The present invention relates to vehicle ignition coils.
Ignition coils are components that use the coupling between a primary winding and a secondary winding to transform relatively low voltages from the battery into high voltages that are supplied to the spark plugs in vehicle gasoline engines. The spark plugs start the internal combustion process that drives the rods and hence, crankshaft and axles. In older systems, a single ignition coil is provided, and a distributor sends the pulses from the coil through respective high voltage spark plug wires to the spark plugs in the cylinders in accordance with a timing that is established by the distributor.
In relatively modern engines, an engine can have several ignition coils, one for each cylinder or for each pair of cylinders, thereby advantageously eliminating the need for distributors and high voltage wires and also providing more precise control of the engine timing. One example of such an ignition coil system is set forth in U.S. Pat. No. 6,556,118, owned by the present assignee and incorporated herein by reference.
When such a coil is used to energize two spark plugs (either for two different cylinders or for a single cylinder in an engine that has two spark plugs per cylinder), two secondary windings surround the low voltage-carrying primary winding that is wound on an interior ferromagnetic core, with the secondary windings being radially spaced from the primary winding. Each secondary winding, owing to the inductive coupling between it and the primary winding and the different numbers of winding turns between the primary and secondary windings, produces a high voltage that is sent to a respective spark plug.
As understood herein, the ends of the secondary windings that are opposite the ends which are connected to the spark plugs must be connected to ground (in a three conductor system) or to the positive pole of the battery in a two conductor system to complete the electrical path. The present invention also understands that if these ends are located axially between oppositely-wound secondary windings, somehow electrical connection must be made from the middle of the ignition coil to the end, for connection to ground or battery positive. As critically recognized by the present invention, owing the relatively small size of modern ignition coils, the space available to run a lead from between the secondary windings and past one of the high voltage secondary windings to an end connector is limited, making electrical connection using a lead internal to the ignition coil difficult and problematic. Having made these critical observations, the invention below is provided.
A distributorless ignition coil includes a primary winding that can be connected to a source of voltage such as a vehicle battery. First and second secondary windings are in axial sequence to each other and surround the primary winding. Each secondary winding can be electrically connected to a respective spark plug. Also, each secondary winding is inductively coupled to the primary winding when the primary winding is energized, and the secondary windings are configured to transform relatively lower voltage from the primary winding to relatively higher voltage for supply to the spark plugs. A shield surrounds the secondary windings. In accordance with the present invention, the shield is electrically connected to a center tap terminal between the secondary windings, with the center tap terminal being electrically connected to each secondary winding. With this structure, the shield can electrically connect the center tap terminal to ground or to battery voltage as desired.
In non-limiting implementations the shield defines an end, and the shield is connectable to ground or battery voltage at or substantially near the end. A case can hold the shield and windings and can define a closable open end, and the end of the shield can be juxtaposed with the closable open end of the case.
In illustrative embodiments the shield may be formed with two tabs defining a space between them for receiving the center tap terminal. The tabs can be crimped to hold the center tap terminal therebetween. Or, the shield may be formed with one and only one tab, with the center tap terminal being welded to the tab. In either case, the secondary windings may be wound oppositely to each other relative to an axial dimension of the coil.
In another aspect, an ignition coil includes a primary winding receiving voltage from a source of voltage in a vehicle, and first and secondary windings inductively coupled to the primary winding. A shield surrounds the secondary windings and is radially spaced therefrom. The shield defines a substantial portion of a cylinder and establishes a portion of an electrical circuit including the first secondary winding and a first spark plug. The shield also establishes a portion of an electrical circuit including the second secondary winding and a second spark plug.
In still another aspect, a distributorless ignition system for a vehicle engine includes plural ignition coils. Each ignition coil has first and second secondary windings electrically connected to respective spark plugs. Also, each ignition coil includes a shield surrounding the secondary windings and completing an electrical circuit for each secondary winding.
The details of the present invention, both as to its structure and operation, can best be understood in reference to the accompanying drawings, in which like reference numerals refer to like parts, and in which:
Referring initially to
Cross-referencing
As shown in
In accordance with ignition coil principles known in the art, a primary wire winding 42 is wound around a soft iron core 44 that is coaxially disposed within the secondary winding spool 28. The core 44, which may be made of silicon steel laminations or compression molded iron particles or other appropriate material, is bounded at its ends by a silicon or rubber buffer cup 46 and a primary cap 48. The open end of the case 16 is closed by a cover 50.
It is to be understood that the primary winding 42 is electrically connected, via a connector member 52 with two or more terminals 54, to an ignition system that selectively energizes the primary winding 42 from a source of voltage such as a vehicle battery in accordance with ignition coil principles known in the art. As shown best in
When the primary winding 42 is energized, the cooperation between the core 44, primary winding 42, and secondary windings 32, 34 results in inductive coupling between the primary winding 42 and secondary windings 32, 34. Owing to this coupling and to the different number of turns between primary and secondary, the relatively low battery voltage in the primary winding 42 is transformed into relatively higher voltages in the secondary windings 32, 34 for provision of the higher voltages to the spark plugs.
Thus, the terminals 36, 38 of the secondary windings 32, 34 are connected to respective spark plugs using connector structure known in the art, e.g., each terminal 36, 38 may be electrically connected to a respective spring 56 with associated terminal cup 58. A so-called tower 60 may be formed as part of the case 16, and a mount support bushing 62 (
In accordance with the present invention and now referring to
Recall that the center tap terminal 40 is electrically connected to each secondary winding 32, 34. Thus, the secondary windings 32, 34 are electrically connected to the shield 20. Further, as best shown in
It may now be appreciated that the shield 20 establishes a portion of an electrical circuit including the first secondary winding 32 and a first spark plug, and that the shield 20 further establishes a portion of an electrical circuit including the second secondary winding 34 and a second spark plug. That is, the shield 20 completes the electrical circuit for each secondary winding 32, 34.
While the particular IGNITION COIL WITH SECONDARY WINDING CENTER TAP CONNECTED TO SHIELD as herein shown and described in detail is fully capable of attaining the above-described objects of the invention, it is to be understood that it is the presently preferred embodiment of the present invention and thus, is representative of the subject matter which is broadly contemplated by the present invention, that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural and functional equivalents to the elements of the above-described preferred embodiment that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it is to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. section 112, sixth paragraph, unless the element is expressly recited using the phrase “means for.”
Number | Name | Date | Kind |
---|---|---|---|
6463918 | Moga et al. | Oct 2002 | B1 |
6556118 | Skinner | Apr 2003 | B1 |
6799451 | Kiess et al. | Oct 2004 | B2 |
6860256 | Nakamura et al. | Mar 2005 | B2 |
Number | Date | Country |
---|---|---|
08186039 | Jul 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20060091987 A1 | May 2006 | US |