The present application relates to the field of gas cooktops, in particular to an ignition device for a gas cooktop and a gas cooktop including the ignition device.
At present, most gas cooktops use a high-voltage pulse to ignite gas. A frequency of the high-voltage pulse for ignition is generally within 6 to 10 Hz, and at ignition, high-decibel noise is generated, which disturbs users and brings bad experience to users.
An object of the present application is to provide an improved ignition device of a gas cooktop and a gas cooktop including the ignition device, to resolve the above technical problems.
Another object of the present application is to provide a low-noise ignition device of a gas cooktop and a gas cooktop including the ignition device, to resolve the above technical problems.
One aspect of embodiments of the present application relates to an ignition device of a gas cooktop. The ignition device of a gas cooktop includes a discharge end, a receiving end and an ignition control module, where an ignition frequency generated by the ignition control module is within a range of 15 kHz to 22 kHz, a distance between the discharge end and the receiving end is within a range of 2 mm to 5 mm, and at ignition, a continuous arc is generated between the discharge end and the receiving end to ignite gas.
The ignition sound generated by spark discharge is due to the fact that high voltage breaks through the air and air vibration generates sound waves. The sound waves are transmitted from a positive electrode to a negative electrode (forward sound waves), and are reflected at the negative electrode (reverse sound waves). The forward and reverse sound waves are opposite in phase. When an ignition frequency is high, the reverse sound waves offset the forward sound waves in time, and therefore the sound is low.
According to the above technical scheme of the present application, the ignition frequency within the range of [15 kHz, 22 kHz] is generated by the ignition control module. When the distance between the discharge end and the receiving end is within the range of [2 mm, 5 mm], the ignition frequency is high. After a large number of tests, a sound at ignition is extremely low and there is no noise pollution.
It is to be noted that in the above scheme, the range is represented by a mathematical expression. The ignition frequency is within the range of [15 kHz, 22 kHz]. It is to be understood that the range of the ignition frequency includes two end values, namely, 15 kHz and 22 kHz. Similarly, the distance between the discharge end and the receiving end is within the range of [2 mm, 5 mm],and it is to be understood that the range of the distance between the discharge end and the receiving end includes two end values, namely, 2 mm and 5 mm.
In one or more embodiments, the distance between the discharge end and the receiving end is within a range of [2 mm, 3 mm]. As an ignition distance increases, an arc between the discharge end and the receiving end becomes unstable easily, and it is difficult to make a discharge direction of the discharge end fixedly towards the receiving end. As a result, spark energy is not concentrated and it is not easy to ignite quickly. When the ignition frequency is fixed, the ignition sound is related to the ignition distance (namely, a distance between the discharge end and the receiving end). Within a reasonable ignition distance (the so-called reasonable ignition distance means that a stable arc can be generated within this distance), as the ignition distance increases, sound waves propagate faster, and thus the momentum of collision increases. According to the law of conservation of momentum my =Ft, a force increases, and therefore, an amplitude of sound waves increases and the ignition sound becomes louder. When the distance between the discharge end and the receiving end is within the range of [2 mm, 3 mm], the arc is stable, the discharge direction is fixed, and spark energy is more concentrated. Therefore, it is easier to ignite quickly. Moreover, the ignition sound is lower and almost inaudible, so that silent ignition is basically realized.
In one or more embodiments, the ignition frequency generated by the ignition control module is within a range of [15 kHz, 20 kHz]. As the ignition frequency increases, it generates higher total energy and causes higher energy consumption, and parts need to meet higher requirements. This is uneconomical in terms of manufacturing cost. With an increase in the total energy, the ignition efficiency is increased. However, greater possible damages may be caused, for example, repeated discharge at the discharge end, easy carbonization, and a short service life.
In one or more embodiments, the ignition device of a gas cooktop includes a spark electrode. The spark electrode includes two electrode terminals. One of the electrode terminals is the discharge end, and the other electrode end is the receiving end. Because both the discharge end and the receiving end are set on the spark electrode, accumulation of assembly tolerance between different parts is avoided. In this scheme, the distance between the discharge end and the receiving end can be controlled more accurately.
In one or more embodiments, the ignition device of a gas cooktop includes a spark electrode, the spark electrode includes four electrode terminals, and the four electrode terminals form two discharge ends and two receiving ends; at ignition, a continuous arc generated between one pair of the electrode terminals and a continuous arc generated between the other pair of the electrode terminals intersect each other. In this way, ignition is successful in a shorter time, ignition efficiency is improved, and ignition is faster. That “a continuous arc generated between one pair of the electrode terminals and a continuous arc generated between the other pair of the electrode terminals intersect each other” should include cases that two arcs meet in space, and that orthographic projections of two arcs intersect although the two arcs do not meet in space.
In one or more embodiments, the gas cooktop includes a burner, the ignition device includes a spark electrode, and the spark electrode includes an electrode terminal. The electrode terminal is the discharge end, and the receiving end is formed on the burner.
