductive to the ignition plug 7 via the conductive member 62 and the spring 63.
The high-voltage tower section 32 is formed to protrude toward an opposite side to a side in which an opening section 311 of the housing section 31 is formed, with respect to the housing section 31 in the coil case 3. The high-voltage tower section 32 has a cylindrical shape and protrudes from the housing section 31 in the coil case 3. A straight outer peripheral section 321 is formed in the distal end side portion of the high-voltage tower section 32. The straight outer peripheral section 321 includes an outer peripheral surface that is parallel to a center axis direction L of the plug hole 8 in the cylinder CY. A tapered outer peripheral section 322 is formed to be adjacent to a proximal end side L2 of the straight outer peripheral section 321. The tapered outer peripheral section 322 includes an outer peripheral surface of which a diameter is enlarged toward the proximal end side L2.
As shown in
Here, a distal end side L1 of the present embodiment refers to a back side that is a side where the ignition plug 7 is arranged in the center axis direction L of the plug hole 8 in the cylinder CY. A proximal end side L2 of the present embodiment refers to a front side that is a side of the opening end portion 81 of the plug hole 8 in the cylinder CY in the center axis direction L of the plug hole 8 in the cylinder CY.
The rib 51 in the pole joint 5 is disposed adjacent to the distal end side L1 of the joint engagement section 52. The other rib 53 is disposed at a position between the rib 51 of the pole joint 5 and the other joint engagement section 54. The other rib 53 faces an inner peripheral surface of the plug hole 8 in the cylinder CY.
As shown in
As shown in
A protrusion 431 is disposed in the inner peripheral surface of the rubber seal 4 in order to reduce press-fit load of the high-voltage tower section 32 relative to the rubber inner peripheral section 43. The formed protrusion 431 abuts on the outer peripheral surface of the high-voltage tower section 32, thereby being able to reduce a contact area between the inner peripheral surface of the rubber inner peripheral section 43 of the rubber seal 4 and the outer peripheral surface of the high-voltage tower section 32. This makes it possible to facilitate a press fit of the high-voltage tower section 32 to the rubber inner peripheral section 43. Therefore, the high-voltage tower section 32 can be press-fitted into the rubber inner peripheral section 43 of the rubber seal 4 assembled to the pole joint 5 without using a lubricant such as talc.
As shown in
As shown in
As shown in
The protrusion 431 disposed in the inner peripheral surface of the rubber inner peripheral section 43 faces the outer peripheral surface of the straight outer peripheral section 321. The protrusion 431 abuts on the straight outer peripheral section 321. Thus, when the high-voltage tower section 32 is press-fitted into the rubber inner peripheral section 43, the protrusion 431 can be more stably compressed.
As shown in
Instead of the protrusion 431 of the rubber inner peripheral section 43, as shown in
The straight outer peripheral section 321 may not be disposed in the distal end side portion of the high-voltage tower section 32. In this case, the distal end side portion of the high-voltage tower section 32 is configured by only a tapered outer peripheral section that includes an outer peripheral surface of which a diameter is enlarged toward the proximal end side L2 in the center axis direction L of the plug hole 8 of the cylinder CY.
The distal end section of the high-voltage tower section 32 is configured by only a straight outer peripheral section that includes an outer peripheral surface that is parallel to the center axis direction L of the plug hole 8 of the cylinder CY.
In the ignition coil 1 of the present embodiment, the rib 51 is disposed in the pole joint 5 made of resin. The straight outer peripheral section 321 of the high-voltage tower section 32 in the coil case 3 made of resin faces the inner peripheral side of the rib 51 via the rubber inner peripheral section 43 of the rubber seal 4 made of rubber.
The outer diameter of the rib 51 in the pole joint 5 is formed to be slightly smaller than the inner diameter of the plug hole 8 in the cylinder CY in order to allow the rib 51 to be inserted into the plug hole 8 in the cylinder CY. In a state where the pole joint 5 is inserted into the plug hole 8 in the cylinder CY, a slight gap is formed between the rib 51 and the inner peripheral surface of the plug hole 8 in the cylinder CY. Here, when a mounting flange section in the ignition coil 1 is fastened to the engine by a bolt or the like, a center position of the ignition coil 1 relative to the plug hole 8 in the cylinder CY is slightly deviated due to the fastening force. Thus, the rib 51 of the pole joint 5 abuts on the inner peripheral surface of the plug hole 8 in the cylinder CY. As a result, the rib 51 of the pole joint 5 is supported on the inner peripheral surface of the plug hole 8 in the cylinder CY.
When the engine is operated, the ignition coil 1 is strongly vibrated by vibration generated in the engine. At this time, the rib 51 of the pole joint 5 is supported on the inner peripheral surface of the plug hole 8 in the cylinder CY. Thus, swing of the high-voltage tower section 32 disposed in the coil case 3 can be restrained by the inner peripheral surface of the plug hole 8 in the cylinder CY. In addition, the vibration of the high-voltage tower section 32 can be suppressed via the rubber seal 4. This enables the ignition coil 1 to be sufficiently strongly resistant to vibration generated in the engine.
When the ignition coil 1 is assembled, as shown in
Number | Date | Country | Kind |
---|---|---|---|
2014-224835 | Nov 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/080881 | 11/2/2015 | WO | 00 |