Ignition inhibiting gas water heater and controller

Information

  • Patent Application
  • 20020134320
  • Publication Number
    20020134320
  • Date Filed
    May 13, 2002
    22 years ago
  • Date Published
    September 26, 2002
    22 years ago
Abstract
A water heater including a water container having an inlet and an outlet; a main burner positioned to heat water in the water container; a pilot burner positioned to supply flame to the main burner; and a control valve to supply fuel to the main and pilot burners.
Description


FIELD OF INVENTION

[0001] The present invention relates to ignition inhibiting gas fired water heaters, particularly to improvements to gas fired water heaters and controllers adapted to render them safer for use.



BACKGROUND OF INVENTION

[0002] The most commonly used gas-fired water heater is the storage type, generally comprising an assembly of a water tank, a main gas burner to provide heat to the tank, a standing pilot burner to initiate the main burner on demand, an air inlet adjacent the burner near the base of the jacket, an exhaust flue and a jacket to cover these components. Another type of gas-fired water heater is the instantaneous type which has a water flow path through a heat exchanger heated, again, by a main burner initiated from a pilot burner flame. For convenience, the following description is in terms of storage type water heaters but the invention is not limited to this type. Thus, reference to “water container,” “water containment and flow means,” “means for storing or containing water” and similar such terms includes water tanks, reservoirs, bladders, bags and the like in gas-fired water heaters of the storage type and water flow paths such as pipes, tubes, conduits, heat exchangers and the like in gas-fired water heaters of the instantaneous type.


[0003] A particular difficulty with many locations for water heaters is that they are also used for storage of other equipment such as lawn mowers, trimmers, snow blowers and the like. It is common for such machinery to be refueled in such locations.


[0004] There have been a number of reported instances of spilled gasoline and associated fumes being accidently ignited. There are many available ignition sources, such as refrigerators, running engines, electric motors, electric light switches and the like. However, gas water heaters have sometimes been suspected because they often have a pilot flame.


[0005] Vapors from spilt or escaping flammable liquid or gaseous substances in a space in which an ignition source is present provides for ignition potential. “Fumes,” “extraneous gases” or “extraneous fumes” is sometimes hereinafter used to encompass gases, vapors or fumes generated by a wide variety of liquid volatile or semi-volatile substances such as gasoline, kerosene, turpentine, alcohols, insect repellent, weed killer, solvents and the like as well as non-liquid substances such as propane, methane, butane and the like. Many inter-related factors influence whether a particular fuel spillage leads to ignition. These factors include, among other things, the quantity, nature and physical properties of the particular type of spilt fuel. Also influential is whether air currents in the room, either natural or artificially created, are sufficient to accelerate the spread of fumes, both laterally and in height, from the spillage point to an ignition point yet not so strong as to ventilate such fumes harmlessly, that is, such that air to fuel ratio ranges capable of enabling ignition are not reached given all the surrounding circumstances.


[0006] One surrounding circumstance is the relative density of the fumes. When a spilt liquid fuel spreads on a floor, normal evaporation occurs and fumes from the liquid form a mixture with the surrounding air that may, at some time and at some locations, be within the range that will ignite. For example, that range for common gasoline vapor is between about 3% and 8% gasoline with air, for butane between about 1% and 10%. Such mixtures form and spread by a combination of processes including natural diffusion, forced convection due to air current draughts and by gravitationally affected upward displacement of molecules of one less dense gas or vapor by those of another more dense. Most common fuels stored in households are, as used, either gases with densities relatively close to that of air (e.g., propane and butane) or liquids which form fumes having a density close to that of air, (e.g., gasoline, which may contain butane and pentane among other components is very typical of such a liquid fuel).


[0007] In reconstructions of accidental ignition situations, and when gas water heaters are sometimes suspected and which involved spilt fuels typically used around households, it is reported that the spillage is sometimes at floor level. It is reasoned that it spreads outwardly from the spill at first close to floor level. Without appreciable forced mixing, the air/fuel mixture would tend to be at its most flammable levels close to floor level for a longer period before it would slowly diffuse towards the ceiling of the room space. The principal reason for this observation is that the density of fumes typically involved is not greatly dissimilar to that of air. Combined with the tendency of ignitable concentrations of fumes being at or near floor level is the fact that many gas appliances often have their source of ignition at or near that level.


[0008] The invention aims to substantially lower the probability of ignition in typical fuel spillage circumstances.



SUMMARY OF INVENTION

[0009] The invention provides a gas water heater including a water container adapted to be heated by a gas burner. An enclosure surrounds the burner and the water container. The water heater has at least one opening adapted to allow air for combustion or extraneous fumes to enter the enclosure without igniting flammable extraneous fumes outside of the enclosure.


[0010] In another aspect, the invention provides a water heater having a burner adapted to combust gas to heat a water container above the burner within an outer enclosure having an opening to admit air required to combust the gas and includes air and extraneous fume flow means co-operative with the opening to reduce or eliminate a possibility of extraneous fumes adjacent the enclosure being ignited outside the enclosure by a gas flame associated with the burner.


[0011] The invention also provides a water heater having a burner adapted to combust gas to heat a water container above the burner within an outer enclosure having an opening to air required to combust the gas and includes air and extraneous fume flow means cooperative with the opening to reduce or eliminate a possibility of fumes adjacent the enclosure being ignited outside the enclosure by a gas flame associated with the burner. The water heater includes gas shut off means which has a flame detecting or sensing device located in a path of flame external to a combustion chamber of the water heater and also located in any path of flame of fumes ignited in the enclosure.


