This patent application is based on and claims priority to Japanese Patent Application No. 2018-120982, filed on Jun. 26, 2018 in the Japan Patent Office, the entire disclosure of which is hereby incorporated by reference herein.
Embodiments of this disclosure relate to an ignition coil unit and an ignition system each used in the internal combustion engine.
A conventional ignition coil unit includes a coil body to generate a high voltage and a cylindrical coupling unit to couple the coil body to a spark plug. The coil body includes a primary coil, a secondary coil, and a main housing to accommodate these coils. The coil body also includes a supplemental housing to accommodate a high tension tower that projects from the main housing. The coupling unit includes a sealing section made of rubber fitting to the high tension tower and a joint made of resin fitting to a tip of the sealing section.
Such a conventional ignition coil unit used in an internal combustion engine is sometimes mounted on an engine body including a cylinder head and a head cover to cover the cylinder head. The cylinder head includes a plug hole and the head cover includes an opening hole facing the plug hole. The head cover is arranged with the opening hole coaxial with the plug hole. An ignition coil unit is inserted thru both of the opening hole and the plug hole.
However, in such an engine body, due to either an assembly tolerance allowed when the cylinder head and the head cover are assembled or a size tolerance for either the cylinder head or the head cover, axial misalignment may occur such that an axis of the opening hole of the head cover misaligns with that of the plug hole. When the ignition coil unit is mounted on the engine body with such axial misalignment, a region of the sealing section between the opening hole of the head cover and the plug hole of the cylinder head deforms. Due to this deformation, the sealing section is pressed against a corner of an opening end of the plug hole thereby possibly losing durability.
Various embodiments of the present disclosure are made in view of the above-described problem, and an object of one of these embodiments is to provide a novel ignition coil unit and an ignition system used in an internal combustion engine capable of either suppressing or reducing interference between the sealing section and the opening end of the plug hole.
Accordingly, one aspect of the present disclosure provides a novel ignition coil unit attached to the engine body to be used in an internal combustion engine. The engine body includes a cylinder head having a plug hole and a head cover having an opening hole facing the plug hole to cover the cylinder head. The ignition coil unit includes a coil body to generate a high voltage and a cylindrical coupling unit to couple the coil body to a spark plug. The coil body includes a main housing to accommodate components of the coil body and a housing to accommodate a cylindrical high tension tower protruding from the main housing in an axial direction thereof. The coupling unit includes both of a flexible sealing section fitting to an outer peripheral surface of the high tension tower and a joint harder than the sealing section. The joint includes a joint fitting section fitting to a tip fitting section formed at a tip of the sealing section. The sealing section includes an adhesion portion to tightly contact the head cover (i.e., at the opening hole). The sealing section includes a neck portion at least between the adhesion portion and the joint in a Z-axis direction. The neck portion is prepared by pinching an outer peripheral surface toward an inner peripheral surface.
Another aspect of the present disclosure provides a novel ignition system that includes: a cylinder head having a plug hole; a head cover to cover the cylinder head by including an opening hole facing the plug hole, and an ignition coil unit inserted into both of the plug hole and the opening hole. The ignition coil unit includes: a coil body to generate a high voltage and a cylindrical coupling unit to couple the coil body to a spark plug. The coil body includes; a main housing to accommodate components included in the coil body, and a housing to accommodate a cylindrical high tension tower protruding from the main housing in an axial direction thereof. The coupling unit fits to the outer peripheral surface of the high tension tower. The coupling unit includes: an adhesion portion to tightly contact the head cover (i.e., at the opening hole); and a neck portion located inside the plug hole at least partially facing an opening end on a base end side at a position closer to a tip thereof than the adhesion portion. An outer peripheral surface of the neck portion is depressed toward an inner peripheral surface.
Now, an exemplary advantage of each of the embodiment of the present disclosure is described herein below. The sealing section included in the ignition coil unit of the first embodiment of the present disclosure includes the adhesion portion to tightly contact the head cover. A joint harder than the sealing section is located in the tip fitting section of the sealing section. Hence, when the ignition coil unit is attached to the engine body, in which axial misalignment occurs between the opening hole of the head cover and the plug hole, axial misalignment may also be generated between the high tension tower and the joint. That is, the high tension tower is guided and located by the opening hole of the head cover via the adhesion portion fitting to the head cover in the sealing section. With this, a central axis of the high tension tower is intended to align with the central axis of the opening hole of the head cover. On the other hand, the joint located in the plug hole is guided and located by the plug hole. With this, a central axis of the joint is intended to align with a central axis of the plug hole. As a result, the high tension tower and the joint generate the axial misalignment. Accordingly, due to the axial misalignment between the high tension tower and the joint, a region between the adhesion portion and the joint deforms in the sealing section.
