Ignition Device, Method for Producing the Same, Gas Generator for Air Bag and Gas Generator for Seat Belt Pretensioner

Information

  • Patent Application
  • 20090200779
  • Publication Number
    20090200779
  • Date Filed
    January 05, 2007
    17 years ago
  • Date Published
    August 13, 2009
    15 years ago
Abstract
The invention provides an ignition device which is produced without reducing its productivity, while being compact in size and enabling electric current securely to flow through electric circuits built in the ignition device. The ignition device includes a metal cup and a metal header for holding a plurality of electrode pins respectively insulated and closing the opening of the cup, and further includes, in the cup, ignition charge and an ASIC component. The ASIC component includes an ASIC and a capacitor both mounted on a substrate molded with a resin to form a resin mold, and the resin mold has at its top a heating element connected to the ASIC and further has at its bottom communication electrodes for connecting the ASIC to the electrode pins, so that the ASIC component thus constructed abuts against the header. The electrode pins and the communication electrodes are jointed to each other under pressure.
Description
TECHNICAL FIELD

This invention relates to an ignition device and a method for producing the ignition device to be installed in a gas generator or the like used in a safety device for a car such as an air bag, seat belt pretensioner and the like. Moreover, the invention relates to a gas generator with the ignition device described above installed therein for an air bag and a gas generator with the ignition device installed therein for a seat belt pretensioner.


BACKGROUND ART

A variety of electric ignition devices have been developed as ignition devices for gas generators for inflating air bags equipped in cars and as ignition devices for micro gas-generators for seat belt pretensioners.


Such an ignition device usually has metal pins for electrically connecting to the external, and a heating element at the other ends of the metal pins for igniting an explosive.


As examples of such a heating element, heating elements incorporated in a printed sub-circuit have been known as disclosed in a patent document 1 and a patent document 2 corresponding to the patent document 1.


On the other hand, moreover, it has been envisioned that an air bag system is linked to a local area network (LAN) so that ignition of an ignition device is controlled by communication.


In this case, it is necessary to locate electric circuits in the ignition device for the communication and ignition as described in a patent document 3.


With the ignition device constructed as described above, therefore, it is required to provide means for causing electric current to flow through the electric circuits built in the ignition device.


In a patent document 4, for example, disclosed is a structure of an electric circuit substrate fixed to electrode pins of a header by means of soldering or the like.


Patent document 1: Specification of French Patent Application Opened No. 2,704,944


Patent document 2: Specification of United States Patent No. 5,544,585


Patent document 3: Official Gazette of Japanese Patent No. 3,294,582


Patent document 4: Specification of European Patent Application Opened No. 1,256,775


DISCLOSURE OF THE INVENTION
Task to be Solved by the Invention

In the method disclosed in the patent document 4, after the circuits have been previously constructed on a substrate and connected to electrode pins of a header, the circuits and the substrate must be molded with a resin.


However, particularly the resin molding under a condition already connected to a header is seriously lower in productivity as compared with the molding of parts such as a usual IC fixed to a lead frame.


In the case that connection between the electrode pins and the electric circuits is firmly fixed by soldering, moreover, there would be a risk of solder cracks due to residual stresses.


Furthermore, in order to obtain a strong connection between the electrode pins and the electric circuits, connection lengths are required to some extent. If such a construction of longer connection lengths is employed in an ignition device originally having a small volume, the ignition device becomes unavoidably bigger causing a problem of size when the ignition device is built in a gas generator or a seat belt pretensioner.


The invention has been developed in view of the circumstances described above and has an object to provide an ignition device enabling electric current securely to flow through the electric circuits built in the ignition device without lowering the productivity in manufacturing the resin mold and without increasing the size of the ignition device, and at the same time to provide an advantageous method for producing the ignition device.


Furthermore, the invention has a further object to provide a gas generator for an air bag and a gas generator for a seat belt pretensioner, respectively including the compact ignition device described above installed therein.