[0012] In yet another aspect, the invention provides a gas control valve of the type used to supply a main burner in a combustion chamber of a water heater which has an electrical circuit associated with the valve powered by a thermocouple heated by a pilot burner flame. The resulting electrical potential maintains a solenoid valve open which keeps the pilot supplied with gas for combustion. The valve closes down the gas supply for safety if the pilot flame blows out. The valve of the invention includes an over-temperature fuse in the electrical circuit specifically located to be exposed to extraneous sources of flame and heat in the immediate surroundings of the valve. The valve has an externally accessible socket in the electrical circuit such that the thermal fuse can be removably inserted in such a way that if the thermal fuse opens the electrical circuit by being heated above a predetermined temperature, then the fuse can be subsequently independently and separately replaced without having to interfere with other parts of the electrical circuit.







BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Selected embodiments of the invention will now be described, by way of example only, by reference to the accompanying drawings in which:


[0014]
FIG. 1 is a schematic partial cross-sectional view of a gas water heater embodying aspects of the invention.


[0015]
FIG. 2 is a schematic partial cross-sectional view of a gas water heater similar to FIG. 1, with additional safety features.


[0016]
FIG. 3 is a cross-sectional view of the water heater of FIG. 2 taken through the line III-III.


[0017]
FIG. 4 is a schematic partial cross-sectional view of a gas water heater similar to that of FIG. 2.


[0018]
FIG. 5 is a cross-sectional view of the water heater of FIG. 4 taken through line V-V.


[0019]
FIG. 6 is a schematic partial cross-sectional view of a gas water heater with a safety feature in accordance with aspects of the invention.


[0020]
FIG. 7 is a schematic partial cross-sectional view of a gas water heater of another embodiment of the invention.


[0021]
FIG. 8 is a schematic partial cross-sectional view of a gas water heater of yet another embodiment of the invention.


[0022]
FIG. 9 is a schematic partial cross-sectional view of still another embodiment of the invention.


[0023]
FIG. 10 is a cross-sectional view of the water heater of FIG. 9 taken through the line X-X.


[0024]
FIG. 11 is an upright elevational view taken from the rear of a gas valve according to the aspects of invention.


[0025]
FIG. 12 is an upright elevational showing the left side of the gas valve shown in FIG. 11.


[0026]
FIG. 13 is an upright perspective view of the valve of FIGS. 11 and 12.


[0027]
FIG. 14 is a schematic partial cross-sectional view of a water heater with the gas valve as shown in FIGS. 11-13.


[0028]
FIG. 15 is an electrical circuit embodied in the gas valve shown in FIGS. 11-13.


[0029]
FIG. 16 is a cross-sectional view of the gas valve shown in FIGS. 11-13.







DETAILED DESCRIPTION OF THE DRAWINGS

[0030] It will be appreciated that the following description is intended to refer to the specific embodiments of the invention selected for illustration in the drawings and is not intended to define or limit the invention other than in the appended claims.


[0031]
FIG. 1 illustrates a storage type gas water heater 2 including jacket 4 which surrounds a water tank 6, a main burner 14 in a combustion chamber 15. Water tank 6 is preferably of mains pressure capability and capable of holding heated water. Water tank 6 is preferably insulated by foam insulation 8. Alternative insulation may include fiberglass or other types of fibrous insulation and the like.


[0032] Located underneath water tank 6 is main burner 14 which preferably uses natural gas or other gases such as LPG, for example. Main burner 14 combusts a gas and air mixture and the hot products of combustion resulting rise up through flue 10. Flue 10, in this instance, contains a series of baffles 12 to better transfer heat generated by main burner 14. Near pilot burner 49 is a sheath 52, preferably made of copper, containing wires from a flame detecting thermocouple 51 which is a known safety measure to ensure that in the absence of a flame at pilot burner 49 the gas control valve 48 shuts off the gas supply.


[0033] The products of combustion pass upwardly and out the top of jacket 4 via flue outlet 16 after heat has been transferred from the products of combustion. Flue outlet 16 discharges conventionally into a draught diverter 17 which in turn connects to an exhaust duct 19 leading outdoors.


[0034] Close to the height of the top of jacket 4 and flue outlet 16 is an air inlet 18 through which air is drawn down duct 22 to main burner 14. Duct 22 is preferably constructed from sheet metal 20. In a non-illustrated alternative construction, a part or all of duct 22 may be inside the external cylindrical envelope of jacket 4.


[0035] Water heater 2 is preferably mounted on legs 24 to raise the base 26 off the floor. In base 26 is an aperture 28 which is closed, but not gas tightly, by a flame trap device 30 which operates on a flame quenching principle. Flame trap 30 is preferably made from two parallel sheets of mesh each about 0.010 inch diameter metal wire strands woven into mesh having about 30 to 40 strands per inch. Mild steel or stainless steel wire are suitable. Alternatively, a ported ceramic tile of the SCHWANK type (registered trade mark) can be utilized although the recognized flame quenching ability of metallic woven or knitted mesh together with its robustness and ease of forming generally commends its use. The tile type functions as a flame quenching trap as long as the porosity is suitable.


[0036] A single layer of mesh or a porous ceramic tile may be susceptible to clogging by lint or other “blocking” materials such as dust or the like. Lint caught in the openings of a single mesh or a tile might act as a wick which may allow flame, which would not otherwise pass through the flame trap, to do so. In this situation the flame trap device would tend not to function as efficiently. To prevent this tendency, the flame trap is preferably constructed with either two layers of mesh or a layer of mesh and a tile. The mesh layers are most preferably in contact with one another. In this way the layer of mesh further from the source of fumes acts as a flame trap and the layer closer to the source of fumes acts as a lint trap.