In view of this, in this embodiment of the present disclosure, the sealing section includes a neck portion, in which at least an outer peripheral surface is depressed in a region between the adhesion portion and the joint in the axial direction. That is, as described earlier, the neck portion is provided in a portion of the sealing section, which is possibly deformed by the axial misalignment between the opening hole of the head cover and plug hole. Hence, even if the axial misalignment occurs between the opening hole of the head cover and the plug hole, the sealing section can be avoided from interfering with the opening end of the plug hole.
Further, in the ignition system of the second aspect of the present disclosure, the coupling unit includes a neck portion located inside the plug hole at least at the opening end on the base end side. Hence, even if the axial misalignment occurs between the opening hole of the head cover and the plug hole, the coupling unit can be avoided from interfering with the opening end of the plug hole.
Hence, as described heretofore, according the above-described embodiments of the present disclosure, the ignition coil unit and the ignition system used in the internal combustion engine rarely interfere with the opening end of the plug hole.
A more complete appreciation of the present disclosure and many of the attendant advantages of the present disclosure will be more readily obtained as substantially the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views thereof, and in particular to
As illustrated in
As illustrated in
Further, as illustrated in
Further, as illustrated in
Herein below, the ignition coil unit 1 according to one embodiment of the present disclosure is described more in detail, wherein a direction, in which a central axis of the cylindrical high tension tower 32 extends is referred to as a Z-axis direction. A side, on which the joint 6 is located relative to the coil unit 3 in the axial direction Z is referred to as a tip side. An opposite side of the tip side is referred to as a base end side. Further, a radial direction of the high tension tower 32 is simply referred to as a radial direction. Further, in
As illustrated in
Although not illustrated, the coil unit 3 includes primary and secondary coils magnetically coupled to each other. The coil unit 3 is configured to control the secondary coil to generate a high voltage to ignite the spark plug by either increasing or decreasing an amount of current flowing along the primary coil. The primary and secondary coils are housed in a main housing 31 of a housing unit 30.
The housing unit 30 as a whole (i.e. the main housing 31 and the high tension tower 32) is made of resin such as PBT (polybutylene terephthalate) resin, etc. The main housing 31 is a box including an opening facing the base end side (in the ignition coil unit 1).
Again, although not illustrated, the main housing 31 is filled with sealing resin such as epoxy resin, etc. Hence, various components placed in the main housing 31, such as the primary coil, the secondary coil, etc., are fixed by the sealing resin.
Further, as illustrated
The high tension tower 32 is cylindrical having a through hole directed in the Z-axis direction. As illustrated in
The tip cylindrical portion 322 is formed from a center of the base end cylindrical portion 321 when viewed from the tip side in the Z-axis direction. As illustrated in
Further, the sealing section 5 is made of rubber. As illustrated in
Further, as illustrated in
Further, as illustrated in
Further, as illustrated in
Hence, as illustrated in
As illustrated in
Further, as illustrated in
Further, as illustrated in
As illustrated in
As illustrated in
Further, as illustrated in
Further, as illustrated in
Here, the joint 6 is made of PPS (i.e., polyphenylene sulfide resin) and is harder than the sealing section 5 made of rubber. As illustrated in
As illustrated in
Further, as illustrated in
As illustrated in
Further, a cavity c is formed between each of the inner peripheral step 612b and the base end inner peripheral surface 612c and the inner peripheral fitting portion 521b of the seal section 5 in the radial direction. In this embodiment of the present disclosure, an outer peripheral surface of the inner peripheral fitting portion 521b of the sealing section 5 is almost extended along the Z-axis direction. Hence, a tip of the inner peripheral fitting portion 521b tightly contacts the tip inner peripheral surface 612a. On the other hand, a portion on the base end side of the inner peripheral fitting portion 521b forms the cavity c with each of the inner peripheral step 612b and the base end inner peripheral surface 612c therebetween. A length of the cavity c in the Z-axis direction is about half of the insert portion 612.
Although it is not illustrated, a high voltage terminal is press fitted into a base end of the through hole of the high tension tower 32. The high-voltage terminal is connected to a high voltage side of the secondary coil and functions as an output terminal of the coil unit 3. The high-voltage terminal seals the through hole of the high tension tower 32 and also function as a plug not to allow the sealing resin filled in the main housing 31 to leak from the high tension tower 32.
