The present invention relates to an ignition system for an internal combustion engine. The present invention relates, in particular, to an ignition system for internal combustion engines, in which increased demands exist as a result of (high) supercharging and diluted mixtures which are difficult to ignite (λ>>1, lean layer concepts, high EGR rates).
Great Britain Patent No. GB717676 describes a step-up transformer for an ignition system, in which a circuit element controlled by a vibration switch in the manner of a boost converter is used to supply a spark, generated via the step-up transformer, with electrical power.
PCT Application No. WO 2009/106100 A1 describes a circuit configuration designed corresponding to a high-voltage capacitor ignition system, in which energy stored in a capacitor is conducted, on the one hand, to the primary side of a transformer and, on the other hand, to a spark gap via a bypass having a diode.
U.S. Patent Appl. Pub. No. US 2004/000878 A1 describes an ignition system in which an energy store on the secondary side, including multiple capacitors, is charged in order to supply a spark generated with the aid of a transformer with electrical power.
PCT Application No. WO9304279 A1 shows an ignition system including two energy sources. One energy source transfers electrical power via a transformer to a spark gap, while the second energy source is situated between a terminal on the secondary side of the transformer and the electrical ground.
German Patent Application No. DE102013218227A1 describes an ignition system, in which a high-voltage generator generates an ignition spark, which is subsequently supplied with electrical power and maintained by a boost converter.
Ignition systems for internal combustion engines are based on a high-voltage generator, for example, a step-up transformer, with the aid of which power originating from the vehicle battery or from a generator is converted into high voltages, with the aid of which a spark gap is supplied in order to ignite a combustible mixture in the internal combustion engine. For this purpose, a current flowing through the step-up transformer is abruptly interrupted, whereupon the energy stored in the magnetic field of the step-up transformer discharges in the form of a spark.
According to the present invention, the method may be improved with respect to multiple parameters by a suitable influence of the interaction between the primary voltage generator and the boost converter. However, there are still no proposals known in the related art for the corresponding control. It is therefore an object of the present invention to satisfy the above identified need.
In accordance with the present invention, a method for controlling an ignition system for a spark-ignited internal combustion engine is provided. The ignition system includes a primary voltage generator for generating an ignition spark and a boost converter for maintaining the ignition spark. In a first step, a signal is transmitted from an engine control unit to the ignition system in order to determine a predetermined ignition timing for triggering an ignition spark. This ignition spark is a primary ignition spark, for example, or a single ignition spark for igniting the ignitable mixture present in the combustion chamber. In addition, an additional signal is transmitted from the engine control unit to the ignition system, in order to determine a predetermined additional ignition timing for triggering an additional ignition spark. The additional ignition spark may have a function identical to the previously mentioned ignition spark, but may be generated at a later power stroke (for example, a 720° crankshaft angle later). According to the present invention, a control signal for influencing the operating mode of the boost converter is transmitted from the engine control unit to the ignition system, after the first signal and before the additional signal is transmitted to the ignition system. To influence the operating mode of the boost converter, it is also possible to transmit additional signals prior to the first signal, which enable the operating mode of the ignition system to be influenced in the instantaneous ignition cycle. The control signal is not (or not solely) configured for defining an ignition timing or for triggering an ignition spark, since the boost converter is used primarily for supplying an already generated ignition spark with electrical power. Different advantages result during operation of an aforementioned ignition system, depending on the design, as a result of the described chronological sequence.
Preferred refinements of the present invention of the present invention are described herein.
The signals and the at least one control signal, which is sent between the signals to the ignition system, may pass via an identical signal (for example, an electrical lead) from the engine control unit to the ignition system. This represents a particularly simple topology, which entails material savings, cost savings and weight advantages. The connection of the engine control unit to the ignition system or the transmission of information between the two units may also take place in a simple manner (for example, according to the related art).