[0037] Where base 26 meets jacket 4, mating surfaces 32 (made up from surfaces of base 26 and jacket 4) can be sealed thoroughly to prevent ingress of air or flammable gas or vapor. In FIG. 1, mating surfaces 32 extend upwardly from base 26 around jacket 4. The cylindrical wall of jacket 4 (the majority of gas water heaters are cylindrical; however, a cubic or other shaped jacket 4 may be utilized) can be sealed gas tightly so no openings or breaks remain upon assembly and installation. In particular, gas, water, electrical, control or other connections, fittings or plumbing, wherever they pass through jacket 4 or base 26, can be sealed airtight. The joining area (or mating surfaces 32) of base 26 to jacket 4 and all service entries or exits to jacket 4 or duct 22 need not be sealed airtight providing they are designed and constructed to have only minor surface to surface clearances or gaps, each of which is capable of acting as flame quenching traps. The structure of such service entries or exits are known in the art and not described herein. It is preferred, however, that the space around the burner be substantially air/gas tight except for means to supply combustion air.


[0038] Pilot flame establishment can be achieved by a Piezo-electric igniter. A pilot flame observation window can be provided which is sealed. Alternatively, if the pilot 49 is to be lit by removing or opening an access, safety interlocks (not illustrated) are included to ensure complete closure against unprotected fume access during water heater operation.


[0039] During normal operation, water heater 2 operates in the same fashion as conventional water heaters except that most air for combustion enters at air inlet 18 and a small proportion through flame trap 30. However, if spilt fuel is in the vicinity of water heater 2 then some gas or vapor from the spilt fuel may be drawn through flame trap 30 before it builds up to a level to enter via air inlet 18. Flame trap 30 allows the combustible gas or vapor and air to enter but prevents flame escaping jacket 4 or duct 22. The spilt fuel is burned within combustion chamber 15 and exhausted either through flue 10 via outlet 16 and duct 19 or through duct 22 and inlet 18 (which in this case will act as an outlet). Because flame does not pass outwardly through flame trap 30, spilt fuel external to water heater 2 will not be ignited.


[0040]
FIGS. 2 and 3 show an embodiment similar to that of FIG. 1. Like parts use the same reference numbers as those of FIG. 1. In FIG. 2, there is adjacent gas control valve 48, a flame sensitive switch 50 which may be inserted in the same circuit as pilot flame detecting thermocouple 51.


[0041] Flame sensitive switch 50 may be substituted by a light detector or a heat detector. The flame sensitive switch can also be substituted by a gas, fume or vapor detection switch which closes off gas control valve 48 when a flammable fume is detected.


[0042] With reference to the cross section depicted in FIG. 3, duct 22 contains gas control valve 48 and flame trap 30 is shown forming a bottom end of the duct. In fact, flame trap 30 may be positioned spanning the bottom end of duct 22 and an adjacent portion of base 26. An advantage from such a positioning of flame trap 30, including that shown in FIGS. 2 and 3, by comparison with the center position of base 26 shown in FIG. 1, is that it permits positioning of flame sensitive switch 50 (FIG. 2) directly below gas control valve 48 which is also an ideal position to detect flame spillage from combustion chamber 15 which can occur if, for example, flue 16, or exhaust duct becomes blocked. Similarly, it is ideally positioned to detect flame spillage such as would occur due to air starvation if inlet 18 were inadvertently blocked.


[0043] As shown in FIGS. 2 and 3, opening 28 and flame trap 30 (including a lint trap device as mentioned above) are at the base of duct 22 below gas control valve 48 and flame detecting thermocouple 50 (see FIG. 2). In this way, should fumes which enter through flame trap 30 be ignited, a flame forms and burns on the inside surface of the flame trap and flame detecting switch 50 actuates the gas control valve 48 to shut off the gas supply, thus removing it as a continuing source of ignition. After the pilot and main flames have been extinguished, any vapors of spilt fuel continuing to enter through flame trap 30 may continue to burn because of the initial ignition and resulting suction of air and may continue to burn until there is insufficient flammable vapor remaining to be drawn in from the vicinity of water heater 2.


[0044] By providing an air inlet 18 at a high position above the base 26, the more commonplace liquid fuels, the flammable gases and vapors are far less likely to be available to a gas water heater flame.


[0045] In the water heater 2 of FIGS. 4 and 5, the path for air entry to main burner 14 is provided by a combined flame trap and duct 54 fabricated of metallic mesh 21. This arrangement provides that combustion air passes through a flame quenching surface 21 and the height of duct 54 need not be as high as jacket 4 nor need it necessarily extend upwardly. As evident in FIG. 5, it is preferably composed of separated layers 21a and 21b of metallic mesh. This two layer construction avoids a layer of lint, deposited externally, providing a possible combustion path through the mesh, as previously explained.


[0046] Lint deposition in the openings of the mesh may be a cause of gradual blockage. In due course such linting may cause starvation of combustion air. Therefore, an extended surface area (along the full height of water heater 2 as depicted for instance) of the combined flame trap and air duct 54 may be of advantage for prolonging the time taken for duct 54 to become occluded with lint and for providing an adequate path for free induction of the air normally required for combustion.


[0047] The positioning of gas valve 48 in its preferred position is shown in FIG. 5 outside of duct 54. The entry of the gas pipe and thermocouple sheath into duct 54 is effected so that if a hole is left it is small enough either to be totally sealed or to act as a flame quenching trap.


[0048] The preference for gas valve 48 outside duct 54 is that it provides one way of providing user access to the control knob and any buttons on gas control valve 48. It would be equally applicable in cases where duct 22 is made of imperforate sheet metal 20 as shown in FIGS. 1 and 2.


