1. Technical Field
This invention relates generally to spark plugs and other ignition devices, and more particularly to electrodes having noble metal firing tips and to methods of construction thereof.
2. Related Art
Within the field of spark plugs, there exists a continuing need to improve the erosion resistance and reduce the breakdown voltage between the spark plug's center and ground electrodes. Various designs have been proposed using noble metal electrodes or, more commonly, noble metal firing tips applied to standard metal electrodes. Typically, the firing tip is formed as a pad or rivet which is then welded onto the end of the electrode.
In constructing firing tips with noble, also referred to as precious metals, there also exists a continuing need to improve the reliability of the attachment of the noble metal firing tip material to the electrode material, which is often constructed from a nickel alloy. For example, in U.S. Pat. No. 6,132,277, which is assigned to the assignee of the applicant herein, a precious metal is placed on a planar surface of the electrode, resistance welded, then resistance welded thereto. Further, the desired shape of the precious metal firing tip is preferably formed after resistance welding, and can then be resistance welded again to further secure the firing tip to the electrode which may have been loosened during the forming process or may not have been firmly attached during the initial resistance weld.
In U.S. Pat. No. 5,811,915, another construction of a spark plug having a precious metal chip secured to an electrode is disclosed. The '915 patent teaches attaching a noble metal chip formed of iridium, or an alloy thereof, by first resistance welding the chip to the electrode. During the resistance welding process, the noble metal chip remains unmelted, and is pushed toward the electrode so that it sinks into the melted electrode material, thereby forming protruding portions about an outer perimeter of the chip. Subsequently, a laser beam is applied to a point location, shown as being two points generally opposite one another, on the protruding portion of the electrode at an incident angle of 45 degrees to melt the impinged protruding portion of the electrode and a side surface of the noble metal chip in the vicinity of the protruding portion. Accordingly, a laser weld joint extends into a side surface of the precious metal chip above its lower surface which was previously sunk into the melted electrode material. Then, another peripheral laser weld is performed entirely along the outer periphery of the noble metal chip by rotating the electrode about its axis.
In U.S. Pat. No. 6,705,009, another construction of a spark plug having a precious metal secured to a center electrode is disclosed. The '009 patent teaches attaching a flat end of a continuous precious metal wire to a flat end of a tapered ignition tip of the center electrode via a first resistance or friction weld. During the first weld, the end of the wire forms a flat butt-weld joint with the end of the center electrode. The wire is then cut, and a second weld is formed via a laser about the outside periphery of the first weld joint between the cut wire and the center electrode.
In U.S. Pat. No. 6,819,031, another construction of a spark plug having a precious metal firing tip secured to an electrode is disclosed. The '031 patent teaches attaching a noble metal chip to a center electrode via a temporary resistance weld or a jig, and then forming a laser weld around a full circumference of the interface of the noble metal chip and the center electrode to form a first weld layer. Then, the laser is shifted along the longitudinal axis of the center electrode to form a second weld around the full circumference of the interface, with additional weld layers being possible thereafter, with each additional weld layer being shifted axially along the longitudinal axis of the electrode.
In U.S. Pat. No. 6,827,620, another construction of a spark plug having a precious metal secured to an electrode is disclosed. The '620 patent teaches attaching a noble metal chip to a center electrode via a provisional resistance weld, and thereafter forming a final laser weld. The noble metal chip is a pillar shaped element of iridium, or an iridium alloy material. During the provisional resistance welding, the chip is pressed with sufficient force to embed an unmelted portion of the pillar shaped chip into the electrode preferably not more than 0.1 mm.
Of all the known electrode constructions having a precious metal firing tip, including those discussed above, each comes with potential drawbacks. Some of the possible drawbacks include, increased costs in manufacture, a limited number of types of firing tip materials available for use, or a combination thereof. As such, the subject invention, among other things discussed and/or referenced herein, seeks to remedy these and any other potential problems present in the known constructions.
An ignition device for an internal combustion engine constructed in accordance with the invention includes a housing having an opening and an insulator secured within the housing. The insulator has an end exposed through the opening in the housing. A center electrode is mounted within the insulator and has an outer surface extending to an end beyond the insulator. A ground electrode extends from the housing with a portion of the ground electrode being located opposite the end of the center electrode to define a spark gap therebetween. The center electrode has a precious-metal firing tip initially bonded to its end by a resistance weld joint. A continuous bead of overlapping laser weld pools extends about an outer periphery of the firing tip to further bond the firing tip to the center electrode. The weld pools form at least a portion of a rounded shoulder that extends from the firing tip to the outer surface of the center electrode.