Solution for the Task

By the way, in order to achieve the objects described above the inventors have earnestly investigated a connecting method between electrode pins and electric circuits and have gotten the following recognitions.


a) By molding with a resin only the circuits of an ASIC and the like except for the electrode pins of the header, the manufacture of the resin mold can be performed with a high productivity.


b) The connection between the electrode pins and the electric circuits in the resin mold is effected by contact therebetween through communication electrodes provided in the resin mold. With this arrangement, the connection between the electrode pins and the electric circuits becomes easy, and in addition the volume of the ignition device is kept to the minimum.


However, it has become apparent that in the event that the electrode pins of the header are pushed to the communication electrodes provided in a resin mold by a force to an extent in slight contact with each other, the connection between the communication electrodes and the electrode pins would be often broken down upon the ignition device being impacted.


With that, the inventors have continued the investigation and found the following facts.


c) In the case that the cup and the header of the ignition device are jointed together to form an integrated unit by welding, if the welding is performed in a state that the header has been forced into the cup of the ignition device at a pressure higher than a certain constant pressure, the communication electrodes and the electrode pins are jointed to each other under pressure owing to elastic reaction force of the cup and the resin mold enclosing the electric circuits. With such a joint formed under pressure, even if the ignition device is subjected to a considerable impact, the connection between the communication electrodes and the electrode pins is never disconnected.


d) With such a joint under pressure, further, since the elastic reaction force of the resin mold and the cup also acts between ignition charge and the heating element, the heating element provided at the other end of the resin mold and the ignition charge are jointed under pressure, thereby achieving a reliable ignition and shortening of the ignition time.


The invention is based on the recognition and knowledge described above.


Therefore, the aspects of the invention are as follows.


(1) The ignition device including a metal cup and a metal header for holding a plurality of electrode pins respectively insulated and closing the opening of said cup, and further including, in said cup, ignition charge and an ASIC component, said ASIC component including an ASIC and a capacitor both mounted on a substrate molded with a resin to form a resin mold, and said resin mold having at its top a heating element connected to said ASIC and at the bottom communication electrodes for connecting said ASIC to said electrode pins, so that said ASIC component thus constructed abuts against said header, characterized in that said electrode pins and said communication electrodes are jointed to each other under pressure.


(2) The ignition device as in the above (1), characterized in that said heating element and said ignition charge are in contact with each other under pressure.


(3) The ignition device as in the above (1) or (2), characterized in that the upper surface of said heating element is coated with an ignition charge composition.


(4) The ignition device as in any one of the above (1) to (3), characterized in that said heating element comprises a semiconductor bridge chip.


(5) The ignition device as in the above (4), characterized in that said semiconductor bridge chip includes a bridge formed by laminating a metal and an insulator.


(6) The gas generator for an air bag, comprising the ignition device as in any one of the above (1) to (5) installed in the gas generator.


(7) The gas generator for a seat belt pretensioner, comprising the ignition device as in any one of the above (1) to (5) installed in the gas generator.


(8) The method for producing an ignition device characterized in comprising steps of packing a metal cup with ignition charge at the innermost portion of the cup, molding an ASIC and a capacitor both mounted on a substrate with a resin to form a resin mold, arranging at the top of said resin mold a heating element connected to said ASIC and further arranging at the bottom of said resin mold communication electrodes for connecting said ASIC to electrode pins located in a header to form an ASIC component, inserting said ASIC component into said cup such that said heating element abuts against said ignition charge, subsequently press-fitting said header made of a metal into said cup, said header holding therein a plurality of electrode pins including said first mentioned electrode pins by glass-sealing so that said electrode pins abut against said communication electrodes, and welding said header and said cup under the press-fitted condition to form an integral unit.


(9) The method for producing an ignition device as in the above (8), characterized in that the upper surface of said heating element is coated with an ignition charge composition.


(10) The method for producing an ignition device as in the above (8) or (9), characterized in that said heating element comprises a semiconductor bridge chip.