[0049] For ease of construction one option is that the gas pipe and thermocouple sheath can enter water heater 2 via an opening in jacket 4, completely bypassing duct 54. This opening can then be sealed or if a gap is left, the gap is sized to act as a flame trap. However, whichever way the thermocouple sheath passes to enter the combustion chamber, if it includes flame sensitive switch 50 or other equivalent sensor, then it is greatly preferred that the flame sensitive switch 50 or other sensor is located in relation to the position of flame trap 30 so that the relative positions co-operate in the event that a flame from spilt fuel forms on the flame trap.


[0050] Illustrated in FIG. 6 is a another embodiment of the present invention, similar to that of FIG. 1, with like parts like numbered. This embodiment includes an anchor 34 which anchors a nylon line 36 which is a heat sensitive frangible member. The nylon line 36 passes close to the upper surface of flame trap 30 and around a lower pulley 38 then continues on to an upper pulley 40 around which it passes through 180 degrees, to make connection with a flap 42. Flap 42 is connected by hinge 44 either to the inside of passage 22 or to a flange 46.


[0051] Flange 46, if it is utilized, can have a sealing medium (not illustrated) around it so that when flap 42 makes contact with it, an air tight seal or a flame trap is formed. If flange 46 is not utilized, flap 42 can carry a seal so that, when released to move to a closed position, it will seal the inside of duct 22 to air tight quality or, in the alternative to form a flame trap. Flap 42 can be biased towards the closed position by a spring, which is a preferred method, or alternatively the biasing can be by means of gravity. If desired, flap 42 can be constructed from mesh, as described above to act as a flame trap.


[0052] In the embodiment of FIG. 6, when fumes from split fuel passing through the flame trap 30 are ignited, the heat of ignition breaks nylon line 36, which is heat sensitive and frangible, thereby causing flap 42 to move to a closed position, shutting off the air supply to main burner 14. This leaves no path down duct 22 for air or combustible fumes which may have built up around water heater 2 to sufficiently gain access to main burner 14 and so pilot burner 49 and main burner 14 may not have enough air available through flame trap 30 to continue burning in which case flame detection thermocouple 50 will cut off the gas supply until manual intervention can restore it when a safe atmosphere is restored.


[0053] In FIGS. 7 and 8 are illustrated a gas water heater 2 constructed similarly to that illustrated in FIG. 1. Water heater 2 includes a base 26 and jacket 4 which are either completely sealed (not illustrated) to air tight and flammable gas or vapor tight quality or, alternatively, unsealed gas paths are fine (small) enough to act as flame traps. In this instance, when completely sealed, air for combustion is drawn in from the air inlet 18, and there is no means present to ignite spilt fuel at the lower portions of water heater 2.


[0054] The embodiments shown in FIGS. 7 and 8 have no flame trap 30 or opening 28. However, an appreciable time delay will occur before gases or vapors from spilt fuel rise to the elevated level of air inlet 18. Only then could the gases or vapors be drawn down passage 22 to main burner 14. Many spillages, nevertheless are quite minor in terms of volume of liquid spilt and in such cases the embodiment of FIG. 7 would tend to provide an adequate level of protection and that of FIG. 8 even more so. The air inlet 18, if it does not include a flame trap 30, should be at least about 500 millimeters (20 inches) from base 26 (if base 26 is near to the ground), in the presence of gasoline fumes (a different height may be required for other fumes). However, for added protection a greater distance is preferred.


[0055] The more frequently used typical flammable fumes of spilt liquid fuels are far less likely to be available to a gas water heater flame by providing an air inlet 18 at a high position above base 26.


[0056] If base 26 and jacket 4 has small gaps or openings limited in their size to act as flame traps, then its operation will be similar to the embodiment of FIG. 1. The features of FIG. 6 can be incorporated also with the embodiments described in FIGS. 7 and 8 when base 26 and jacket 4 are scaled. In this instance, because the water heater now includes a heat sensitive frangible member 36 located in an air passage in the vicinity of the main burner 14, if gases or vapors ignite having flowed down the passage 22 (which would indicate that the volume of gases or fumes had risen to the level of air entry of the air inlet 18), the resulting flame would melt a frangible member such as nylon line 36 in the vicinity of main burner 14. Nylon line 36 can be connected in turn to a non-flammable and non-frangible section which in turn makes connection with a spring biased flap similar to flap 42 capable of sealing passage 22. The distance between nylon line 36 and flap 42 is sufficiently long to close passage 22 before a flame travelling back up passage 22 reaches flap 42. If flap 42 is hinged so that its closing motion is in the direction that flame would have to travel to exit passage 22, the hinging arrangement may be aided in closing by the movement of flame in a closing direction.


[0057] A further improvement to the above embodiments shown in FIGS. 1-6 is to provide a snorkel 60 as shown in FIG. 8 extending the air inlet upwardly. Snorkel 60 allows air to be drawn to main burner 14 but, by taking air from a height above the top of jacket 4, will further reduce the risk of water heater 2 being an ignition source of flammable gases or vapors from spilt fuel. If the height of jacket 4 is not greater than about 500 millimeters (20 inches) above base 26, snorkel 60 can be used to draw combustion air from a more appropriate height, depending upon the spillage which may occur.


[0058] In conjunction with any form of the invention as shown in FIGS. 1 to 6, a gas shut down facility similar to the above mentioned gas shut down ability can be provided. In another form, the gas shut down facility can be initiated by a flame sensitive switch 50 or thermocouple 51. Such a thermocouple is preferably located just inside of the flame trap 30 where ever it appears. Flame sensitive switches may also be used in circuit with the thermocouple (e.g., thermocouple 51 of FIG. 1) provided for confirming the establishment and retention of a pilot flame by raising an electric current flow to a level capable of keeping open a gas supply to the pilot burner.