The control signal may essentially have a high level identical to the respective signal for determining the ignition timing. Alternatively or in addition, the control signal may have a reduced electrical level compared to the signals for determining the ignition timing, for example, a so-called “low level”, which may be understood as a pause between two high-level signals. This simplifies the electrical evaluation of the signals and enhances the interference resistance to interspersed electromagnetic signals.
The operating mode of the boost converter may be influenced, for example, by a point in time and/or by a time duration of the presence of the at least one control signal. Depending on at which point in time the control signal (measured, for example, above the crankshaft angle and/or measured relative to the signals for defining the ignition timing) is transmitted to the ignition system, a switch-on instant of the boost converter, a power output of the boost converter or the like may be defined. Alternatively or in addition, a time duration of a high level or of a low level may also influence the operating mode of the boost converter. Depending on which of the aspects of the operating mode of the boost converter is influenced by the aforementioned parameters of the control signal, the evaluation of the control signal may be greatly simplified or the change of the operating parameter of the boost converter may result directly from the point in time/time duration of the control signal. A comprehensive evaluation of the control signal may be advantageously omitted.
The operating mode of the boost converter may, for example, result via a (chronological) position of an edge (for example, a rising edge of a high level and/or a falling edge of a high level). Both edges of a shared level of the control signal may also be used to influence the operating mode of the boost converter. Such an evaluation is circuitry-wise particularly simple and possible without interferences.
Alternatively or in addition, the operating mode of the boost converter may also be influenced by an evaluation of a number of pulses, which are transmitted as part of the control signal to the ignition system. For example, rising edges and/or falling edges of pulses may be counted and the operating mode of the boost converter may be changed in a predefined manner in response to the ascertained number. For example, the number of pulses may decide about a power level to be output and/or about a time delay of a start of operation of the boost converter relative to the switch-on instant of the primary voltage generator. This type of information transmission is also circuitry-wise easily evaluatable and implementable unsusceptible to interference.
Alternatively or in addition, the operating mode of the boost converter may be influenced as a function of the extent of a high level of the at least one control signal. An energy-related variable (current, voltage, power), in particular, of the boost converter may be adjusted via the extent of the high level. An exact calibration of an output variable of the boost converter may be made, in particular, when using continuously variable levels.
The operating mode of the boost converter may be influenced by the control signal, for example, in the form of a time delay between a switching-on of the primary voltage generator and a switching-on of the boost converter. Alternatively or in addition, a power output of the boost converter may be adapted as a parameter of the operating mode. The power may be adapted, for example, by adapting a pulse duty factor and/or switching frequency of the boost converter. A switch-off instant and/or a start of operation of the boost converter may also be adapted as a parameter of the operating mode. The start of operation of the boost converter in this case may be delayed, for example, for the purpose of suppressing a switch-on spark by the primary voltage generator. In this case, an output voltage directed opposite the output voltage of the primary voltage generator is generated with the aid of the boost converter before or at least concurrently with the switching-on of the primary voltage generator. The aforementioned voltages are therefore oppositely superposed at the spark gap, as a result of which an ignition spark undesirable at this point in time is suppressed.
Multiple control signals may, of course, also be transmitted between the first signal and the additional signal, in order to induce the ignition system to influence additional parameters of the operating mode of the boost converter. Each of the aforementioned parameters may be adapted individually and/or in combination with additional parameters via individual edges and/or levels and/or numbers and/or time durations of control signals. This results in far-reaching possibilities for increasing the efficiency of an internal combustion engine equipped with the ignition system and for lowering its fuel consumption. In other words, each additional control signal may define one or multiple of the aforementioned parameters of the boost converter or of the ignition system.