(11) The method for producing an ignition device as in any one of the above (8) to (10), characterized in that the press-fitting force of said header 8 is 1 to 250 MPa in the step of press-fitting said header into said cup.


Effect of the Invention

Since the molding with a resin is limited to molding of the electric circuits such as the ASIC and the like according to the invention, similar procedures to those for molding the usual integrated circuits with a resin can be performed by the use of a lead frame or the like as a substrate so that the productivity of resin mold is improved.


According to the invention, moreover, the joint of the electric circuits and the electrode pins is carried out by jointing the communication electrodes provided at the bottom of the resin mold and the electrode pins under pressure so that the ignition device itself becomes compact and its assembling is simplified.


According to the invention, further, since the communication electrodes and the electrode pins are jointed under pressure, even if the ignition device is subjected to a considerable impact, the connection between the communication electrodes and the electrode pins is never disconnected.


According to the invention, furthermore, owing to the jointing under pressure described above, the heating element and the ignition charge are jointed under pressure, thereby achieving a reliable ignition and shortening of the ignition time.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a sectional view of a preferable ignition device according to the invention;



FIG. 2 is an explanatory view of an ignition charge of a two-layer structure;



FIG. 3 is an explanatory view of the case of a heating element the upper surface of which is coated with an ignition charge composition;



FIG. 4 is a conceptual view of a gas generator for an air bag;



FIG. 5 is a conceptual view of a gas generator for a seat belt pretensioner; and



FIG. 6 is an explanatory view of a central control unit.





DESCRIPTION OF THE REFERENCE NUMERALS


1 Cup



2 Ignition charge



2′ Booster charge



2″ Ignition charge composition



3 ASIC component



4 ASIC



5 Capacitor



6 Heating element



7 Communication electrode



8 Header



9 Electrode pin



10 Glass to metal sealing



11 Ignition electrode



12 Resin cup



13 Resin for molding



21 Gas generator for air bag



22 Ignition device



23 Enhancer



24 Gas generant



25 Filter



26 Housing



27 Hole



31 Gas generator for seat belt pretensioner (micro gas-generator)



32 Ignition device



33 Gas generant



34 Base (holder)



35 Cup



110 Central control unit



111
a to 111d Air bag modules



114, 115 Electrode pins


BEST MODE FOR CARRYING OUT THE INVENTION

The invention will be specifically explained hereinafter.



FIG. 1 illustrates in section the ignition device according to the invention. In the drawing, reference numeral 1 shows a cup which is usually constructed by a cylindrical body made of a metal. Reference numeral 2 denotes ignition charge. Reference numeral 3 denotes an ASIC component which is formed by molding with a resin a substrate having elements required for electric circuits such as an ASIC, a capacitor and the like mounted thereon. Reference numeral 4 denotes the ASIC, and numeral 5 shows the capacitor. In this place, the ASIC (application specific integrated circuit) 4 is an integrated circuit for a particular use, which functions as intercommunication switching means in the present invention for igniting the ignition device based on coded information obtained by intercommunicating with the external. Moreover, the capacitor 5 serves as electric energy-accumulating means.


Further, reference numeral 6 denotes a heating element arranged on the top of the ASIC component 3, and reference numeral 7 denotes communication electrodes arranged at the bottom of the ASIC component 3.


Reference numeral 8 shows a header made of a metal to which electrode pins 9 are fixed by means of glass to metal scaling 10 for electrically connecting the electric circuits to the external. The electrode pins are fixed by the glass to metal sealing in this manner to ensure electric insulation while maintaining high air-tightness. Furthermore, the metal cup and the metal portion of the header are welded to each other to seal the interior of the cup in high air-tightness.


And now, first, the ignition charge 2 is arranged at the innermost portion in the cup 1 according to the invention. As shown in FIG. 1, the ignition charge 2 may be of one kind of explosive arranged in a single layer, but as shown in FIG. 2, it is more beneficial to arrange booster charge 2′ stronger in inflammation on the outside of the ignition charge 2 so as to form a two-layer structure.