Further, as illustrated in
Further, as illustrated in
Now, an ignition system 2 including the ignition coil unit used in an internal combustion engine according, to another embodiment of the present disclosure is described with reference to
The ignition system 2 of this embodiment comprises the ignition coil unit 1 and the engine unit 20 with the cylinder head 21 and the head cover. The cylinder head 21 includes the plug hole 211. The head cover 22 covers the cylinder head 21 and includes the opening hole 221 facing the plug hole 211. The ignition coil unit 1 is inserted into the plug hole 211 and the opening hole 221 as well.
In general, the head cover 22 and the cylinder head 21 are designed such that a central axis L2 of the opening hole 221 of the head cover 22 aligns with a central axis L1 of the plug hole 211 of the cylinder head 21. However, due to assembly tolerance of the cylinder head 21 and the head cover 22 and dimensional tolerances of the cylinder head 21 and the head cover 22, etc., the cylinder head 21 and the head cover 22 are manufactured sometimes to cause misalignment between the central axes of the plug hole 211 and the opening hole 221. Hence, this embodiment is described based on the ignition unit 2 when the plug hole 211 of the cylinder head 21 and the opening hole 221 of the head cover 22 misalign with each other.
Herein below, a direction of axial misalignment between the plug hole 211 and the opening hole 221 of the head cover 22 when viewed from the Z-axis direction is herein below referred to as a direction X. In the direction X, a side on which the central axis L2 of the head cover 22 is located relative to the central axis L1 of the plug hole 211 is herein below referred to as a X1 side. Further, an outline of the ignition coil unit 1 is illustrated by a two-dot chain line when the central axis L2 of the opening hole 221 of the head cover 22 aligns with the central axis L1 of the plug hole 211.
Specifically, the plug hole 211 of the cylinder head 21 on the base end side is opened. Although not illustrated, a female screw hole is provided and formed at the tip of the plug hole 211. The spark plug is screwed to the female hole and is attached to the plug hole 211.
Further, the opening hole 221 formed in the head cover 22 is slightly larger by one size than that of the plug hole 211. At a site adjacent to the opening hole 221 of the head cover 22, a positioning portion 222 is formed as a projection on the base end side in the Z-axis direction. The positioning portion 222 (i.e., the projection) is composed of a ring extended over the entire circumference of the opening hole 221.
Further, the ignition coil unit 1 is inserted into the opening hole 221 of the head cover 22 and the plug hole 211 as well. More specifically, the ignition coil unit 1 is inserted into the opening hole 221 of the cover 22 and the plug hole 211 with the extended portion 512 of the sealing section 5 almost covering the positioning portion 222 both in the X and D directions.
Further, a lip 513 included in the sealing section 5 of the ignition coil unit 1 pressure contacts an inner peripheral surface of the opening hole 221 of the head cover 22. With this, the base end cylindrical portion 321 of the high tension tower 32 can pressure contact the head cover 22 via the lip 513. At the same time, the central axis of the high tension tower 32 can be aligned with the central axis L2 of the opening hole 221 of the head cover 22.
Further, the neck portion 40 is partially located inside an opening end 211a of the plug hole 211. Specifically, the neck portion 40 is positioned to partially overlap with the opening end 211a of the plug hole 211 in the radial direction. In this embodiment of the present disclosure, a recess 522 to receive a retainer 322a that retains the high tension tower 32 is formed on the inner peripheral surface of the seal section 5 and located on the base end side of the plug hole 211.
Accordingly, in this embodiment of the present disclosure, due to the axial misalignment between the plug hole 211 and the opening hole 221, a region between the lip 513 and the tip fitting portion 521 of the seal section 5 increasingly inclines to the X1 side as it goes on to the base end side. With this, when it is compared with a situation in which the central axes of the plug hole 211 and the opening hole 221 are aligned with each other (i.e., a condition shown in
Now, an advantage obtained in one embodiment of the present disclosure is described herein below. In the ignition coil unit 1 of one embodiment of the present disclosure, the sealing section 5 includes an adhesion portion 41 that tightly contacts the head cover 22. Further, a joint 6 harder than the sealing section 5 is located in the tip fitting portion 521 of the sealing section 5. Hence, the ignition coil unit 1 attached to the engine unit 20, in which axial misalignment occurs between the opening hole 221 of the head cover 22 and the plug hole 211 can accordingly generate axial misalignment between the high tension tower 32 and the joint 6. Because, the high tension tower 32 is guided by the opening hole 221 of the head cover 22 via the adhesion portion 41 of the sealing section 5 fitting to the opening hole 221. With this, the central axis of the high tension tower 32 is adjusted to align with the central axis L2 of the opening hole 221 of the head cover 22. Further, the joint 6 located in the plug hole 211 is guided by the plug hole 211. With this, a central axis of the joint 6 is aligned with a central axis L1 of the plug hole 211. As a result, the high tension tower 32 and the joint 6 collectively generate the axial misalignment. As a result, due to the axial misalignment between the high tension tower 32 and the joint 6, a region between the adhesion portion 41 and the joint 6 deforms in the sealing section 5.