According to a second aspect of the present invention, an ignition system for a spark-ignited internal combustion engine is described, which includes a primary voltage generator (for example, a conventional ignition transformer) for generating an ignition spark. To maintain the ignition spark, a boost converter is provided, which is electrically looped on the output side with the spark gap of a spark plug. An evaluation unit and a signal input are also provided in the ignition system, the evaluation unit being configured to evaluate signals received via the signal input. Thus, the evaluation unit is configured to receive and evaluate a signal from an engine control unit for determining a predetermined ignition timing for triggering an ignition spark. The evaluation unit is also configured to receive and evaluate a signal from an engine control unit for determining an additional predetermined ignition timing for triggering an additional ignition spark. According to the present invention, the evaluation unit is further configured to receive and evaluate, between the aforementioned signals for determining an ignition timing, a control signal from the engine control unit for influencing the operating mode of the boost converter. After the completed evaluation, the evaluation unit may adapt the operating parameters of the boost converter according to a method, as was described in detail above in connection with the former aspect of the present invention. The features, feature combinations and the advantages resulting therefrom result accordingly.
According to a third aspect of the present invention, an engine control unit is described for controlling an ignition system for a spark-ignited internal combustion engine. The ignition system includes a primary voltage generator for generating an ignition spark and a boost converter for maintaining the ignition spark. Thus, the ignition system controlled by the engine control unit according to the present invention is designed, for example, according to the second-mentioned aspect of the present invention. The engine control unit is configured according to the present invention to transmit via a signal output a signal to the ignition system for determining a predetermined ignition timing for triggering an ignition spark in a first power stroke and to transmit an additional signal via the signal output to the ignition system for determining an additional predetermined ignition timing for triggering an additional ignition spark. The additional ignition timing may, for example, be generated at a later 720° crankshaft angle operating point. According to the present invention, the engine control unit is further configured to transmit via the same signal output a control signal to the ignition system for influencing the operating mode of the boost converter between the signal and the additional signal. In this way, the engine control unit may directly influence the processes within the ignition system designed according to the present invention. The features, feature combinations and the advantages resulting therefrom clearly correspond to those cited in conjunction with the aforementioned aspects of the present invention in such a way that, to avoid repetitions, reference is made to the preceding explanations.
According to a fourth aspect of the present invention, a system or arrangement is described, which includes an ignition system according to the second-mentioned aspect and an engine control unit according to the third-mentioned aspect of the present invention. The signal output of the engine control unit is IT-relatedly connected to a signal input of the ignition system, so that an internal combustion engine equipped in this manner may be extensively optimized with respect to efficiency, fuel consumption, electrode erosion and to other parameters. In other words, the system according to the present invention is configured to carry out a method according to the first-mentioned aspect of the present invention.
Exemplary embodiments of the present invention are described in detail below with reference to the figures.
Control signals t1 and/or t2 may, for example, be used for a corresponding control. If a single-spark operation is used for the targeted discharging of a residual voltage remaining at the spark gap, a control signal may be used in order to generate a conductive spark gap for discharging the spark gap in the absence of an ignitable mixture in the combustion chamber. This may take place, for example, by selecting a control signal t1 within a range of predefined limits, upon receipt of which the ignition system recognizes that control signal t1 lies outside the predefined interval. In response to such an input value, the ignition system generates a discharge spark at a point in time in which no ignitable mixture is present in the combustion chamber, as a result of which a residual energy remaining in the ignition system is dissipated without causing damage to the internal combustion engine. A single-spark operation or a quenched spark, for example, may also be generated by control signals t2, which are not predefined for power levels of the boost converter. In other words, a value of t2 invalid for the power position is taken by the ignition system as a signal for starting the single-spark operation or for generating a quenched spark. The ignition system is operated, in principle, in accordance with a conventional inductive ignition coil. This means, the ignition coil is supplied once with power via the energization of the primary side, and the power is used to build up a high voltage and after ignition, the stored magnetic energy remaining in the inductance of the voltage generator is delivered to the spark gap.
Even though the aspects according to the present invention and advantageous specific embodiments have been described in detail with reference to the exemplary embodiments explained in conjunction with the figures, modifications and combinations of features of the depicted exemplary embodiments are possible for those skilled in the art, without departing from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 215 369.7 | Aug 2014 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/062670 | 6/8/2015 | WO | 00 |