Another aspect of the invention includes an electrode assembly for an ignition device. The electrode assembly has an electrode body with an outer surface and a firing tip with a lower surface and an outer periphery. A resistance weld joint bonds the firing tip lower surface to the electrode body so that the lower surface is embedded a first distance beneath the outer surface. A continuous bead of overlapping laser weld pools is formed over the firing tip outer periphery, with the laser weld pools extending a second distance beneath the electrode body outer surface with the second distance being greater than the first distance.
Yet another aspect of the invention includes a method of constructing an ignition device for an internal combustion engine. The method includes providing a housing and securing an insulator within the housing so that an end of the insulator is exposed through an opening in the housing. Then, mounting a center electrode body having an outer surface within the insulator with a firing tip region of the center electrode body extending beyond the insulator. Then, extending a ground electrode body having an outer surface from the housing with a firing tip region of the ground electrode body being located opposite the firing tip region of the center electrode body to define a spark gap therebetween. Further, providing at least one preformed piece of firing tip material formed from noble metal. Further yet, resistance welding the at least one piece of firing tip material to at least one of the center electrode body or ground electrode body to at least partially form a firing tip, with the resistance weld joint defining a lower surface of the firing tip that is a first distance beneath the outer surface. Then, laser welding a continuous bead of overlapping laser weld pools over an outer periphery of the firing tip with the weld pools extending a second distance beneath the outer surface, wherein the second distance is greater than the first distance.
Another aspect of the invention includes a method of constructing an ignition device. The method includes providing an electrode body having an outer surface and a preformed piece of noble metal firing tip material. Then, resistance welding the firing tip material to the body to at least partially form a firing tip and defining a lower surface of the firing tip a first distance beneath the outer surface. Further, laser welding a continuous bead of overlapping laser weld pools over an outer periphery of the firing tip so that the weld pools extend a second distance beneath the outer surface, wherein the second distance is greater than the first distance.
These and other features and advantages of the present invention will become more readily appreciated when considered in connection with the following detailed description of the presently preferred embodiments and best mode, and appended drawings, wherein like features have been given like reference numerals, and wherein:
Referring in more detail to the drawings,
As is known, the annular end 26 of housing 12 defines an opening 28 through which the insulator 14 preferably extends. The center electrode 16 is generally mounted within insulator 14 by a glass seal or using any other suitable technique. The center electrode 16 may have any suitable cross-sectional shape, but commonly is generally cylindrical in cross-section having an arcuate flare or taper to an increased diameter on the end opposite firing tip 20 to facilitate seating and sealing the end within insulator 14. The center electrode 16 generally extends out of insulator 14 through an exposed axial end 30. The center electrode 16 is constructed from any suitable conductor, as is well-known in the field of sparkplug manufacture, such as various Ni and Ni-based alloys, for example, and may also include such materials clad over a Cu or Cu-based alloy core.
The ground electrode 18 is illustrated, by way of example and without limitations, in the form of a conventional arcuate ninety-degree elbow of generally rectangular cross-sectional shape. The ground electrode 18 is attached to the housing 12 at one end 32 for electrical and thermal communication therewith and preferably terminates at a free end 34 generally opposite the center electrode 16. A firing portion or end is defined adjacent the free end 34 of the ground electrode 18 that, along with the corresponding firing end of center electrode 16, defines a spark gap 36 therebetween. However, it will be readily understood by those skilled in the art that the ground electrode 18 may have a multitude of configurations, shapes and sizes.
The firing tips 20, 22 are each located at the firing ends of their respective electrodes 16, 18 so that they provide sparking surfaces 21, 23, respectively, for the emission and reception of electrons across the spark gap 36. As viewed from above firing tip surfaces 21, 23, such as that shown for the surface 23 in
In accordance with the invention, the firing tips 20, 22 are first resistance welded onto their respective electrodes 16, 18, and then they are at least partially laser welded to further secure their attachment to the electrodes and to prevent unwanted ingress of oxidation into the weld joint formed between the firing tips 20, 22 and the electrodes 16, 18. The resistance weld joint defines a lower surface 40 embedded a first distance (d) beneath an outer surface 42 of the respective electrode 16, 18. The laser weld joint defines overlapping weld pools 44 that extend a second distance (D) beneath the outer surface 42 of the respective electrode 16, 18, wherein the second distance (D) is greater than the first distance (d). To assist in establishing a reliable weld joint, and to further assist in inhibiting the ingress of oxidation, the laser weld joint is formed so that the respective firing tip 20, 22 is free from undercuts from the laser weld pools 44. Accordingly, each of the laser weld pools 44 forms a sidewall 46 that is firmly bonded to the respective firing tip 20, 22, wherein the sidewall 46 is either generally parallel to and/or extends radially outwardly from a central axis 48 of the firing tip 20, 22 as it extends below the outer surface 42.