[0059] Flame sensitive switches may be used to reduce fire hazards in circumstances where flame of the burner can “spill” through an air access opening adjacent the main and pilot burners. In known flame sensitive switches, the heat sensor is externally positioned and in some embodiments of the invention a flame sensitive switch 50 is positioned above flame trap 30 to sense flame heat input resulting from spilt flammable vapor burning on the inside of flame trap 30 after having entered the combustion chamber through a possible entry path. In the embodiment of FIG. 1, the preferred position of the flame sensitive switch (not illustrated) is immediately above the flame trap and it is preferred that a small heat shield (not shown) be placed above the flame sensitive switch to shield it from the normal radiant heat associated with the main burner 14. In FIG. 2, the flame sensitive switch 50 is positioned a short way above flame trap 30.


[0060] An additional level of safety is provided by the addition of an oxygen depletion sensor in conjunction with pilot burner 49. This makes available the entire air requirement for the pilot flame to the pilot burner only through a pilot air duct (not illustrated), gas tightly separate from air supply duct 22 and combustion chamber 15. The pilot air duct has an air intake external to the remainder of the water heater assembly, preferably low to floor level where water heaters are generally installed, standing upright on a floor. At any convenient location in the pilot air duct between the air intake end and the pilot burner is a flame quenching insert, composed of one or more of a variety of high thermal capacity gas porous heat resistant materials such as described in relation to flame trap 30. Locating the flame quenching insert at or near the air intake end is advantageous to make it accessible for cleaning of lint or dust that may accumulate in it. An element sensitive to oxygen depletion is also located in the pilot air duct.


[0061] With these features added to the embodiments of FIGS. 1 to 7, use of the oxygen depletion sensor reduces the risk of ignition of flammable vapor in particular when pilot burner 49 is alight but main burner 14 is not, by sensing oxygen depletion in the incoming pilot air supply if a flammable component ignites in which case it would cause a gas control valve 48 of the type referred to in FIG. 1 to shut down gas flow to the pilot burner. The shut down provides a time period for flammable vapor to safely ventilate. Resumption of normal operation of the water heater requires human intervention but, even if done ill-advisedly, in any event the oxygen depletion sensor would continue to deny pilot burner 49 of gas and the arrangement would behave safely even with extraneous flammable fumes remaining near water heater 2. An oxygen depletion sensor can be used alternatively in place of or in conjunction with the previously described flame sensitive switch 50, and can be located similarly.


[0062] The invention thus far described can function at three levels of safety. The embodiment, as illustrated in relation to FIGS. 7 and 8, adds height and distance that fumes from spilt fuel must travel to reach main burner 14 or pilot burner 49. The second embodiment, as illustrated in FIGS. 1, 2, 3 and 6, adds not only height and distance but also allows some and advantageously all the extraneous fumes to enter the base of water heater 2 and be consumed safely, conceivably until all residual risk of fire and explosion is avoided by dissipation of the spillage.


[0063] The third level, as illustrated in FIGS. 4 and 5, adds a further level of confidence by protecting all air entry with a flame arrestor, recognizing that high levels of airborne lint or other dust may tend to block the air intake and starve the burner of air for combustion if the air entry were not periodically cleared of that lint or other dust. The embodiment of FIGS. 4 and 5 can be constructed to protect against ignition of flammable gases and vapors outside of the enclosure or jacket regardless of the density of those gases and vapors relative to air.


[0064] In its most preferred forms water heater 2 contains at least some of the following features:


[0065] the opening includes an aperture which is covered by a flame trap, which prevents the burner from igniting extraneous fumes outside of the enclosure, and an air inlet through which air for combustion purposes is drawn;


[0066] the opening is remote from the burner and includes a duct for passage of air to the burner;


[0067] the opening and the aperture are collocated or are a single item;


[0068] the at least one opening is covered by a flame trap;


[0069] the aperture is in the enclosure;


[0070] the aperture is positioned close to a lower end of the enclosure;


[0071] the aperture is positioned in a lower end of the enclosure;


[0072] the aperture is positioned below the burner;


[0073] the aperture is positioned to allow air and fumes outside of the water heater to enter into an air passage leading to the burner;


[0074] the aperture allows air and fumes to enter the lowest point of the air passage;


[0075] one of or a combination of: a light detection or sensitive device; a flame detecting or sensitive device; a temperature sensitive or detecting device; a heat detecting or sensitive device; and an oxygen depletion sensitive or detection device, is located in the water heater to detect flame from the fumes if they have been ignited inside the enclosure;


[0076] the opening includes an air inlet which is not covered by a flame trap, the air inlet having its lowest opening at a height of not less than about 500 millimeters or about 20 inches or more from the bottom of the enclosure;


[0077] the opening is located at or adjacent to the highest point of the enclosure, if the enclosure has a height of about 500 millimeters or greater, from the bottom of the enclosure;


[0078] a snorkel device is provided to extend the at least one opening to a height above the highest point of the enclosure;


[0079] the flame trap includes a heat resistant permeable material having high thermal capacity;


[0080] the flame trap includes a screen selected from either woven or knitted mesh;


[0081] the flame trap is made of metal;


[0082] the flame trap is made from a metal selected from the group consisting of: steel, stainless steel, copper and aluminum;


[0083] a lint trap is included to wholly cover the aperture and the flame trap;


[0084] the lint trap is formed by mesh placed in the path of lint or dust travelling to the flame trap means;


[0085] the water heater includes a gas shut off means which shuts off the gas supply to the burner and or a pilot burner if the air and fumes are ignited after entering the enclosure;


[0086] the gas shut off means includes a heat sensitive means;


[0087] the gas shut off means includes a flame sensitive switch;


[0088] the gas shut off means includes an oxygen depletion sensitive means;


[0089] the enclosure comprises a separable jacket and base;


[0090] the flame trap is provided at or as part of the construction of joining areas of the base to the jacket, or the jacket to other component or the base to other component or at any location where the fumes could enter the enclosure;


[0091] the flame trap is inherent in or is formed by the joining areas including either only gaps or apertures of a size small enough to act as a flame trap;


[0092] the flame trap has been added to the joining area or is deliberately incorporated as part of the joining area;


[0093] the flame trap is a layer of metallic mesh cooperating with the joining area to achieve the flame quenching or arresting function;


[0094] the flame trap is inside of the water heater; and


[0095] the gas shut off means includes a light detection means.