In one or more embodiments, the gas cooktop includes a thermocouple, the ignition device includes a spark electrode, and the spark electrode includes an electrode terminal. The electrode terminal is the discharge end, and the receiving end is an end of the thermocouple.
In one or more embodiments, a diameter of the discharge end is less than or equal to 2 mm, and/or a diameter of the receiving end is less than or equal to 2 mm. The discharge end and/or the receiving end needs to be as sharp as possible. When the diameter of the discharge end and the receiving end is greater than 2 mm, the direction of the arc is not fixed and may drift.
In one or more embodiments, the ignition frequency generated by the ignition control module is 18.2 KHZ, and the distance between the discharge end and the receiving end is 2 mm. In a scheme of this embodiment, at ignition, people can hardly hear an ignition sound.
In one or more embodiments, the ignition frequency generated by the ignition control module is 15 KHZ, and the distance between the discharge end and the receiving end is 4 mm. Noise at ignition is low.
In one or more embodiments, the ignition frequency generated by the ignition control module is 20 KHZ, and the distance between the discharge end and the receiving end is 5 mm. In a scheme of this embodiment, there is no ignition noise at ignition.
In one or more embodiments, the distance between the discharge end and the receiving end is 3 mm. An appropriate ignition frequency is selected by the ignition control module, and almost no noise is generated by the ignition device at ignition.
In one or more embodiments, the ignition frequency generated by the ignition control module is 22 KHZ, the distance between the discharge end and the receiving end is adjusted through experiments, and the ignition device can realize extremely low noise at ignition and does not disturb users.
Another embodiment of the present application relates to a gas cooktop, and the gas cooktop includes an ignition device described in any one of the above embodiments.
It is to be pointed out that features of dependent claims may be combined with each other in any way and with features of independent claims without departing from the concept of the present application.
1-gas cooktop; 2-ignition device; 3-burner; 10-spark electrode; 11-electrode; 12-housing; 100-discharge end; 200-receiving end; 300-fire hole.
For a further understanding of the objectives, structures, features and functions of the present application, a detailed description is made below in cooperation with embodiments.
An ignition device 2 of a gas cooktop 1 includes a discharge end 100, a receiving end 200, and an ignition control module. An ignition frequency generated by the ignition control module is within a range of [15 kHz, 20 kHz]. A distance between the discharge end 100 and the receiving end 200 is within a range of [2 mm, 5 mm], and at ignition, a continuous arc is generated between the discharge end 100 and the receiving end 200 to ignite gas.
The spark electrode 10 of this embodiment includes two electrode terminals. One of the electrode terminals is used as the discharge end 100 and the other as the receiving end 200. The discharge end 100 and the receiving end 200 are respectively connected to a positive electrode and a negative electrode of an ignition coil. Moreover, both the discharge end 100 and the receiving end 200 both have a diameter less than or equal to 2 mm, and are relatively sharp, which helps stabilize a discharge arc, so that the arc generated by the discharge end 100 is towards the receiving end 200 fixedly rather than other directions, such as towards a burner 3.
In this embodiment, the distance between the discharge end 100 and the receiving end 200 is 2 mm, and the ignition frequency generated by an ignition control module is 18.2 KHZ, to ignite gas flowing out from a fire hole 300 of the burner 3. In this scheme, when an ignition device 2 generates extremely low ignition sound at ignition, which is almost inaudible.
In another embodiment, the ignition frequency generated by the ignition control module is 15 KHZ, and the distance between the discharge end 100 and the receiving end 200 is 4 mm. In this embodiment, noise-free ignition can also be realized.
In some embodiments, the ignition frequency generated by the ignition control module is set to 22 KHZ, a suitable value within a range of [2 mm, 5 mm] is selected as the distance between the discharge terminal 100 and the receiving end 200, where the value is determined through experiment, and a noise-free ignition can be realized. In other embodiments, the distance between the discharge end 100 and the receiving end 200 is set to 3 mm, and the ignition frequency of the ignition control module is adjusted within a range of [15 kHz, 22 kHz], which can also realize low ignition noise.
In addition, in another embodiment of the present application, an ignition device is as follows: A gas cooktop includes a thermocouple, an ignition device 2 includes a spark electrode 10, and the spark electrode 10 includes an electrode end. The electrode end is a discharge end, and a receiving end is an end of the thermocouple.
In the present application, an embodiment relates to a gas cooktop 1, and the gas cooktop 1 includes an ignition device 2 described in any one of the above embodiments.
Various embodiments of a single component illustrated with reference to
The present application has been described by the foregoing related embodiments, but the foregoing embodiments are only examples for implementing the present application. It is to be pointed out that the disclosed embodiments do not limit a scope of the present application. On the contrary, changes and modifications made without departing from the spirit and scope of the present application fall within the protection scope of the present application. application.
Number | Date | Country | Kind |
---|---|---|---|
201921597479.6 | Sep 2019 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/075943 | 9/17/2020 | WO |