As the booster charge 2′, here, it is preferable to contain zirconium in its composition. Other than this, those containing titanium hydride, boron or lead trinitroresorcinate are also advantageously suitable.


Moreover, as usable ignition charges 2 other than those described above, there are, for example, those disclosed in the specification of Japanese Patent Application No. 2001-140,468 and the official gazette of Japanese Patent Application Opened No. 2002-362,992. Ignition charges are not particularly limited for this purpose.


The heating element 6 is arranged so as to be in contact with the ignition charge 2.


On this occasion, the upper surface of the heating element is preferably coated with an ignition charge composition which is beneficial for more stabilizing the contact between the heating element and the ignition charge.


A so-called SCB chip as such a heating element 6 is favorably suitable, which makes it possible to ignite the powder with low energy. Moreover, it is more advantageous to make such an SCB chip into the form of a bridge structure by laminating metals and insulators because large sparks occur with low energy. In this place, the “SCB” means a semiconductor bridge which is a heating element produced by the use of the manufacturing process for usual semiconductor integrated circuits.


As the bridge structure described above, it is also possible to apply a structure formed by alternately laminating one or more compositions selected from a group consisting of titanium, a nickel chrome alloy, nickel, aluminum, magnesium and zirconium, and one or more compositions selected from a group consisting of calcium, manganese, silicon dioxide and silicone.


A structure formed by alternately laminating titanium and SiO2 (or boron) on a silicone substrate is advantageously suitable as a preferable bridge structure. Thicknesses of the respective layers are preferably of the order of 0.05 to 10 μm, and more preferably of 0.1 to 4 μm.


Furthermore, an electrical connection of the heating element 6 is effected through ignition electrodes 11 provided on the upper surface of the ASIC component 3.


Built in the ASIC component 3 according to the invention are the ASIC 4 as means for the intercommunication and triggering particular electric pulse strings, and the capacitor 5 as means for accumulating the electric energy. Moreover, the ASIC component 3 is integrated through the two electrode pins 9 into an air bag system later described which is linked to a local area network (LAN) and communicating with a central control unit.


Furthermore, it is necessary for the ASIC component 3 to be smoothly inserted into the cylindrical cup 1 by forming the ASIC component 3 as a cylindrical shape of a size matching with the inner diameter of the cylindrical cup 1. For this purpose, the outer diameter of the ASIC component 3 is preferably of the order of 85% to 99% of the inner diameter of the cup.


The diameter of the communication electrodes 7 arranged at the bottom of the ASIC component 3 is preferably somewhat smaller than the diameter of the electrode pins 9 so that even if contact positions of the communication electrodes 7 and the electrode pins 9 are somewhat shifted to each other owing to assembling errors or the like, these electrodes 7 and the pins 9 can be always maintained in jointed or connected states, thereby enabling the electrical connections between them to be maintained.


It is moreover beneficial that the contact portions of the communication electrodes 7 and the electrode pins 9 are flat to ensure stable contact between them when they are strongly pushed to each other.


According to the invention, after the cup 1 is packed with the ignition charge 2 at the innermost portion of the cup, the ASIC component 3 is inserted into the cup such that the heating element 6 arranged at the top of the ASIC component 3 abuts against the ignition charge 2. Then, after the header 8 is inserted into the cup I such that the electrode pins 9 provided in the header 8 abut against the communication electrodes 7 arranged at the bottom of the ASIC component 3, the header 8 is integrated into the cup 1 by welding to form an integral unit. It is important to perform the welding under the condition that the header 8 has been press-fitted in the cup 1.


Namely, when the welding is effected in the state that the enheader 8 has been forced into the cup 1 at a pressure higher than a certain constant pressure, the communication electrodes 7 and the electrode pins 9 are jointed together under pressure by the elastic reaction force caused by the ASIC component 3 molded with the resin and the cup 1. As a result, even when the ignition device is subjected to an impact with a substantial force, any disconnection between the communication electrodes 7 and the electrode pins 9 can be effectively prevented.