[0096] One advantage provided by the invention is the provision of a barrier to unprotected entry, at the lower end of the jacket or enclosure, of flammable extraneous fumes. In alternative embodiments it provides a protected entry means for such fumes near or at the base of the enclosure in which case these extraneous fumes are consumed in a controlled manner. The protected entry is, in the most preferred form, a flame trap preventing ignition of the remaining fumes in the surrounding atmosphere or of any liquid remaining nearby.


[0097] An advantage of locating the air intake for combustion purposes above the midpoint of the gas water system is that it reduces the chance of extraneous fumes entering the heater via the air intake because generally such flammables are heavier than air, which in the main do not attain dangerous levels at the air intake level.


[0098] The use of air close-off means and gas shut-off means activated by a trigger provides the advantage of suffocating any flame in the heater, or switching off the gas supply, or preventing uncontrolled or undirected ignition of gases or vapors from exiting the heater environment.


[0099] By providing an extended air intake, the risk of lint or dust affecting the efficiency of the water heater is reduced.


[0100] Still further advantages of the invention are provided by the structure shown in FIGS. 9 and 10. FIGS. 9 and 10 show water heater 2 wherein aperture 28 having flame trap 30 across its mouth and positioned below pilot burner 49, pilot burner 49 being located adjacent one edge of main burner 14. Aperture 28 is positioned immediately underneath pilot burner 49, preferably the closer the better to assist in achieving smooth ignition. Aperture 28 is connected to the lower end of the enclosure by an upwardly extending tube 70, the upwardly extending portion of tube 70 being preferably impermeable to air, gas or fumes. Tube 70 is preferably constructed of sheet metal, although other suitable materials may be substituted. Locating flame trap 30 above base 26 minimizes the possibility of water condensate occluding the pores or openings in flame trap 30 or water splashing from, for example, hosing the floor near base 26 of water heater 2. Thus, the length of tube 70 is not especially critical so long as it performs the function of preventing pore occlusion. In FIG. 9, a horizontal blocking plate 74 is located above flame trap 28 to prevent water condensate or particulate matter such as steel scale flakes falling on the flame trap, thereby reducing the chance of occluding it.


[0101] It has also been discovered that a two layer construction of flame trap 30 with a lint filter is highly advantageous. FIG. 9 illustrates a lint filter 72 in addition to a double layer flame trap 30. Filter 72 may be a different material from flame trap 30. The potential for accumulation of lint over time has been a concern. However, it has been unexpectedly discovered that structure such as that shown in FIGS. 9 and 10 is surprisingly free of lint accumulation problems. It is believed that the horizontal and very close positioning of flame trap 30 to main burner 14 results in small pressure pulses associated with main burner 14 igniting on each occasion. Apparently, the pulses blow away any lint from the face of flame trap 30. This appears to provide a repeating self-cleaning effect.


[0102] Another significant advantage of the water heater of the invention is its improved gas control valve. In conventional gas valves, the thermocouple and over-temperature fuse have been inconveniently located in an integrated structure sheathed in a copper capillary tube with significant thermal inertia. If either the thermocouple or the temperature fuse require replacement then it is not immediately apparent which one has failed and, because both are replaced as an integrated unit, unnecessary cost is involved. The thermal fuse is a relatively low cost item compared to the entire integrated structure and, therefore, it is advantageous to be able to test the circuit by merely removing the suspect fuse and replacing it. This test does not involve removal of the thermocouple which requires awkward access into the water heater combustion chamber. Thus, there can be a considerable reduction in the time a water heater serviceperson needs to identify and correct a problem in the many cases where an open circuit is related to the fuse rather than the thermocouple. Therefore, the reason for replacement being necessary can be ascertained more directly and, thus, safe operation resumed more certainly.


[0103] FIGS. 11-14 show a gas control valve 48 supplying main burner 14 having an adjacent pilot burner 49 in water heater 2 with combustion chamber 15, including a gas inlet 120 for connection to a supply (not shown) of combustible gas. Valve 48 has a gas outlet 124 for connection to a conduit (not shown) leading to main burner 14 and an outlet 126 to connect to pilot burner 49. Internal components of the valve include an orifice or conduit 127 for gas flow between the inlet 120 and outlet 124 and a closure 154 normally resiliently biased to close the orifice to prevent or permit flow of gas from the inlet 120 to the outlet 124 as required.


[0104] Incorporated in valve 48 is an electrical circuit 128 such as shown in FIG. 15, including thermocouple 51 connected to a solenoid 132. Thermocouple 51 provides an electrical potential, sometimes hereinafter referred to as “signal,” when heated by a flame established at pilot burner 49, typically 12 to 15 mV, to solenoid 132 which is sufficient to maintain solenoid 132 open against the normally closing bias of a spring 156 associated with closure 154. Specifically, the electrical potential is provided to solenoid 32, creating a magnetic force which, via an armature connected to closure 154, maintains closure 154 open. It should be noted that the electrical potential is not sufficient to open closure 154 from its closed position except when valve passage 127 is first opened by manual switch 142 being manually positioned in the “pilot” or “on” positions and the potential is adequate to maintain closure 154 in its open position.