In constructing the respective electrode 16, 18, as shown in
Next, as shown in
Upon forming the firing tip 20, 22, a laser weld joint 60 is established to increase the mechanical strength of the bond between the firing tip 20, 22 and the respective electrode 16, 18, such as, by way of example and without limitations, a GSI JK 450 450 Watt-Lumonics trepanning head with lamped pumped pulsed ND-YAG laser. It should be understood that the laser could be of any brand name, and that a continuous wave YAG, CO2, or other laser type could be used. In one preferred embodiment, the laser weld energy was controlled between about 1-1.5 J/pulse, the weld frequency between about 75-85 Hz, and the optical spot diameter between about 0.008-0.010 inches to provide individual weld pools of about 0.020 inches is diameter. To perform the laser weld, the laser head, and thus, a laser beam 62 was trepanned about the electrode 16, 18 and the respective firing tip 20, 22, which was held stationary. The preferred speed for trepanning the laser head is between about 140-160 rpm, while the preferred number of pulses/spot welds is between about 30-33. It should be recognized that depending on the particular application, that the aforementioned parameters could be altered, and further, that the work piece could be rotated and the laser beam maintained stationary, if desired. During the laser welding process, it is also preferred that a cover gas be used, such as argon, for example, wherein the flow rate of the cover gas can be controlled as best suited for the application, such as about 0.2 cfm, for example.
As shown in
As shown in
As shown in
In yet another presently preferred construction of the center electrode 16, as shown in
In yet another presently preferred construction of the center electrode 16, as shown in
As shown in
Obviously, many modifications and variations of the present invention are possible in light of the above disclosure and accompanying figures. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/624,272, filed on Jan. 18, 2007 now U.S. Pat. No. 7,923,909, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2296033 | Heller | Sep 1942 | A |
4514657 | Igashira et al. | Apr 1985 | A |
5179313 | Eves et al. | Jan 1993 | A |
5347193 | Oshima et al. | Sep 1994 | A |
5395273 | Matsutani | Mar 1995 | A |
5461276 | Matsutani et al. | Oct 1995 | A |
5558575 | Chiu et al. | Sep 1996 | A |
5793151 | Kagawa et al. | Aug 1998 | A |
5811915 | Abe et al. | Sep 1998 | A |
5977695 | Osamura et al. | Nov 1999 | A |
5998913 | Matsutani | Dec 1999 | A |
6078129 | Gotou et al. | Jun 2000 | A |
6093071 | Osamura et al. | Jul 2000 | A |
6132277 | Tribble et al. | Oct 2000 | A |
6304022 | Matsutani | Oct 2001 | B1 |
6533628 | Matsutani | Mar 2003 | B1 |
6595818 | Uehara | Jul 2003 | B2 |
6705009 | Niessner | Mar 2004 | B2 |
6724132 | Kanao | Apr 2004 | B2 |
6750598 | Hori | Jun 2004 | B2 |
6819031 | Hori | Nov 2004 | B2 |
6827620 | Mizutani | Dec 2004 | B1 |
6833658 | Niessner | Dec 2004 | B2 |
6846214 | Gotou et al. | Jan 2005 | B1 |
6923699 | Matsubara et al. | Aug 2005 | B2 |
7045939 | Teramura et al. | May 2006 | B2 |
7049733 | Lykowski et al. | May 2006 | B2 |
7084558 | Teramura et al. | Aug 2006 | B2 |
7109646 | Morita et al. | Sep 2006 | B2 |
7306502 | Hori | Dec 2007 | B2 |
7557495 | Tinwell | Jul 2009 | B2 |
20020017846 | Hori | Feb 2002 | A1 |
20020105254 | Hori et al. | Aug 2002 | A1 |
20030038577 | Hori et al. | Feb 2003 | A1 |
20040100178 | Kanao et al. | May 2004 | A1 |
20040129683 | Torii et al. | Jul 2004 | A1 |
20040189169 | Taniguchi et al. | Sep 2004 | A1 |
20050168121 | Tinwell | Aug 2005 | A1 |
20060276097 | Suzuki et al. | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
1289084 | Nov 1989 | JP |
57-151183 | Sep 1992 | JP |
2005158322 | Jun 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20080174222 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11624272 | Jan 2007 | US |
Child | 11861834 | US |