In view of this, according, to this embodiment of the present disclosure, the sealing section 5 includes the neck portion 40, in which at least an outer surface is depressed in a region between the adhesion portion 41 and the joint 6 in the Z-axis direction. That is, as described earlier, the neck portion 40 is provided in a portion of the sealing section 5 deformed by the axial misalignment between the opening hole 221 of the head cover 22 and plug hole 211. Hence, even if the axial misalignment occurs between the opening hole 221 of the head cover 22 and the plug hole 211, the sealing section 5 can be avoided from interfering with the opening end 211a of the plug hole 211.
Here, an ignition system 90 with an ignition coil unit 9 excluding the neck portion is described with reference to
By contrast, as illustrated in
Further, the neck portion 40 is located at a position to overlap with the recess 522 in the radial direction. Hence, a portion of the sealing section 5, in which both of the neck portion 40 and the recess 522 are formed is thinner than both sides thereof located in the Z-axis direction. As a result, the sealing section 5 can easily secure flexibility in the neck portion 40. Hence, when the ignition coil unit 1 is inserted into the engine unit 20, in which axial misalignment occurs between the opening hole 221 of the head cover 22 and the plug hole 211, since the neck portion 40 of the ignition coil unit 1 deforms in accordance with the axial misalignment between the opening hole 221 of the head cover 22 and the plug hole 211, the ignition coil unit 1 can be easily and safely inserted into and located at the engine unit 20.
Further, since it has a given length in the Z-axis direction, the neck portion 40 can be readily located radially inside the opening end 211a of the plug hole 211 on the base end side when the ignition coil unit 1 is attached to the engine unit 20. As a result, productivity of the ignition coil unit 1 can effectively be enhanced.
In addition, since the neck portion 40 provides a minimum diameter of the sealing section 5, an outer peripheral surface of the neck portion 40 is more deeply depressed to the inner peripheral side in the sealing section 5. With this, interference between the neck portion 40 and the opening end 211a of the plug hole 211 can be more effectively prevented. Further, as the outer diameter of it becomes smaller, a thickness of the neck portion 40 can be easily thinned. Accordingly, flexibility of the neck portion 40 can be secured. Hence, when the ignition coil unit 1 is inserted into the engine unit 20, in which axial misalignment occurs between the opening hole 221 of the head cover 22 and the plug hole 211, since the neck portion 40 of the ignition coil unit 1 deforms in accordance with the axial misalignment between the opening hole 221 of the head cover 22 and the plug hole 211, the ignition coil unit 1 can be easily and safely inserted into and located ultimately in the engine unit 20.
Further, the cavity c is formed in the radial direction between each of the base end inner peripheral surface 612c and the inner peripheral step 612 provided in the joint fitting section 61 and the sealing section 5. Hence, the flexibility in the radial direction of the joint fitting section 61 and its surroundings in the sealing section 5 may be increased. Accordingly, when the ignition coil unit 1 is inserted into the engine unit 20, in which axial misalignment occurs between the opening hole 221 of the head cover 22 and the plug hole 211, the joint fitting section 61 and its surroundings in the sealing section 5 can readily deform in accordance with the axial misalignment. As a result, an ignition coil unit 1 easily and safely attached to an engine unit 20 generating axial misalignment between the opening hole 211 of the head cover 22 and the plug hole 211 can be obtained.
Further, according, to another embodiment of the present disclosure, the neck portion formed in the coupling unit 4 of the ignition sys 2 is at least partially located radially inside the opening end 211a of the plug hole 211 on the base end side. Hence, even when the axial misalignment occurs between the opening hole 221 of the head cover 22 and the plug hole 211, the coupling unit 4 can be prevented from interfering with the opening end 211a of the plug hole 211.
As described heretofore, according to one embodiment of the present disclosure, the ignition coil unit and the ignition system used in the internal combustion engine capable of either avoiding or reducing interference with the opening end of the plug hole can be obtained.