[0105] When a flame is absent at pilot burner 49, valve 48 remains shut except during a start up procedure. The circuit has a manual switch 142 with three positions, “off”, “pilot” and “on”. In the “pilot” position the switch may be depressed to hold open valve 48 while thermocouple 51 heats sufficiently to power circuit 128. Manual switch 142 is depressed in the “pilot” and “on” on positions to lift closure 154 off its seat against the closing bias force of spring 156. In the open position, an electrical current passing through the coil of solenoid 158 generated by the thermocouple 51 when heated by the flame of the pilot burner 49 (FIG. 4) is adequate to maintain closure 154 in the open position during normal use of water heater 2. Normal use of water heater 2 involves pilot burner 49 being alight at all times.


[0106] An over-temperature energy cut out 144 is installed inside a temperature sensitive thermostat probe 146 (shown in FIG. 12) which interrupts all gas flow through the valve in the event that an unsafe temperature develops inside the tank.


[0107] As best seen in FIGS. 11 and 15, valve 48 has a fuse 134 connected in electrical circuit 128 and exposed at the bottom surface of valve 48 to be sensitive to extraneous sources of flame and heat external to and in the region of the valve, particularly underneath it.


[0108] Valve 48 features an externally accessible socket 136 in electrical circuit 128 in which thermal fuse 134 is removably inserted. Socket 136 is positioned to receive thermal fuse 134 independently and separate from thermocouple 51.


[0109] Socket 136 and fuse 134 are accessible from the underside of valve 48 as shown in FIGS. 11 and 14 wherein valve 48 is mounted on an external vertical wall of water heater 2. This leads to the advantage of rapid response time since the underside is most likely to be impinged upon by extraneous flame because valve 48 is also vertically above access point 138 to main burner 14 and pilot burner 49 such as for lighting, inspection and combustion air entry. Extraneous flame and heat within water heater 2 may result from accidental combustion of a flammable substance near water heater 2, the flame being likely to establish itself firstly adjacent to access point 138.


[0110] Another advantage of mounting fuse 134 to be accessible at a downward facing surface of valve 48 is that fuse 134 would not be as noticeable upon a casual inspection of water heater 2 and valve 48 and, therefore, not so likely to invite removal by personnel unaware of its safety-motivated purpose. Water heater 2 will not continue to function if it were removed and not replaced.


[0111] Despite the preferred downward facing position of fuse 134, positions on other faces of valve 48 are possible. Fuse 134 has minimal thermal inertia and to that end involves minimal mass and is not enclosed in a copper or similar sheath. A preferred fuse 134 is one encapsulated only in a small quantity of organic polymer resin. One presently preferred form of thermal fuse 134 is manufactured by Therm-O-Disc, Inc., Mansfield, Ohio, USA. The radial lead type is the most suitable for insertion into a socket 136 and a model available with a maximum rated opening temperature of 102° C. has a suitably rapid response time.


[0112] Whilst the above embodiments are directed to room or indoor installed gas water heaters, the improvements described will function in an outdoor environment, if spillages occur nearby and fumes enter the gas water heater.


[0113] The foregoing describes embodiments of the present invention and variations thereof and modification by those skilled in the art can be made thereto without departing from the scope of the invention. For example, the flame trap may be located at various positions other than those shown in the drawings and described above. One alternative position is in the side of the combustion chamber opposite the gas supply. In such a construction the flame trap would be located in an opening in the skirt below the water tank and extending through the corresponding portion of insulation.


[0114] In a further construction the flame trap is positioned above the height of entry to the combustion chamber and the flame sensitive switch is positioned above that height of entry in the flow path of combustion air toward the burner. The aperture covered by the flame trap is in radiant heat communication with a flame sensitive switch also positioned to be sensitive to flame roll out from flue blockage or combustion air starvation.


[0115] It is also possible that tube 70 as shown in FIG. 9 can be made either partially or completely from flame trap materials, especially the upper portion.


[0116] Further, the flame trap may be made from a variety of materials such as those described above, but can be fabricated from others not specifically identified so long as they permit passage of air and fumes in one direction but prevent flames from travelling in the opposite direction.


[0117] Suitable flame trap materials include those being porous, gas permeable and possessing sufficiently high thermal capacity to quench flame under typical conditions of use. Metallic structures having small holes, made from, for example, mild steel, stainless steel, copper or aluminum are suitable and porous ceramics including glass or mineral wool woven or non-woven constructions are also suitable. Fibre matrix ceramic is suitable as is flexible or rigid constructions.


[0118] Also, the air passage for combustion air, such as in the structure labelled 22 in FIG. 1, can be located between water tank 6 and jacket 4. The passageway can be of a variety of shapes and sizes and can be formed in and bounded by the insulation or can be formed by tubes, pipes conduits and the like.


[0119] It should also be understood that utilization of the flame sensitive switch or similar devices may be used with all types of gas fired water heaters, including those not equipped with flame traps. Further, devices other than thermocouples 51 providing electrical potentials may be employed so long as they are capable of converting heat energy to assist in actuating closure 154. Heat to mechanical, heat to optical, heat to magnetic and the like types of conversions are all within the scope of the invention. Accordingly, “signal” as used in the claims refers not only to “electrical potential” but to any means whereby closure 154 is actuated/deactuated as a result of detection of heat energy.


[0120] Finally, main burner 14 and combustion chamber 15 can have different constructions such as those described in U.S. Pat. Nos. 4,924,816; 5,240,411; 5,355,841; and co-pending applications 08/333,871 and 08/113,618, for example, the subject matter of which is incorporated herein by reference.