In the case that the communication electrodes 7 and the electrode pins 9 are jointed together under the pressure as described above, the elastic reaction force of the ASIC component 3 and the cup 1 acts also in the opposite direction so that the heating element 6 provided on the side of the ASIC component 3 opposite from the communication electrodes 7 is jointed to the ignition charge 2 under pressure, that is, to increase the density of the ignition charge 2, thereby achieving reliable ignition and effective shortening of the ignition time. In comparison with the structure whose connection portions are fixed by soldering or welding, moreover, the jointing under pressure as described above has advantages that the operation for jointing is simple and easy, and a volume for jointing is hardly required.


In this place, the force for press-fitting the header 8 into the cup 1 is preferably of the order of 1 to 250 MPa. If the force is less than 1 MPa, a pushing force sufficient to joint the communication electrodes 7 and the electrode pins 9 is not obtained, while if the force is more than 250 MPa, the stress applied to the ASIC component becomes too large so that there is a risk of breakage of the ASIC component. The more preferable force for press-fitting is 2 to 130 MPa.


As shown in FIG. 3, according to the invention the upper surface of the heating element 6 may be previously coated with the ignition charge composition 2″. In other words, the ignition charge in a slurry state is dispensed or applied to the upper surface of the heating element 6 and then dried. As compared with the case that the ignition charge in a powder state is merely packed, the dried ignition charge composition 2″ is more stable in the contact with the heating element to effectively contribute to the reliable ignition and shortening of the ignition time.


According to the invention, moreover, a resin cup 12 in the form of a cylindrical sleeve may be provided on the outer circumference of the cup 1. Also, after the header 8 has been press-fitted in the cup 1, the relevant portion may be further molded with resin 13.


With the ignition device according to the invention, the ASIC component 3 can be arranged in the header 8 and the cup I which are held in an airtight state, and further the electrical connection between the communication electrodes 7 and the electrode pins 9 can be kept by the contact between them, so that although the ASIC component 3 is loaded in the device, the overall size of the ignition device 1 can be kept nearly to the sizes of prior art ignition devices.


Moreover, the ignition device according to the invention can communicate with the exterior (for example, a central control unit) by the use of the ASIC 4 as intercommunication switching means and the capacitor 5 as electric energy-accumulating means both built in the ASIC component 3.


Accordingly, if such an ignition device described above is used in each of air bag modules, for example, incorporated in a car and connected to a central control unit through an air bag system linked to a local area network (LAN), it becomes possible for the central control unit to ignite only a required air bag module upon collision, while particular electric energy for igniting such an ignition device need no longer be transmitted.


These functions and effects are achieved especially by providing the capacitor 5 in each of ignition devices for accumulating faint energy contained in voltage signals generated from the central control unit, using the SCB chip as the heating element 6 which causes ignition charge to be ignited with lower energy than those with the prior art, and providing the ASIC 4 as intercommunication and ignition switching means which detects coded information transmitted from the central control unit and in turn transmits command for sending the state of the ignition device.


In the invention, moreover, the term “coded information” used in the intercommunication with the central control unit is intended to mean both the information including a command for igniting each of the ignition devices and the information concerning states of electronic elements included in each of the ignition devices to be transmitted to the central control unit.


A gas generator for an air bag using the ignition device according to the invention will then be explained.



FIG. 4 is a conceptual view of a gas generator for an air bag. As shown in FIG. 4, the gas generator 21 for the air bag comprises therein an ignition device 22, an enhancer 23, a gas generant 24, and filters 25, and outside the generator an housing 26 withstanding the pressure when the gas generant 24 is burned. The housing 26 is formed with holes 27 for discharging the generated gas into the air bag.


When the ignition device 22 is actuated, the enhancer 23 burns by heat energy produced from the ignition device 22 to generate a hot gas by means of which the gas generant 24 is burned to generate a gas for inflating the air bag. The generated gas is discharged out of the housing 26 through the holes 27 formed in the housing 26. At this time, the gas passes through the filters 25 so that residues of the burned gas generant are collected at the filters and the gas itself is cooled simultaneously.