Now, a second embodiment of the present disclosure is described herein below with reference to
In this embodiment of the present disclosure, the inner peripheral step 612b formed on the inner peripheral surface of the insert portion 612 of joint fitting section 61 is located at the tip side in the insert portion 612. With this, the base end inner peripheral surface 612c of the joint fitting section 61 is longer than the tip inner peripheral surface 612a in Z-axis direction.
In addition, the inner peripheral fitting portion 521b of the tip fitting portion 521 of the sealing section 5 tightly contacts the tip inner peripheral surface 612a, while forming the cavity c with each of the inner peripheral step 612b and the base end inner peripheral surface 612c. With this, the cavity c is longer than half of the insert portion 612 in the Z-axis direction.
The remaining sections and portions are substantially the same as those of the first embodiment of the present disclosure.
Accordingly, according, to this embodiment of the present disclosure, flexibility in the radial direction of the joint fitting section 61 and surroundings thereof in the sealing section 5 is further enhanced. Hence, when the ignition coil unit 1 is inserted into the engine body, in which axial misalignment occurs between the opening hole of the head cover and the plug hole, the joint fitting section 61 and surroundings thereof in the sealing section 5 can effectively deform in accordance with the axial misalignment. With this, an ignition coil unit 1 more easily attached to the engine unit 20 generating axial misalignment between the opening hole of the head cover and the plug hole can be readily obtained. Besides, the second embodiment of the present disclosure can obtain a similar advantage to that of the first embodiment of the present disclosure.
Now, a third embodiment of the present disclosure is herein below described with reference to
More specifically, the neck portion 40 is formed in a base end of the base end sealing portion 51 (the tip sealing portion 52). That is, upper and lower portions of the base end sealing portion 51 (the tip sealing portion 52) sandwiching the neck portion 40 in the Z-axis direction projects radially outside from the neck portion 40.
Remaining configurations are similar to those of the first embodiment of the present disclosure and are not repeatedly described. Again, the third embodiment of the present disclosure can obtain a similar advantage as the first embodiment of the present disclosure.
Now, a fourth embodiment of the present disclosure is herein below described with reference to
Now, a fifth embodiment of the present disclosure is herein below described with reference to
Further, as illustrated in
Hence, according, to this embodiment of the present disclosure, the sealing section 5 includes the convex portion 53 on its outer peripheral surface adjacent to the neck portion 40 on the tip side relative to the neck portion 40. With this, the neck portion 40 is relatively depressed to a certain degree from the convex portion 53. Thus, when the ignition coil unit 1 of this embodiment of the present disclosure is attached to the engine unit 20 generating axial misalignment between the opening hole 221 of the head cover 22 and the plug hole 211 as illustrated in
Now, a sixth embodiment of the present disclosure is herein below described with reference to
Hence, according, to this embodiment of the present disclosure, the convex portion 53 is formed at the position to overlap with the joint fitting section 61 in the radial direction. Accordingly, the joint 6 can easily be prevented from dropping from the tip fitting portion 521 of the sealing section 5. This embodiment of the present disclosure can provide substantially the same advantage other than the above-described advantage as the fifth embodiment of the present disclosure.
Now, a seventh embodiment of the present disclosure is herein below described with reference to
The rest of the above-described configuration is substantially the same as that of the first embodiment of the present disclosure, and is not repeatedly described. This embodiment of the present disclosure can provide substantially the same advantage other than the above-described advantage as the first embodiment of the present disclosure.
The present disclosure is not limited to the above-described embodiments. For example, the neck portion 40 employed in each of the above-described embodiments can slope up to a middle portion thereof in the Z-axis direction by increasingly reducing a diameter of the neck portion 40 gradually in the direction X as it goes on to the middle portion thereof in the Z-axis direction. Further, the outer peripheral surface of the coupling unit 4 may be depressed stepwise by one step to exclude a slope therefrom in the Z-axis direction.
Numerous additional modifications and variations of the present disclosure are possible in light of the above teachings. It is Hence to be understood that within the scope of the appended claims, the present disclosure may be executed otherwise than as specifically described herein. For example, the ignition coil unit is not limited to the above-described various embodiments and may be altered as appropriate. Similarly, the ignition system is not limited to the above-described various embodiments and may be altered as appropriate.
Number | Date | Country | Kind |
---|---|---|---|
2018-120982 | Jun 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4262272 | Potter | Apr 1981 | A |
7382220 | Keller | Jun 2008 | B2 |
20080029074 | Anzo | Feb 2008 | A1 |
20120227715 | Kawai | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
2007-064041 | Mar 2007 | JP |
2007-184453 | Jul 2007 | JP |
2009-281272 | Dec 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20190390643 A1 | Dec 2019 | US |