Claims
  • 1. A control valve for supplying fuel to a water heater containing a main burner and a pilot burner comprising: a fuel inlet adapted to connect to a supply of fuel; at least one fuel outlet adapted to connect to the main burner; a conduit for fuel flow between the inlet and outlet; a closure associated with the conduit to control flow of fuel from the inlet to the outlet; a circuit associated with the valve and including a thermally actuated device associated with the closure, said device, when heated by the pilot burner providing a signal to the closure to open or close the closure; and a combustion sensitive fuse connected to the circuit and positioned to be exposed to extraneous sources of flame and/or heat external to and adjacent the control valve.
  • 2. The control valve defined in claim 1 further comprising an externally accessible socket in the circuit into which the fuse is removably insertable.
  • 3. The control valve defined in claim 2 wherein the socket is adapted to receive the fuse independently separate from the thermally actuated device.
  • 4. The control valve defined in claim 2 wherein the socket is accessible from an underside of the valve.
  • 5. The control valve defined in claim 1 wherein the fuse is positioned at an underside of the valve.
  • 6. The control valve defined in claim 1 wherein the closure comprises a member located in a portion of the conduit and is normally resiliently biased in a closed position.
  • 7. The control valve defined in claim 1 wherein the circuit further comprises a solenoid associated with the closure, the solenoid being capable of receiving an electrical signal from the thermally actuated device and opening said closure in response.
  • 8. The control valve defined in claim 1 wherein the fuse is temperature sensitive.
  • 9. The control valve defined in claim 1 wherein the circuit further comprises an over temperature energy cut out switch associated with a temperature sensitive thermostat probe, said energy cut out switch being capable of interrupting gas flow through said control valve to the main burner and the pilot burner.
  • 10. The control valve defined in claim 1 wherein the thermally actuated device is a thermocouple.
  • 11. The control valve defined in claim 1 wherein the circuit further comprises a manual switch connected to the thermally actuated device and having on, off and pilot positions, said pilot position causing the closure to open until such time as the thermally actuated device is capable of providing a signal to open the closure.
  • 12. A control valve for supplying fuel to a water heater containing a main burner and a pilot burner comprising: a fuel inlet adapted to connect to a supply of fuel; at least one fuel outlet adapted to connect to the main burner; a conduit for fuel flow between the inlet and outlet; a closure associated with the conduit to control flow of fuel from the inlet to the outlet, said closure comprising a member located in a portion of the conduit and which is normally resiliently biased in a closed position; and a circuit associated with the valve comprising a thermocouple associated with the closure, said thermocouple, when heated by the pilot burner providing a signal; a solenoid associated with the closure, the solenoid being capable of receiving output from the thermocouple and maintaining open said closure in response to output indicative of a flame at said pilot burner; an energy cut out switch associated with a temperature sensitive thermostat, the energy cut out switch being associated with a temperature sensitive thermostat probe, said energy cut out switch being capable of interrupting gas flow through said control valve to the main burner and the pilot burner; and a combustion sensitive fuse positioned to be exposed to extraneous sources of flame and/or heat external to and adjacent the control valve.
  • 13. A water heater comprising: a water container having an inlet and an outlet; a main burner positioned to heat water in the water container; a pilot burner positioned to supply flame to the main burner; and a control valve to supply fuel to the main and pilot burners, said control valve comprising: a fuel inlet adapted to connect to a supply of fuel; at least one fuel outlet adapted to connect to the main burner; a conduit for fuel flow between the inlet and outlet; a closure associated with the conduit to control flow of fuel from the inlet to the outlet; a circuit associated with the valve and including a thermally actuated device associated with the closure, said device, when heated by the pilot burner providing a signal to means associated with the closure to maintain open the already opened closure or to release it to a closed position; and a combustion sensitive fuse connected to the circuit and positioned to be exposed to extraneous sources of flame and/or heat external to and adjacent the control valve.
  • 14. A water heater comprising: a water container; a combustion chamber located adjacent said tank; a main burner and a pilot burner located inside said combustion chamber; and a flame trap positioned at an opening in said combustion chamber, said flame trap permitting ingress of air and extraneous gases, if present, into said combustion chamber and prevent egress of flames from said structure, said flame trap being positioned below and adjacent said pilot burner.
  • 15. The water heater defined in claim 14 further comprising a venturi extending into said combustion chamber to supply combustion air to said main burner.
  • 16. The water heater defined in claim 14 further comprising a lint trap positioned exteriorly of said flame trap and across said opening.
  • 17. The water heater defined in claim 14 further comprising a blocking plate positioned within said combustion chamber and adjacent said opening.
  • 18. A water heater comprising: a water container; a combustion chamber located adjacent said tank, said combustion chamber having a floor portion with an opening; a conduit extending upwardly from and being substantially sealed to said opening; a burner located inside said combustion chamber; and a flame trap positioned across said conduit, said flame trap permitting ingress of air and extraneous gases, if present, into said combustion chamber and prevent egress of flames from said structure.
  • 19. The water heater defined in claim 18 further comprising a lint trap positioned exteriorly of said flame trap and across an upper portion of said conduit.
  • 20. The water heater defined in claim 18 further comprising a lint trap positioned across said opening.
  • 21. The water heater defined in claim 18 further comprising a blocking plate positioned within said combustion chamber and adjacent an upper portion of said conduit.
Priority Claims (3)
Number Date Country Kind
PO 0786 Jul 1996 AU
PN 2136 Apr 1995 AU
PN 5591 Sep 1995 AU
Continuations (1)
Number Date Country
Parent 08742587 Oct 1996 US
Child 10145312 May 2002 US
Continuation in Parts (1)
Number Date Country
Parent 08626844 Apr 1996 US
Child 08742587 Oct 1996 US