Although the ignition device according to the invention includes the communication circuit comprising the ASIC, the ignition device is similar in size to the prior art ignition devices as described above. Therefore, the gas generator for an air bag using the ignition device according to the invention is effectively compact and has a size almost similar to sizes of prior art gas generators. Moreover, since the SCB is used as a heating element, ignition occurs in a short period of time so that delay in ignition due to the communication can be prevented.


Moreover, a gas generator for a seat belt pretensioner using the ignition device according to the invention will be explained.



FIG. 5 is a conceptual view illustrating the gas generator (micro gas-generator) for a seat belt pretensioner. As shown in FIG. 5, the micro gas-generator 31 comprises therein an ignition device 32 and a gas generant 33. The ignition device 32 is fixed to a base 34 called a holder. Further, a cup 35 for storing the gas generant 33 therein is also fixed to the holder by means of, for example, caulking. When the ignition device 32 is actuated, the gas generant 33 in the cup 35 is burned by the heat coming from the ignition device 32 to generate a gas.


The ignition device according to the invention is compact, although it has the communication circuit comprising the ASIC as described above. Therefore, by using the ignition device, it is also possible to provide the micro gas-generator which is compact and has a size almost similar to sizes of the prior art gas generators. Similarly, by using the SCB as a heating element, ignition occurs in a short period of time so that delay in ignition due to the communication can be prevented.


The igniting operation of the ignition device according to the invention will then be explained.


Under a normal condition, that is, for example, when a car does not encounter any accident requiring the development or inflation of an air bag having the ignition device 1 incorporated therein, the capacitor as electric energy-accumulating means is under a condition accumulating the energy from communication signals sent from the central control unit.


Here, when the ignition device 1 is requested to operate by impact caused by an accident or the like, the central control unit transmits an ignition command in the form of a particular electric pulse string to the ASIC component 3 in the ignition device. In the ASIC component, at this moment the accumulated electric energy is discharged from the capacitor 5 to the heating element 6 by means of the electronic switch. The heating element 6 causes the ignition charge 2 to start its ignition with the aid of the electric energy from the capacitor 5.


The control procedure by the central control unit will then be explained. FIG. 6 illustrates an example of the air bag system linked to a local area network (LAN) and connected with the central control unit 110 and four air bag systems 111a, 111b, 111c and 111d. The two air bag modules 111b and 111c each may have a gas generator for inflating, for example, a front air bag, while the other two air bag modules 111a and 111d each may have a gas generator for inflating, for example, a side air bag.


The ignition device is put in the gas generator included in each of these modules. Each of the ignition devices has two electrode pins 114 and 115, the former electrode pins 114 being connected to a first electric-supply conductor 112 connected to the central control unit 110, and the latter electrode pins 115 being connected to a second electric-supply conductor 113 connected to the central control unit 110.


Under a normal condition, that is, when a car does not encounter a particular accident requiring activation of one or more air bag modules 111a, 111b, 111c and 111d, the central control unit 110 periodically gives the electric-supply conductors 112 and 113 low electric current which is fed through the electrode pins 114 and 115 to the electric energy storing means (capacitors) of the ignition devices included in the four air bag modules 111a, 111b, 111c and 111d, respectively.


In the event that upon impact, the activation of, for example, the air bag module 111c is desired, the central control unit 110 feeds a particular electric pulse string constituting an ignition command for the ignition device of the air bag module 111c to the first electric-supply conductor 112. Although the particular electric pulse string is fed to each of the ignition devices through the electrode pins 114 and 115, only the intercommunication means included in the ignition device of the air bag module 111c responds to the command to activate the electric energy-accumulating means associated with the ignition switching means, thereby activating the ignition charge in the manner described above.


Following the impact, if it is desired to activate some air bag modules, for example, the air bag modules 111a and 111b, the central control unit 110 gives the first electric-supply conductor 112 a particular electric pulse string for each of the ignition devices included in the air bag modules 111a and 111b, respectively. The two ignition devices operate in the same manner as described above.

Claims
  • 1. An ignition device including a metal cup and a metal header for holding a plurality of electrode pins respectively insulated and closing the opening of said cup, and further including, in said cup, ignition charge and an ASIC component, said ASIC component including an ASIC and a capacitor both mounted on a substrate molded with a resin to form a resin mold, and said resin mold having at its top a heating element connected to said ASIC and at the bottom communication electrodes for connecting said ASIC to said electrode pins, so that said ASIC component thus constructed abuts against said header, characterized in that said electrode pins and said communication electrodes are jointed to each other under pressure.
  • 2. The ignition device as claimed in claim 1, characterized in that said heating element and said ignition charge are in contact with each other under pressure.
  • 3. The ignition device as claimed in claim 1, characterized in that the upper surface of said heating element is coated with an ignition charge composition.
  • 4. The ignition device as claimed in claim 1, characterized in that said heating element comprises a semiconductor bridge chip.
  • 5. The ignition device as claimed in claim 4, characterized in that said semiconductor bridge chip includes a bridge formed by laminating a metal and an insulator.
  • 6. A gas generator for an air bag, comprising the ignition device as claimed in claim 1 installed in the gas generator.
  • 7. A gas generator for a seat belt pretensioner, comprising the ignition device as claimed in claim 1 installed in the gas generator.
  • 8. A method for producing an ignition device characterized in comprising steps of packing a metal cup with ignition charge at the innermost portion of the cup, molding an ASIC and a capacitor both mounted on a substrate with a resin to form a resin mold, arranging at the top of said resin mold a heating element connected to said ASIC and further arranging at the bottom of said resin mold communication electrodes for connecting said ASIC to electrode pins located in a header to form an ASIC component, inserting said ASIC component into said cup such that said heating element abuts against said ignition charge, subsequently press-fitting said header made of a metal into said cup, said header holding therein a plurality of electrode pins including said first mentioned electrode pins by glass-sealing so that said electrode pins abut against said communication electrodes, and welding said header and said cup under the press-fitted condition to form an integral unit.
  • 9. The method for producing an ignition device as claimed in claim 8, characterized in that the upper surface of said heating element is coated with an ignition charge composition.
  • 10. The method for producing an ignition device as claimed in claim 8, characterized in that said heating element comprises a semiconductor bridge chip.
  • 11. The method for producing an ignition device as claimed in claim 8, characterized in that the press-fitting force of said header 8 is 1 to 250 MPa in the step of press-fitting said header into said cup.
  • 12. The ignition device as claimed in claim 2, characterized in that the upper surface of said heating clement is coated with an ignition charge composition.
  • 13. The ignition device as claimed in claim 2, characterized in that said heating element comprises a semiconductor bridge chip.
  • 14. A gas generator for an air bag, comprising the ignition device as claimed in claim 2 installed in the gas generator.
  • 15. A gas generator for a seat belt pretensioner, comprising the ignition device as claimed in claim 2 installed in the gas generator.
  • 16. The ignition device as claimed in claim 3, characterized in that said heating element comprises a semiconductor bridge chip.
  • 17. A gas generator for an air bag, comprising the ignition device as claimed in claim 3 installed in the gas generator.
  • 18. A gas generator for a seat belt pretensioner, comprising the ignition device as claimed in claim 3 installed in the gas generator.
  • 19. The method for producing an ignition device as claimed in claim 9, characterized in that said heating element comprises a semiconductor bridge chip.
  • 20. The method for producing an ignition device as claimed in claim 9, characterized in that the press-fitting force of said header 8 is 1 to 250 MPa in the step of press-fitting said header into said cup.
Priority Claims (1)
Number Date Country Kind
2006/001507 Jan 2006 JP national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/JP2007/050038 1/5/2007 WO 00 7/2/2008